1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-09-20 05:00:36 +00:00
rtl8812au/hal/rtl8814a/rtl8814a_phycfg.c
2018-02-16 22:40:26 +01:00

2856 lines
94 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8814A_PHYCFG_C_
//#include <drv_types.h>
#include <rtl8814a_hal.h>
#include "hal_com_h2c.h"
/*---------------------Define local function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
//1 1. BB register R/W API
u32
PHY_QueryBBReg8814A(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
#if(SIC_ENABLE == 1)
return SIC_QueryBBReg(Adapter, RegAddr, BitMask);
#endif
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
//RTW_INFO("BBR MASK=0x%x Addr[0x%x]=0x%x\n", BitMask, RegAddr, OriginalValue);
return (ReturnValue);
}
VOID
PHY_SetBBReg8814A(
IN PADAPTER Adapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
#if(SIC_ENABLE == 1)
SIC_SetBBReg(Adapter, RegAddr, BitMask, Data);
return;
#endif
if (BitMask!= bMaskDWord) { //if not "double word" write
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Data = ((OriginalValue) & (~BitMask)) |( ((Data << BitShift)) & BitMask);
}
rtw_write32(Adapter, RegAddr, Data);
//RTW_INFO("BBW MASK=0x%x Addr[0x%x]=0x%x\n", BitMask, RegAddr, Data);
}
static u32
phy_RFRead_8814A(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 DataAndAddr = 0;
u32 Readback_Value, Direct_Addr;
RegAddr &= 0xff;
switch (eRFPath) {
case ODM_RF_PATH_A:
Direct_Addr = 0x2800+RegAddr*4;
break;
case ODM_RF_PATH_B:
Direct_Addr = 0x2c00+RegAddr*4;
break;
case ODM_RF_PATH_C:
Direct_Addr = 0x3800+RegAddr*4;
break;
case ODM_RF_PATH_D:
Direct_Addr = 0x3c00+RegAddr*4;
break;
default: //pathA
Direct_Addr = 0x2800+RegAddr*4;
break;
}
BitMask &= bRFRegOffsetMask;
Readback_Value = PHY_QueryBBReg(Adapter, Direct_Addr, BitMask);
//RTW_INFO("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, RegAddr, Readback_Value);
return Readback_Value;
}
static VOID
phy_RFWrite_8814A(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 Offset,
IN u32 Data
)
{
u32 DataAndAddr = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
// 2009/06/17 MH We can not execute IO for power save or other accident mode.
//if(RT_CANNOT_IO(Adapter))
//{
//RT_DISP(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n"));
//return;
//}
Offset &= 0xff;
// Shadow Update
//PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data);
// Put write addr in [27:20] and write data in [19:00]
DataAndAddr = ((Offset<<20) | (Data&0x000fffff)) & 0x0fffffff;
// Write Operation
PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
//RTW_INFO("RFW-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr);
}
u32
PHY_QueryRFReg8814A(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask
)
{
u32 Readback_Value;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
Readback_Value = phy_RFRead_8814A(Adapter, eRFPath, RegAddr, BitMask);
return (Readback_Value);
}
VOID
PHY_SetRFReg8814A(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
#if (DISABLE_BB_RF == 1)
return;
#endif
if (BitMask == 0)
return;
RegAddr &= 0xff;
// RF data is 20 bits only
if (BitMask != bLSSIWrite_data_Jaguar) {
u32 Original_Value, BitShift;
Original_Value = phy_RFRead_8814A(Adapter, eRFPath, RegAddr, bLSSIWrite_data_Jaguar);
BitShift = PHY_CalculateBitShift(BitMask);
Data = ((Original_Value) & (~BitMask)) | (Data<< BitShift);
}
phy_RFWrite_8814A(Adapter, eRFPath, RegAddr, Data);
}
//
// 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt.
//
s32 PHY_MACConfig8814(PADAPTER Adapter)
{
int rtStatus = _FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//
// Config MAC
//
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtStatus = phy_ConfigMACWithParaFile(Adapter, PHY_FILE_MAC_REG);
if (rtStatus == _FAIL)
#endif //CONFIG_LOAD_PHY_PARA_FROM_FILE
{
#ifdef CONFIG_EMBEDDED_FWIMG
ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv);
rtStatus = _SUCCESS;
#endif//CONFIG_EMBEDDED_FWIMG
}
return rtStatus;
}
static VOID
phy_InitBBRFRegisterDefinition(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
// RF Interface Sowrtware Control
pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 LSBs if read 32-bit from 0x870
pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; // 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872)
// RF Interface Output (and Enable)
pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x860
pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; // 16 LSBs if read 32-bit from 0x864
// RF Interface (Output and) Enable
pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862)
pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; // 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866)
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(Adapter)) {
pHalData->PHYRegDef[ODM_RF_PATH_A].rf3wireOffset = rA_LSSIWrite_Jaguar; //LSSI Parameter
pHalData->PHYRegDef[ODM_RF_PATH_B].rf3wireOffset = rB_LSSIWrite_Jaguar;
pHalData->PHYRegDef[ODM_RF_PATH_A].rfHSSIPara2 = rHSSIRead_Jaguar; //wire control parameter2
pHalData->PHYRegDef[ODM_RF_PATH_B].rfHSSIPara2 = rHSSIRead_Jaguar; //wire control parameter2
} else {
pHalData->PHYRegDef[ODM_RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; //LSSI Parameter
pHalData->PHYRegDef[ODM_RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
pHalData->PHYRegDef[ODM_RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; //wire control parameter2
pHalData->PHYRegDef[ODM_RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; //wire control parameter2
}
if (IS_HARDWARE_TYPE_8814A(Adapter)) {
pHalData->PHYRegDef[ODM_RF_PATH_C].rf3wireOffset = rC_LSSIWrite_Jaguar2; //LSSI Parameter
pHalData->PHYRegDef[ODM_RF_PATH_D].rf3wireOffset = rD_LSSIWrite_Jaguar2;
pHalData->PHYRegDef[ODM_RF_PATH_C].rfHSSIPara2 = rHSSIRead_Jaguar; //wire control parameter2
pHalData->PHYRegDef[ODM_RF_PATH_D].rfHSSIPara2 = rHSSIRead_Jaguar; //wire control parameter2
}
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(Adapter)) {
// Tranceiver Readback LSSI/HSPI mode
pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBack = rA_SIRead_Jaguar;
pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBack = rB_SIRead_Jaguar;
pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBackPi = rA_PIRead_Jaguar;
pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBackPi = rB_PIRead_Jaguar;
} else {
// Tranceiver Readback LSSI/HSPI mode
pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
}
if (IS_HARDWARE_TYPE_8814A(Adapter)) {
// Tranceiver Readback LSSI/HSPI mode
pHalData->PHYRegDef[ODM_RF_PATH_C].rfLSSIReadBack = rC_SIRead_Jaguar2;
pHalData->PHYRegDef[ODM_RF_PATH_D].rfLSSIReadBack = rD_SIRead_Jaguar2;
pHalData->PHYRegDef[ODM_RF_PATH_C].rfLSSIReadBackPi = rC_PIRead_Jaguar2;
pHalData->PHYRegDef[ODM_RF_PATH_D].rfLSSIReadBackPi = rD_PIRead_Jaguar2;
}
//pHalData->bPhyValueInitReady=TRUE;
}
int
PHY_BBConfig8814(
IN PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 TmpU1B=0;
phy_InitBBRFRegisterDefinition(Adapter);
// . APLL_EN,,APLL_320_GATEB,APLL_320BIAS, auto config by hw fsm after pfsm_go (0x4 bit 8) set
TmpU1B = PlatformEFIORead1Byte(Adapter, REG_SYS_FUNC_EN_8814A);
if (IS_HARDWARE_TYPE_8814AU(Adapter))
TmpU1B |= FEN_USBA;
else if (IS_HARDWARE_TYPE_8814AE(Adapter))
TmpU1B |= FEN_PCIEA;
PlatformEFIOWrite1Byte(Adapter, REG_SYS_FUNC_EN, TmpU1B);
TmpU1B = PlatformEFIORead1Byte(Adapter, 0x1002);
PlatformEFIOWrite1Byte(Adapter, 0x1002, (TmpU1B|FEN_BB_GLB_RSTn|FEN_BBRSTB));//same with 8812
//6. 0x1f[7:0] = 0x07 PathA RF Power On
PlatformEFIOWrite1Byte(Adapter, REG_RF_CTRL0_8814A , 0x07);//RF_SDMRSTB,RF_RSTB,RF_EN same with 8723a
//7. 0x20[7:0] = 0x07 PathB RF Power On
//8. 0x21[7:0] = 0x07 PathC RF Power On
PlatformEFIOWrite2Byte(Adapter, REG_RF_CTRL1_8814A , 0x0707);//RF_SDMRSTB,RF_RSTB,RF_EN same with 8723a
//9. 0x76[7:0] = 0x07 PathD RF Power On
PlatformEFIOWrite1Byte(Adapter, REG_RF_CTRL3_8814A , 0x7);
//
// Config BB and AGC
//
rtStatus = phy_BB8814A_Config_ParaFile(Adapter);
hal_set_crystal_cap(Adapter, pHalData->CrystalCap);
switch (Adapter->registrypriv.rf_config) {
case RF_1T1R:
case RF_2T4R:
case RF_3T3R:
/*RX CCK disable 2R CCA*/
PHY_SetBBReg(Adapter, rCCK0_FalseAlarmReport+2, BIT2|BIT6, 0);
/*pathB tx on, path A/C/D tx off*/
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, 0xf0000000, 0x4);
/*pathB rx*/
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, 0x0f000000, 0x5);
break;
default:
/*RX CCK disable 2R CCA*/
PHY_SetBBReg(Adapter, rCCK0_FalseAlarmReport+2, BIT2|BIT6, 0);
/*pathB tx on, path A/C/D tx off*/
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, 0xf0000000, 0x4);
/*pathB rx*/
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, 0x0f000000, 0x5);
RTW_INFO("%s, unknown rf_config: %d\n", __func__, Adapter->registrypriv.rf_config);
break;
}
return rtStatus;
}
int phy_BB8814A_Config_ParaFile(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* Read PHY_REG.TXT BB INIT!! */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s(): CONFIG_BB_PHY_REG Fail!!\n", __FUNCTION__);
goto phy_BB_Config_ParaFile_Fail;
}
/* Read PHY_REG_MP.TXT BB INIT!! */
#if (MP_DRIVER == 1)
if (Adapter->registrypriv.mp_mode == 1) {
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("phy_BB8814_Config_ParaFile():Write BB Reg MP Fail!!\n");
goto phy_BB_Config_ParaFile_Fail;
}
}
#endif /* #if (MP_DRIVER == 1) */
/* BB AGC table Initialization */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS)
RTW_INFO("%s(): CONFIG_BB_AGC_TAB Fail!!\n", __FUNCTION__);
phy_BB_Config_ParaFile_Fail:
return rtStatus;
}
VOID
phy_ADC_CLK_8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 MAC_REG_520, BB_REG_8FC, BB_REG_808, RXIQC[4];
u32 Search_index = 0, MAC_Active = 1;
u32 RXIQC_REG[2][4] = {{0xc10, 0xe10, 0x1810, 0x1a10}, {0xc14, 0xe14, 0x1814, 0x1a14}} ;
if (GET_CVID_CUT_VERSION(pHalData->VersionID) != A_CUT_VERSION)
return;
//1 Step1. MAC TX pause
MAC_REG_520 = PHY_QueryBBReg( Adapter, 0x520, bMaskDWord);
BB_REG_8FC = PHY_QueryBBReg( Adapter, 0x8fc, bMaskDWord);
BB_REG_808 = PHY_QueryBBReg( Adapter, 0x808, bMaskDWord);
PHY_SetBBReg(Adapter, 0x520, bMaskByte2, 0x3f);
//1 Step 2. Backup RXIQC & RXIQC = 0
for (Search_index = 0; Search_index<4; Search_index++){
RXIQC[Search_index] = PHY_QueryBBReg( Adapter, RXIQC_REG[0][Search_index], bMaskDWord);
PHY_SetBBReg(Adapter, RXIQC_REG[0][Search_index], bMaskDWord, 0x0);
PHY_SetBBReg(Adapter, RXIQC_REG[1][Search_index], bMaskDWord, 0x0);
}
PHY_SetBBReg(Adapter, 0xa14, 0x00000300, 0x3);
Search_index = 0;
//1 Step 3. Monitor MAC IDLE
PHY_SetBBReg(Adapter, 0x8fc, bMaskDWord, 0x0);
while (MAC_Active) {
MAC_Active = PHY_QueryBBReg( Adapter, 0xfa0, bMaskDWord) & (0x803e0008);
Search_index++;
if (Search_index>1000) {
break;
}
}
//1 Step 4. ADC clk flow
PHY_SetBBReg(Adapter, 0x808, bMaskByte0, 0x11);
PHY_SetBBReg(Adapter, 0x90c, BIT(13), 0x1);
PHY_SetBBReg(Adapter, 0x764, BIT(10)|BIT(9), 0x3);
PHY_SetBBReg(Adapter, 0x804, BIT(2), 0x1);
// 0xc1c/0xe1c/0x181c/0x1a1c[4] must=1 to ensure table can be written when bbrstb=0
// 0xc60/0xe60/0x1860/0x1a60[15] always = 1 after this line
// 0xc60/0xe60/0x1860/0x1a60[14] always = 0 bcz its error in A-cut
// power_off/clk_off @ anapar_state=idle mode
PHY_SetBBReg(Adapter, 0xc60, bMaskDWord, 0x15800002); //0xc60 0x15808002
PHY_SetBBReg(Adapter, 0xc60, bMaskDWord, 0x01808003); //0xc60 0x01808003
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0x15800002); //0xe60 0x15808002
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0x01808003); //0xe60 0x01808003
PHY_SetBBReg(Adapter, 0x1860, bMaskDWord, 0x15800002); //0x1860 0x15808002
PHY_SetBBReg(Adapter, 0x1860, bMaskDWord, 0x01808003); //0x1860 0x01808003
PHY_SetBBReg(Adapter, 0x1a60, bMaskDWord, 0x15800002); //0x1a60 0x15808002
PHY_SetBBReg(Adapter, 0x1a60, bMaskDWord, 0x01808003); //0x1a60 0x01808003
PHY_SetBBReg(Adapter, 0x764, BIT(10), 0x0);
PHY_SetBBReg(Adapter, 0x804, BIT(2), 0x0);
PHY_SetBBReg(Adapter, 0xc5c, bMaskDWord, 0x0D080058); //0xc5c 0x00080058 // [19] =1 to turn off ADC
PHY_SetBBReg(Adapter, 0xe5c, bMaskDWord, 0x0D080058); //0xe5c 0x00080058 // [19] =1 to turn off ADC
PHY_SetBBReg(Adapter, 0x185c, bMaskDWord, 0x0D080058); //0x185c 0x00080058 // [19] =1 to turn off ADC
PHY_SetBBReg(Adapter, 0x1a5c, bMaskDWord, 0x0D080058); //0x1a5c 0x00080058 // [19] =1 to turn off ADC
// power_on/clk_off
//PHY_SetBBReg(Adapter, 0x764, BIT(10), 0x1);
PHY_SetBBReg(Adapter, 0xc5c, bMaskDWord, 0x0D000058); //0xc5c 0x0D000058 // [19] =0 to turn on ADC
PHY_SetBBReg(Adapter, 0xe5c, bMaskDWord, 0x0D000058); //0xe5c 0x0D000058 // [19] =0 to turn on ADC
PHY_SetBBReg(Adapter, 0x185c, bMaskDWord, 0x0D000058); //0x185c 0x0D000058 // [19] =0 to turn on ADC
PHY_SetBBReg(Adapter, 0x1a5c, bMaskDWord, 0x0D000058); //0x1a5c 0x0D000058 // [19] =0 to turn on ADC
// power_on/clk_on @ anapar_state=BT mode
PHY_SetBBReg(Adapter, 0xc60, bMaskDWord, 0x05808032); //0xc60 0x05808002
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0x05808032); //0xe60 0x05808002
PHY_SetBBReg(Adapter, 0x1860, bMaskDWord, 0x05808032); //0x1860 0x05808002
PHY_SetBBReg(Adapter, 0x1a60, bMaskDWord, 0x05808032); //0x1a60 0x05808002
PHY_SetBBReg(Adapter, 0x764, BIT(10), 0x1);
PHY_SetBBReg(Adapter, 0x804, BIT(2), 0x1);
// recover original setting @ anapar_state=BT mode
PHY_SetBBReg(Adapter, 0xc60, bMaskDWord, 0x05808032); //0xc60 0x05808036
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0x05808032); //0xe60 0x05808036
PHY_SetBBReg(Adapter, 0x1860, bMaskDWord, 0x05808032); //0x1860 0x05808036
PHY_SetBBReg(Adapter, 0x1a60, bMaskDWord, 0x05808032); //0x1a60 0x05808036
PHY_SetBBReg(Adapter, 0xc60, bMaskDWord, 0x05800002); //0xc60 0x05800002
PHY_SetBBReg(Adapter, 0xc60, bMaskDWord, 0x07808003); //0xc60 0x07808003
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0x05800002); //0xe60 0x05800002
PHY_SetBBReg(Adapter, 0xe60, bMaskDWord, 0x07808003); //0xe60 0x07808003
PHY_SetBBReg(Adapter, 0x1860, bMaskDWord, 0x05800002); //0x1860 0x05800002
PHY_SetBBReg(Adapter, 0x1860, bMaskDWord, 0x07808003); //0x1860 0x07808003
PHY_SetBBReg(Adapter, 0x1a60, bMaskDWord, 0x05800002); //0x1a60 0x05800002
PHY_SetBBReg(Adapter, 0x1a60, bMaskDWord, 0x07808003); //0x1a60 0x07808003
PHY_SetBBReg(Adapter, 0x764, BIT(10)|BIT(9), 0x0);
PHY_SetBBReg(Adapter, 0x804, BIT(2), 0x0);
PHY_SetBBReg(Adapter, 0x90c, BIT(13), 0x0);
//1 Step 5. Recover MAC TX & IQC
PHY_SetBBReg(Adapter, 0x520, bMaskDWord, MAC_REG_520);
PHY_SetBBReg(Adapter, 0x8fc, bMaskDWord, BB_REG_8FC);
PHY_SetBBReg(Adapter, 0x808, bMaskDWord, BB_REG_808);
for (Search_index = 0; Search_index<4; Search_index++) {
PHY_SetBBReg(Adapter, RXIQC_REG[0][Search_index], bMaskDWord, RXIQC[Search_index]);
PHY_SetBBReg(Adapter, RXIQC_REG[1][Search_index], bMaskDWord, 0x01000000);
}
PHY_SetBBReg(Adapter, 0xa14, 0x00000300, 0x0);
}
VOID
PHY_ConfigBB_8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
RT_TRACE(COMP_INIT, DBG_LOUD, (" ===> PHY_ConfigBB_8814A() \n"));
PHY_SetBBReg(Adapter, rOFDMCCKEN_Jaguar, bOFDMEN_Jaguar|bCCKEN_Jaguar, 0x3);
}
//2 3.3 RF Config
s32
PHY_RFConfig8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
//vivi added this, 20100610
if (rtw_is_surprise_removed(Adapter))
return _FAIL;
switch (pHalData->rf_chip) {
case RF_PSEUDO_11N:
RTW_INFO("%s(): RF_PSEUDO_11N\n",__FUNCTION__);
break;
default:
rtStatus = PHY_RF6052_Config_8814A(Adapter);
break;
}
return rtStatus;
}
//1 4. RF State setting API
/* todo
#if (DEV_BUS_TYPE == RT_PCI_INTERFACE)
//
// 2009/11/03 MH add for LPS mode power save sequence.
// 2009/11/03 According to document V10.
// 2009/11/24 According to document V11. by tynli.
//
VOID
phy_SetRTL8814ERfOn(
IN PADAPTER Adapter
)
{
rtw_write8(Adapter, REG_SPS0_CTRL_8814A, 0x2b);
// c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 //enable BB TRX function
// For USB: SYS_FUNC_EN 0x02[7:0] = 0x17
#if (DEV_BUS_TYPE == RT_PCI_INTERFACE)
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A, 0xE3);
#else
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A, 0x17);
#endif
// RF_ON_EXCEP(d~g):
// d. APSD_CTRL 0x600[7:0] = 0x00
//rtw_write8(Adapter, REG_APSD_CTRL, 0x00);
// e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 //reset BB TRX function again
//f. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 //enable BB TRX function
#if (DEV_BUS_TYPE == RT_PCI_INTERFACE)
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A, 0xE2);
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A, 0xE3);
#else
// e.For USB: SYS_FUNC_EN 0x02[7:0] = 0x16
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A, 0x16);
// f. For USB: SYS_FUNC_EN 0x02[7:0] = 0x17
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A, 0x17);
#endif
// g. TXPAUSE 0x522[7:0] = 0x00 //enable MAC TX queue
rtw_write8(Adapter, REG_TXPAUSE_8814A, 0x00);
} // phy_SetRTL8188EERfSleep
BOOLEAN
phy_SetRFPowerState_8814E(
IN PADAPTER Adapter,
IN rt_rf_power_state eRFPowerState
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
BOOLEAN bResult = TRUE;
u8 i, QueueID;
PRT_POWER_SAVE_CONTROL pPSC = GET_POWER_SAVE_CONTROL(pMgntInfo);
pHalData->SetRFPowerStateInProgress = TRUE;
switch ( eRFPowerState ) {
//
// SW radio on/IPS site survey call will execute all flow
// HW radio on
//
case eRfOn:
{
#if(MUTUAL_AUTHENTICATION == 1)
if(pHalData->MutualAuthenticationFail)
break;
#endif
if((pHalData->eRFPowerState == eRfOff) && RT_IN_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC))
{ // The current RF state is OFF and the RF OFF level is halting the NIC, re-initialize the NIC.
s32 rtstatus;
u32 InitializeCount = 0;
do {
InitializeCount++;
rtstatus = NicIFEnableNIC( Adapter );
}while( (rtstatus != _SUCCESS) &&(InitializeCount <10) );
RT_ASSERT(rtstatus == _SUCCESS,("Nic Initialize Fail\n"));
RT_CLEAR_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC);
} else { // This is the normal case, we just turn on the RF.
phy_SetRTL8814ERfOn(Adapter);
}
// Turn on RF we are still linked, which might happen when
// we quickly turn off and on HW RF. 2006.05.12, by rcnjko.
if( pMgntInfo->bMediaConnect == TRUE )
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_LINK);
else // Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_NO_LINK);
}
break;
// Card Disable/SW radio off/HW radio off/IPS enter call
case eRfOff:
{
// Make sure BusyQueue is empty befor turn off RFE pwoer.
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
if(RTIsListEmpty(&Adapter->TcbBusyQueue[QueueID])) {
QueueID++;
continue;
}
else if(IsLowPowerState(Adapter)) {
RT_TRACE((COMP_POWER|COMP_RF), DBG_LOUD,
("eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n", (i+1), QueueID));
break;
} else {
RT_TRACE((COMP_POWER|COMP_RF), DBG_LOUD,
("eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID));
PlatformStallExecution(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
RT_TRACE((COMP_POWER|COMP_RF), DBG_WARNING, ("\n\n\n SetZebraRFPowerState8185B(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID));
break;
}
}
if (pPSC->RegRfPsLevel & RT_RF_OFF_LEVL_HALT_NIC) { // Disable all components.
NicIFDisableNIC(Adapter);
if(IS_HARDWARE_TYPE_8814AE(Adapter))
NicIFEnableInterrupt(Adapter);
RT_SET_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC);
} else { // Normal case.
//If Rf off reason is from IPS, Led should blink with no link, by Maddest 071015
if(pMgntInfo->RfOffReason==RF_CHANGE_BY_IPS )
Adapter->HalFunc.LedControlHandler(Adapter,LED_CTL_NO_LINK);
else // Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_POWER_OFF);
}
}
break;
default:
case eRfSleep:// Not used LPS is running on FW
bResult = FALSE;
RT_ASSERT(FALSE, ("phy_SetRFPowerState_8814E(): unknow state to set: 0x%X!!!\n", eRFPowerState));
break;
}
if (bResult) {
// Update current RF state variable.
pHalData->eRFPowerState = eRFPowerState;
}
pHalData->SetRFPowerStateInProgress = FALSE;
return bResult;
}
#elif (DEV_BUS_TYPE == RT_USB_INTERFACE)
BOOLEAN
phy_SetRFPowerState_8814U(
IN PADAPTER Adapter,
IN rt_rf_power_state eRFPowerState
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
BOOLEAN bResult = TRUE;
u8 i, QueueID;
PRT_USB_DEVICE pDevice = GET_RT_USB_DEVICE(Adapter);
if (pHalData->SetRFPowerStateInProgress == TRUE)
return FALSE;
pHalData->SetRFPowerStateInProgress = TRUE;
RT_TRACE(COMP_INIT, DBG_LOUD, ("======> phy_SetRFPowerState_8814U .\n"));
switch ( eRFPowerState ) {
case eRfOn:
if ((pHalData->eRFPowerState == eRfOff) &&
RT_IN_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC))
{ // The current RF state is OFF and the RF OFF level is halting the NIC, re-initialize the NIC.
RT_TRACE(COMP_RF, DBG_LOUD, ("======> phy_SetRFPowerState_8814U-eRfOn .\n"));
if (!Adapter->bInHctTest) {
// 2010/09/01 MH For 92CU, we do not make sure the RF B short initialize sequence
// So disable the different RF on/off sequence for hidden AP.
NicIFEnableNIC(Adapter);
RT_CLEAR_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC);
}
}
break;
//
// In current solution, RFSleep=RFOff in order to save power under 802.11 power save.
// By Bruce, 2008-01-16.
//
case eRfSleep:
{
// ToDo:
}
break;
case eRfOff:
// HW setting had been configured.
// Both of these RF configures are the same, configuring twice may cause HW abnormal.
if(pHalData->eRFPowerState == eRfSleep || pHalData->eRFPowerState== eRfOff)
break;
rtw_write8(Adapter, 0xf015, 0x40); //page added for usb3 bus
// Make sure BusyQueue is empty befor turn off RFE pwoer.
for (QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
if(RTIsListEmpty(&Adapter->TcbBusyQueue[QueueID])) {
QueueID++;
continue;
} else {
RT_TRACE(COMP_POWER, DBG_LOUD, ("eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID));
PlatformSleepUs(10);
i++;
}
if(i >= MAX_DOZE_WAITING_TIMES_9x) {
RT_TRACE(COMP_POWER, DBG_LOUD, ("\n\n\n SetZebraRFPowerState8185B(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID));
break;
}
}
//
//RF Off/Sleep sequence. Designed/tested from SD4 Scott, SD1 Grent and Jonbon.
// Added by
//
//==================================================================
// CU will call card disable flow to set RF off, such that we call halt directly
// and set the PS_LEVEL to HALT_NIC or we might call halt twice in N6usbHalt in some cases.
// 2010.03.05. Added by tynli.
if(pMgntInfo->RfOffReason & RF_CHANGE_BY_IPS ||
pMgntInfo->RfOffReason & RF_CHANGE_BY_HW ||
pMgntInfo->RfOffReason & RF_CHANGE_BY_SW)
{ //for HW/Sw radio off and IPS flow
//RT_TRACE(COMP_INIT, DBG_LOUD, ("======> CardDisableWithoutHWSM -eRfOff.\n"));
if(!Adapter->bInHctTest) {
// 2010/09/01 MH For 92CU, we do not make sure the RF B short initialize sequence
// So disable the different RF on/off sequence for hidden AP.
NicIFDisableNIC(Adapter);
RT_SET_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC);
}
}
break;
default:
bResult = FALSE;
RT_ASSERT(FALSE, ("phy_SetRFPowerState_8814U(): unknow state to set: 0x%X!!!\n", eRFPowerState));
break;
}
if (bResult) {
// Update current RF state variable.
pHalData->eRFPowerState = eRFPowerState;
switch (pHalData->rf_chip ) {
default:
switch (pHalData->eRFPowerState) {
case eRfOff:
//
//If Rf off reason is from IPS, Led should blink with no link, by Maddest 071015
//
if(pMgntInfo->RfOffReason==RF_CHANGE_BY_IPS )
Adapter->HalFunc.LedControlHandler(Adapter,LED_CTL_NO_LINK);
else // Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_POWER_OFF);
break;
case eRfOn:
// Turn on RF we are still linked, which might happen when
// we quickly turn off and on HW RF. 2006.05.12, by rcnjko.
if( pMgntInfo->bMediaConnect == TRUE )
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_LINK);
else // Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_NO_LINK);
break;
default:
// do nothing.
break;
}// Switch RF state
break;
}// Switch rf_chip
}
pHalData->SetRFPowerStateInProgress = FALSE;
RT_TRACE(COMP_INIT, DBG_LOUD, ("<====== phy_SetRFPowerState_8814U .\n"));
return bResult;
}
#elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
BOOLEAN
phy_SetRFPowerState_8814Sdio(
IN PADAPTER Adapter,
IN rt_rf_power_state eRFPowerState
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
BOOLEAN bResult = TRUE;
u8 i, QueueID;
PRT_SDIO_DEVICE pDevice = GET_RT_SDIO_DEVICE(Adapter);
if(pHalData->SetRFPowerStateInProgress == TRUE)
return FALSE;
pHalData->SetRFPowerStateInProgress = TRUE;
RT_TRACE(COMP_INIT, DBG_LOUD, ("======> phy_SetRFPowerState_8814Sdio .\n"))
switch ( eRFPowerState ) {
case eRfOn:
if((pHalData->eRFPowerState == eRfOff) &&
RT_IN_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC))
{ // The current RF state is OFF and the RF OFF level is halting the NIC, re-initialize the NIC.
RT_TRACE(COMP_RF, DBG_LOUD, ("======> phy_SetRFPowerState_8814Sdio-eRfOn .\n"));
if(!Adapter->bInHctTest) {
// 2010/09/01 MH For 92CU, we do not make sure the RF B short initialize sequence
// So disable the different RF on/off sequence for hidden AP.
NicIFEnableNIC(Adapter);
RT_CLEAR_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC);
}
}
// 2010/08/26 MH Prevent IQK to send out packet.
if(pHalData->bIQKInitialized )
PHY_IQCalibrate_8814A(Adapter, TRUE);
else
{
PHY_IQCalibrate_8814A(Adapter,FALSE);
pHalData->bIQKInitialized = _TRUE;
}
break;
//
// In current solution, RFSleep=RFOff in order to save power under 802.11 power save.
// By Bruce, 2008-01-16.
//
case eRfSleep:
{
// ToDo:
}
break;
case eRfOff:
// HW setting had been configured.
// Both of these RF configures are the same, configuring twice may cause HW abnormal.
if(pHalData->eRFPowerState == eRfSleep || pHalData->eRFPowerState== eRfOff)
break;
// Make sure BusyQueue is empty befor turn off RFE pwoer.
for(QueueID = 0, i = 0; QueueID < MAX_TX_QUEUE; ) {
if(RTIsListEmpty(&Adapter->TcbBusyQueue[QueueID])) {
//DbgPrint("QueueID = %d", QueueID);
QueueID++;
continue;
} else {
RT_TRACE(COMP_POWER, DBG_LOUD, ("eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 before doze!\n", (i+1), QueueID));
PlatformSleepUs(10);
i++;
}
if(i >= MAX_DOZE_WAITING_TIMES_9x) {
RT_TRACE(COMP_POWER, DBG_LOUD, ("\n\n\n SetZebraRFPowerState8185B(): eRfOff: %d times TcbBusyQueue[%d] != 0 !!!\n\n\n", MAX_DOZE_WAITING_TIMES_9x, QueueID));
break;
}
}
//
//RF Off/Sleep sequence. Designed/tested from SD4 Scott, SD1 Grent and Jonbon.
// Added by
//
//==================================================================
// CU will call card disable flow to set RF off, such that we call halt directly
// and set the PS_LEVEL to HALT_NIC or we might call halt twice in N6usbHalt in some cases.
// 2010.03.05. Added by tynli.
if(pMgntInfo->RfOffReason & RF_CHANGE_BY_IPS ||
pMgntInfo->RfOffReason & RF_CHANGE_BY_HW ||
pMgntInfo->RfOffReason & RF_CHANGE_BY_SW)
{ //for HW/Sw radio off and IPS flow
//RT_TRACE(COMP_INIT, DBG_LOUD, ("======> CardDisableWithoutHWSM -eRfOff.\n"));
if(!Adapter->bInHctTest) {
// 2010/09/01 MH For 92CU, we do not make sure the RF B short initialize sequence
// So disable the different RF on/off sequence for hidden AP.
NicIFDisableNIC(Adapter);
RT_SET_PS_LEVEL(Adapter, RT_RF_OFF_LEVL_HALT_NIC);
}
}
break;
default:
bResult = FALSE;
RT_ASSERT(FALSE, ("phy_SetRFPowerState_8814Sdio(): unknow state to set: 0x%X!!!\n", eRFPowerState));
break;
}
if(bResult) {
// Update current RF state variable.
pHalData->eRFPowerState = eRFPowerState;
switch (pHalData->rf_chip ) {
default:
switch(pHalData->eRFPowerState) {
case eRfOff:
//
//If Rf off reason is from IPS, Led should blink with no link, by Maddest 071015
//
if(pMgntInfo->RfOffReason==RF_CHANGE_BY_IPS )
Adapter->HalFunc.LedControlHandler(Adapter,LED_CTL_NO_LINK);
else // Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_POWER_OFF);
break;
case eRfOn:
// Turn on RF we are still linked, which might happen when
// we quickly turn off and on HW RF. 2006.05.12, by rcnjko.
if( pMgntInfo->bMediaConnect == TRUE )
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_LINK);
else // Turn off LED if RF is not ON.
Adapter->HalFunc.LedControlHandler(Adapter, LED_CTL_NO_LINK);
break;
default:
// do nothing.
break;
}// Switch RF state
break;
}// Switch rf_chip
}
pHalData->SetRFPowerStateInProgress = FALSE;
return bResult;
}
#endif
BOOLEAN
PHY_SetRFPowerState8814A(
IN PADAPTER Adapter,
IN rt_rf_power_state eRFPowerState
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BOOLEAN bResult = FALSE;
RT_TRACE(COMP_RF, DBG_LOUD, ("---------> PHY_SetRFPowerState8814(): eRFPowerState(%d)\n", eRFPowerState));
if(eRFPowerState == pHalData->eRFPowerState) {
RT_TRACE(COMP_RF, DBG_LOUD, ("<--------- PHY_SetRFPowerState8814(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState));
return bResult;
}
#if (DEV_BUS_TYPE == RT_PCI_INTERFACE)
bResult = phy_SetRFPowerState_8814E(Adapter, eRFPowerState);
#elif (DEV_BUS_TYPE == RT_USB_INTERFACE)
bResult = phy_SetRFPowerState_8814U(Adapter, eRFPowerState);
#elif (DEV_BUS_TYPE == RT_SDIO_INTERFACE)
bResult = phy_SetRFPowerState_8814Sdio(Adapter, eRFPowerState);
#endif
RT_TRACE(COMP_RF, DBG_LOUD, ("<--------- PHY_SetRFPowerState8814(): bResult(%d)\n", bResult));
return bResult;
}
todo */
//1 5. Tx Power setting API
VOID
phy_TxPwrAdjInPercentage(
IN PADAPTER Adapter,
OUT u8* pTxPwrIdx)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int txPower = *pTxPwrIdx + pHalData->CurrentTxPwrIdx - 18;
*pTxPwrIdx = txPower > RF6052_MAX_TX_PWR ? RF6052_MAX_TX_PWR : txPower;
}
VOID
PHY_GetTxPowerLevel8814(
IN PADAPTER Adapter,
OUT ps4Byte powerlevel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
*powerlevel = pHalData->CurrentTxPwrIdx;
#if 0
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
s4Byte TxPwrDbm = 13;
if ( pMgntInfo->ClientConfigPwrInDbm != UNSPECIFIED_PWR_DBM )
*powerlevel = pMgntInfo->ClientConfigPwrInDbm;
else
*powerlevel = TxPwrDbm;
#endif //0
}
VOID
PHY_SetTxPowerLevel8814(
IN PADAPTER Adapter,
IN u8 Channel
)
{
u32 i, j, k = 0;
u32 value[264]={0};
u32 path = 0, PowerIndex, txagc_table_wd = 0x00801000;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 jaguar2Rates[][4] = { {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M},
{MGN_6M, MGN_9M, MGN_12M, MGN_18M},
{MGN_24M, MGN_36M, MGN_48M, MGN_54M},
{MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3},
{MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7},
{MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11},
{MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15},
{MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19},
{MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23},
{MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3},
{MGN_VHT1SS_MCS4, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7},
{MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9, MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1},
{MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4, MGN_VHT2SS_MCS5},
{MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9},
{MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3},
{MGN_VHT3SS_MCS4, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7},
{MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9, 0, 0}};
for ( path = ODM_RF_PATH_A; path <= ODM_RF_PATH_D; ++path ) {
PHY_SetTxPowerLevelByPath(Adapter, Channel, (u8)path);
}
#if 0 //todo H2C_TXPOWER_INDEX_OFFLOAD ?
if (Adapter->MgntInfo.bScanInProgress == FALSE && pHalData->RegFWOffload == 2) {
HalDownloadTxPowerLevel8814(Adapter, value);
}
#endif //0
}
/**************************************************************************************************************
* Description:
* The low-level interface to get the FINAL Tx Power Index , called by both MP and Normal Driver.
*
* <20120830, Kordan>
**************************************************************************************************************/
u8
PHY_GetTxPowerIndex_8814A(
IN PADAPTER pAdapter,
IN u8 RFPath,
IN u8 Rate,
IN u8 BandWidth,
IN u8 Channel,
struct txpwr_idx_comp *tic
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
s8 powerDiffByRate = 0;
s8 txPower = 0, limit = 0;
u8 tx_num = MgntQuery_NssTxRate(Rate );
BOOLEAN bIn24G = FALSE;
s8 tpt_offset = 0;
/* RTW_INFO( "===>%s\n", __FUNCTION__ ); */
txPower = (s8) PHY_GetTxPowerIndexBase( pAdapter, RFPath, Rate, BandWidth, Channel, &bIn24G );
powerDiffByRate = PHY_GetTxPowerByRate( pAdapter, (u8)(!bIn24G), RFPath, tx_num, Rate );
limit = PHY_GetTxPowerLimit( pAdapter, pAdapter->registrypriv.RegPwrTblSel, (u8)(!bIn24G), pHalData->CurrentChannelBW, RFPath, Rate, pHalData->CurrentChannel);
tpt_offset = PHY_GetTxPowerTrackingOffset(pAdapter, RFPath, Rate);
powerDiffByRate = powerDiffByRate > limit ? limit : powerDiffByRate;
RTW_INFO("Rate-0x%x: (TxPower, PowerDiffByRate Path-%c) = (0x%X, %d)\n", Rate, ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), txPower, powerDiffByRate);
txPower += powerDiffByRate;
//txPower += PHY_GetTxPowerTrackingOffset( pAdapter, RFPath, Rate );
#if 0 //todo ?
#if CCX_SUPPORT
CCX_CellPowerLimit( pAdapter, Channel, Rate, &txPower );
#endif
#endif
phy_TxPwrAdjInPercentage(pAdapter, (u8 *)&txPower);
if (tic) {
tic->base = txPower;
tic->by_rate = powerDiffByRate;
tic->limit = limit;
tic->tpt = tpt_offset;
tic->ebias = 0;
}
if (txPower > MAX_POWER_INDEX)
txPower = MAX_POWER_INDEX;
//if (Adapter->registrypriv.mp_mode==0 &&
//(pHalData->bautoload_fail_flag || pHalData->EfuseMap[EFUSE_INIT_MAP][EEPROM_TX_PWR_INX_JAGUAR] == 0xFF))
//txPower = 0x12;
RTW_INFO("Final Tx Power(RF-%c, Channel: %d) = %d(0x%X)\n", ((RFPath==0)?'A':(RFPath==1)?'B':(RFPath==2)?'C':'D'), Channel,
txPower, txPower);
return (u8) txPower;
}
VOID
PHY_SetTxPowerIndex_8814A(
IN PADAPTER Adapter,
IN u32 PowerIndex,
IN u8 RFPath,
IN u8 Rate
)
{
u32 txagc_table_wd = 0x00801000;
txagc_table_wd |= (RFPath << 8) | MRateToHwRate(Rate) | (PowerIndex << 24);
PHY_SetBBReg(Adapter, 0x1998, bMaskDWord, txagc_table_wd);
/* RTW_INFO("txagc_table_wd %x\n", txagc_table_wd); */
if (Rate == MGN_1M) {
PHY_SetBBReg(Adapter, 0x1998, bMaskDWord, txagc_table_wd); /* first time to turn on the txagc table */
/* second to write the addr0 */
}
}
BOOLEAN
PHY_UpdateTxPowerDbm8814A(
IN PADAPTER Adapter,
IN s4Byte powerInDbm
)
{
return TRUE;
}
u32
PHY_GetTxBBSwing_8814A(
IN PADAPTER Adapter,
IN BAND_TYPE Band,
IN u8 RFPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(GetDefaultAdapter(Adapter));
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
s8 bbSwing_2G = -1 * GetRegTxBBSwing_2G(Adapter);
s8 bbSwing_5G = -1 * GetRegTxBBSwing_5G(Adapter);
u32 out = 0x200;
const s8 AUTO = -1;
RT_TRACE(COMP_MP, DBG_LOUD, ("===> PHY_GetTxBBSwing_8814A, bbSwing_2G: %d, bbSwing_5G: %d\n",
(s4Byte)bbSwing_2G, (s4Byte)bbSwing_5G));
if ( pHalData->bautoload_fail_flag ) {
if ( Band == BAND_ON_2_4G ) {
pRFCalibrateInfo->BBSwingDiff2G = bbSwing_2G;
if (bbSwing_2G == 0) out = 0x200; // 0 dB
else if (bbSwing_2G == -3) out = 0x16A; // -3 dB
else if (bbSwing_2G == -6) out = 0x101; // -6 dB
else if (bbSwing_2G == -9) out = 0x0B6; // -9 dB
else {
if ( pHalData->ExternalPA_2G ) {
pRFCalibrateInfo->BBSwingDiff2G = -3;
out = 0x16A;
} else {
pRFCalibrateInfo->BBSwingDiff2G = 0;
out = 0x200;
}
}
}
else if ( Band == BAND_ON_5G ) {
pRFCalibrateInfo->BBSwingDiff5G = bbSwing_5G;
if (bbSwing_5G == 0) out = 0x200; // 0 dB
else if (bbSwing_5G == -3) out = 0x16A; // -3 dB
else if (bbSwing_5G == -6) out = 0x101; // -6 dB
else if (bbSwing_5G == -9) out = 0x0B6; // -9 dB
else {
if (pHalData->ExternalPA_5G) {
pRFCalibrateInfo->BBSwingDiff5G = -3;
out = 0x16A;
} else {
pRFCalibrateInfo->BBSwingDiff5G = 0;
out = 0x200;
}
}
} else {
pRFCalibrateInfo->BBSwingDiff2G = -3;
pRFCalibrateInfo->BBSwingDiff5G = -3;
out = 0x16A; // -3 dB
}
} else {
u32 swing = 0, onePathSwing = 0;
if (Band == BAND_ON_2_4G) {
if (GetRegTxBBSwing_2G(Adapter) == AUTO) {
EFUSE_ShadowRead(Adapter, 1, EEPROM_TX_BBSWING_2G_8814, (u32 *)&swing);
if (swing == 0xFF) {
if(bbSwing_2G == 0) swing = 0x00; // 0 dB
else if (bbSwing_2G == -3) swing = 0x55; // -3 dB
else if (bbSwing_2G == -6) swing = 0xAA; // -6 dB
else if (bbSwing_2G == -9) swing = 0xFF; // -9 dB
else swing = 0x00;
}
}
else if (bbSwing_2G == 0) swing = 0x00; // 0 dB
else if (bbSwing_2G == -3) swing = 0x55; // -3 dB
else if (bbSwing_2G == -6) swing = 0xAA; // -6 dB
else if (bbSwing_2G == -9) swing = 0xFF; // -9 dB
else swing = 0x00;
} else {
if (GetRegTxBBSwing_5G(Adapter) == AUTO) {
EFUSE_ShadowRead(Adapter, 1, EEPROM_TX_BBSWING_5G_8814, (u32 *)&swing);
if (swing == 0xFF) {
if (bbSwing_5G == 0) swing = 0x00; // 0 dB
else if (bbSwing_5G == -3) swing = 0x55; // -3 dB
else if (bbSwing_5G == -6) swing = 0xAA; // -6 dB
else if (bbSwing_5G == -9) swing = 0xFF; // -9 dB
else swing = 0x00;
}
}
else if (bbSwing_5G == 0) swing = 0x00; // 0 dB
else if (bbSwing_5G == -3) swing = 0x55; // -3 dB
else if (bbSwing_5G == -6) swing = 0xAA; // -6 dB
else if (bbSwing_5G == -9) swing = 0xFF; // -9 dB
else swing = 0x00;
}
if (RFPath == ODM_RF_PATH_A)
onePathSwing = (swing & 0x3) >> 0; // 0xC6/C7[1:0]
else if (RFPath == ODM_RF_PATH_B)
onePathSwing = (swing & 0xC) >> 2; // 0xC6/C7[3:2]
else if (RFPath == ODM_RF_PATH_C)
onePathSwing = (swing & 0x30) >> 4; // 0xC6/C7[5:4]
else if (RFPath == ODM_RF_PATH_D)
onePathSwing = (swing & 0xC0) >> 6; // 0xC6/C7[7:6]
if (onePathSwing == 0x0) {
if (Band == BAND_ON_2_4G)
pRFCalibrateInfo->BBSwingDiff2G = 0;
else
pRFCalibrateInfo->BBSwingDiff5G = 0;
out = 0x200; // 0 dB
}
else if (onePathSwing == 0x1) {
if (Band == BAND_ON_2_4G)
pRFCalibrateInfo->BBSwingDiff2G = -3;
else
pRFCalibrateInfo->BBSwingDiff5G = -3;
out = 0x16A; // -3 dB
}
else if (onePathSwing == 0x2) {
if (Band == BAND_ON_2_4G)
pRFCalibrateInfo->BBSwingDiff2G = -6;
else
pRFCalibrateInfo->BBSwingDiff5G = -6;
out = 0x101; // -6 dB
}
else if (onePathSwing == 0x3) {
if (Band == BAND_ON_2_4G)
pRFCalibrateInfo->BBSwingDiff2G = -9;
else
pRFCalibrateInfo->BBSwingDiff5G = -9;
out = 0x0B6; // -9 dB
}
}
RT_TRACE(COMP_MP, DBG_LOUD,("<=== PHY_GetTxBBSwing_8814A, out = 0x%X\n", out));
return out;
}
//1 7. BandWidth setting API
VOID
phy_SetBwRegAdc_8814A(
IN PADAPTER Adapter,
IN u8 Band,
IN CHANNEL_WIDTH CurrentBW
)
{
switch (CurrentBW) {
case CHANNEL_WIDTH_20:
if(Band == BAND_ON_5G) {
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, BIT(1)|BIT(0), 0x0); // 0x8ac[28, 21,20,16, 9:6,1,0]=10'b10_0011_0000
} else {
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, BIT(1)|BIT(0), 0x0); // 0x8ac[28, 21,20,16, 9:6,1,0]=10'b10_0101_0000
}
break;
case CHANNEL_WIDTH_40:
if(Band == BAND_ON_5G) {
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, BIT(1)|BIT(0), 0x1); // 0x8ac[17, 11, 10, 7:6,1,0]=7'b100_0001
} else {
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, BIT(1)|BIT(0), 0x1); // 0x8ac[17, 11, 10, 7:6,1,0]=7'b101_0001
}
break;
case CHANNEL_WIDTH_80:
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, BIT(1)|BIT(0), 0x02); // 0x8ac[7:6,1,0]=4'b0010
break;
default:
RT_DISP(FPHY, PHY_BBW, ("phy_SetBwRegAdc_8814A(): unknown Bandwidth: %#X\n",CurrentBW));
break;
}
}
VOID
phy_SetBwRegAgc_8814A(
IN PADAPTER Adapter,
IN u8 Band,
IN CHANNEL_WIDTH CurrentBW
)
{
u32 AgcValue = 7;
switch (CurrentBW) {
case CHANNEL_WIDTH_20:
if (Band == BAND_ON_5G)
AgcValue = 6;
else
AgcValue = 6;
break;
case CHANNEL_WIDTH_40:
if (Band == BAND_ON_5G)
AgcValue = 8;
else
AgcValue = 7;
break;
case CHANNEL_WIDTH_80:
AgcValue = 3;
break;
default:
RT_DISP(FPHY, PHY_BBW, ("phy_SetBwRegAgc_8814A(): unknown Bandwidth: %#X\n",CurrentBW));
break;
}
PHY_SetBBReg(Adapter, rAGC_table_Jaguar, 0xf000, AgcValue); // 0x82C[15:12] = AgcValue
}
BOOLEAN
phy_SwBand8814A(
IN PADAPTER pAdapter,
IN u8 channelToSW)
{
u8 u1Btmp;
BOOLEAN ret_value = _TRUE;
u8 Band = BAND_ON_5G, BandToSW;
u1Btmp = rtw_read8(pAdapter, REG_CCK_CHECK_8814A);
if (u1Btmp & BIT7)
Band = BAND_ON_5G;
else
Band = BAND_ON_2_4G;
// Use current channel to judge Band Type and switch Band if need.
if (channelToSW > 14) {
BandToSW = BAND_ON_5G;
} else {
BandToSW = BAND_ON_2_4G;
}
if(BandToSW != Band) {
PHY_SwitchWirelessBand8814A(pAdapter,BandToSW);
}
return ret_value;
}
VOID
PHY_SetRFEReg8814A(
IN PADAPTER Adapter,
IN BOOLEAN bInit,
IN u8 Band
)
{
u8 u1tmp = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (bInit) {
switch (pHalData->RFEType) {
case 2:case 1:
PHY_SetBBReg(Adapter, 0x1994, 0xf, 0xf); // 0x1994[3:0] = 0xf
u1tmp = PlatformEFIORead1Byte(Adapter, REG_GPIO_IO_SEL_8814A);
rtw_write8(Adapter, REG_GPIO_IO_SEL_8814A, u1tmp | 0xf0); // 0x40[23:20] = 0xf
break;
case 0:
PHY_SetBBReg(Adapter, 0x1994, 0xf, 0xf); // 0x1994[3:0] = 0xf
u1tmp = PlatformEFIORead1Byte(Adapter, REG_GPIO_IO_SEL_8814A);
rtw_write8(Adapter, REG_GPIO_IO_SEL_8814A, u1tmp | 0xc0); // 0x40[23:22] = 2b'11
break;
}
}
else if (Band == BAND_ON_2_4G) {
switch (pHalData->RFEType){
case 2:
PHY_SetBBReg(Adapter, rA_RFE_Pinmux_Jaguar, bMaskDWord, 0x72707270); // 0xCB0 = 0x72707270
PHY_SetBBReg(Adapter, rB_RFE_Pinmux_Jaguar, bMaskDWord, 0x72707270); // 0xEB0 = 0x72707270
PHY_SetBBReg(Adapter, rC_RFE_Pinmux_Jaguar, bMaskDWord, 0x72707270); // 0x18B4 = 0x72707270
PHY_SetBBReg(Adapter, rD_RFE_Pinmux_Jaguar, bMaskDWord, 0x77707770); // 0x1AB4 = 0x77707770
PHY_SetBBReg(Adapter, 0x1ABC, 0x0ff00000, 0x72); // 0x1ABC[27:20] = 0x72
break;
case 1:
PHY_SetBBReg(Adapter, rA_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0xCB0 = 0x77777777
PHY_SetBBReg(Adapter, rB_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0xEB0 = 0x77777777
PHY_SetBBReg(Adapter, rC_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0x18B4 = 0x77777777
PHY_SetBBReg(Adapter, rD_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0x1AB4 = 0x77777777
PHY_SetBBReg(Adapter, 0x1ABC, 0x0ff00000, 0x77); // 0x1ABC[27:20] = 0x77
break;
case 0:
default:
PHY_SetBBReg(Adapter, rA_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0xCB0 = 0x77777777
PHY_SetBBReg(Adapter, rB_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0xEB0 = 0x77777777
PHY_SetBBReg(Adapter, rC_RFE_Pinmux_Jaguar, bMaskDWord, 0x77777777); // 0x18B4 = 0x77777777
PHY_SetBBReg(Adapter, 0x1ABC, 0x0ff00000, 0x77); // 0x1ABC[27:20] = 0x77
break;
}
} else {
switch(pHalData->RFEType){
case 2:
PHY_SetBBReg(Adapter, rA_RFE_Pinmux_Jaguar, bMaskDWord, 0x33173717); // 0xCB0 = 0x33173717
PHY_SetBBReg(Adapter, rB_RFE_Pinmux_Jaguar, bMaskDWord, 0x33173717); // 0xEB0 = 0x33173717
PHY_SetBBReg(Adapter, rC_RFE_Pinmux_Jaguar, bMaskDWord, 0x33173717); // 0x18B4 = 0x33173717
PHY_SetBBReg(Adapter, rD_RFE_Pinmux_Jaguar, bMaskDWord, 0x77177717); // 0x1AB4 = 0x77177717
PHY_SetBBReg(Adapter, 0x1ABC, 0x0ff00000, 0x37); // 0x1ABC[27:20] = 0x37
break;
case 1:
PHY_SetBBReg(Adapter, rA_RFE_Pinmux_Jaguar, bMaskDWord, 0x33173317); // 0xCB0 = 0x33173317
PHY_SetBBReg(Adapter, rB_RFE_Pinmux_Jaguar, bMaskDWord, 0x33173317); // 0xEB0 = 0x33173317
PHY_SetBBReg(Adapter, rC_RFE_Pinmux_Jaguar, bMaskDWord, 0x33173317); // 0x18B4 = 0x33173317
PHY_SetBBReg(Adapter, rD_RFE_Pinmux_Jaguar, bMaskDWord, 0x77177717); // 0x1AB4 = 0x77177717
PHY_SetBBReg(Adapter, 0x1ABC, 0x0ff00000, 0x33); // 0x1ABC[27:20] = 0x33
break;
case 0:
default:
PHY_SetBBReg(Adapter, rA_RFE_Pinmux_Jaguar, bMaskDWord, 0x54775477); // 0xCB0 = 0x54775477
PHY_SetBBReg(Adapter, rB_RFE_Pinmux_Jaguar, bMaskDWord, 0x54775477); // 0xEB0 = 0x54775477
PHY_SetBBReg(Adapter, rC_RFE_Pinmux_Jaguar, bMaskDWord, 0x54775477); // 0x18B4 = 0x54775477
PHY_SetBBReg(Adapter, rD_RFE_Pinmux_Jaguar, bMaskDWord, 0x54775477); // 0x1AB4 = 0x54775477
PHY_SetBBReg(Adapter, 0x1ABC, 0x0ff00000, 0x54); // 0x1ABC[27:20] = 0x54
break;
}
}
}
VOID
phy_SetBBSwingByBand_8814A(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 PreviousBand
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
s8 BBDiffBetweenBand = 0;
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
PHY_SetBBReg(Adapter, rA_TxScale_Jaguar, 0xFFE00000,
PHY_GetTxBBSwing_8814A(Adapter, (BAND_TYPE)Band, ODM_RF_PATH_A)); // 0xC1C[31:21]
PHY_SetBBReg(Adapter, rB_TxScale_Jaguar, 0xFFE00000,
PHY_GetTxBBSwing_8814A(Adapter, (BAND_TYPE)Band, ODM_RF_PATH_B)); // 0xE1C[31:21]
PHY_SetBBReg(Adapter, rC_TxScale_Jaguar2, 0xFFE00000,
PHY_GetTxBBSwing_8814A(Adapter, (BAND_TYPE)Band, ODM_RF_PATH_C)); // 0x181C[31:21]
PHY_SetBBReg(Adapter, rD_TxScale_Jaguar2, 0xFFE00000,
PHY_GetTxBBSwing_8814A(Adapter, (BAND_TYPE)Band, ODM_RF_PATH_D)); // 0x1A1C[31:21]
// <20121005, Kordan> When TxPowerTrack is ON, we should take care of the change of BB swing.
// That is, reset all info to trigger Tx power tracking.
if (Band != PreviousBand) {
BBDiffBetweenBand = (pRFCalibrateInfo->BBSwingDiff2G - pRFCalibrateInfo->BBSwingDiff5G);
BBDiffBetweenBand = (Band == BAND_ON_2_4G) ? BBDiffBetweenBand : (-1 * BBDiffBetweenBand);
pRFCalibrateInfo->DefaultOfdmIndex += BBDiffBetweenBand*2;
}
ODM_ClearTxPowerTrackingState(pDM_Odm);
}
s32
PHY_SwitchWirelessBand8814A(
IN PADAPTER Adapter,
IN u8 Band
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 PreBand = pHalData->CurrentBandType, tepReg = 0;
RTW_INFO("==>PHY_SwitchWirelessBand8814() %s\n", ((Band==0)?"2.4G":"5G"));
pHalData->CurrentBandType =(BAND_TYPE)Band;
/*clear 0x1000[16], When this bit is set to 0, CCK and OFDM are disabled, and clock are gated. Otherwise, CCK and OFDM are enabled. */
tepReg = rtw_read8(Adapter, REG_SYS_CFG3_8814A+2);
rtw_write8(Adapter, REG_SYS_CFG3_8814A+2, tepReg & (~BIT0));
// STOP Tx/Rx
//PHY_SetBBReg(Adapter, rOFDMCCKEN_Jaguar, bOFDMEN_Jaguar|bCCKEN_Jaguar, 0x00);
if (Band == BAND_ON_2_4G) { // 2.4G band
// AGC table select
PHY_SetBBReg(Adapter, rAGC_table_Jaguar2, 0x1F, 0); // 0x958[4:0] = 5b'00000
PHY_SetRFEReg8814A(Adapter, FALSE, Band);
// cck_enable
//PHY_SetBBReg(Adapter, rOFDMCCKEN_Jaguar, bOFDMEN_Jaguar|bCCKEN_Jaguar, 0x3);
if (Adapter->registrypriv.mp_mode == 0) {
// 0x80C & 0xa04 should use same antenna.
PHY_SetBBReg(Adapter, rTxPath_Jaguar, 0xf0, 0x2);
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, 0x0f000000, 0x5);
}
PHY_SetBBReg(Adapter, rOFDMCCKEN_Jaguar, bOFDMEN_Jaguar|bCCKEN_Jaguar, 0x3);
// CCK_CHECK_en
rtw_write8(Adapter, REG_CCK_CHECK_8814A, 0x0);
/* after 5G swicth 2G , set A82[2] = 0 */
PHY_SetBBReg(Adapter, 0xa80, BIT18, 0x0);
} else { //5G band
// CCK_CHECK_en
rtw_write8(Adapter, REG_CCK_CHECK_8814A, 0x80);
/* Enable CCK Tx function, even when CCK is off */
PHY_SetBBReg(Adapter, 0xa80, BIT18, 0x1);
// AGC table select
// Postpone to channel switch
//PHY_SetBBReg(Adapter, rAGC_table_Jaguar2, 0x1F, 1); // 0x958[4:0] = 5b'00001
PHY_SetRFEReg8814A(Adapter, FALSE, Band);
if (Adapter->registrypriv.mp_mode == 0) {
PHY_SetBBReg(Adapter, rTxPath_Jaguar, 0xf0, 0x0);
PHY_SetBBReg(Adapter, rCCK_RX_Jaguar, 0x0f000000, 0xF);
}
PHY_SetBBReg(Adapter, rOFDMCCKEN_Jaguar, bOFDMEN_Jaguar|bCCKEN_Jaguar, 0x02);
//RTW_INFO("==>PHY_SwitchWirelessBand8814() BAND_ON_5G settings OFDM index 0x%x\n", pHalData->OFDM_index[0]);
}
phy_SetBBSwingByBand_8814A(Adapter, Band, PreBand);
phy_SetBwRegAdc_8814A(Adapter, Band, pHalData->CurrentChannelBW);
phy_SetBwRegAgc_8814A(Adapter, Band, pHalData->CurrentChannelBW);
/* set 0x1000[16], When this bit is set to 0, CCK and OFDM are disabled, and clock are gated. Otherwise, CCK and OFDM are enabled.*/
tepReg = rtw_read8(Adapter, REG_SYS_CFG3_8814A+2);
rtw_write8(Adapter, REG_SYS_CFG3_8814A+2, tepReg | BIT0);
RTW_INFO("<==PHY_SwitchWirelessBand8814():Switch Band OK.\n");
return _SUCCESS;
}
u8
phy_GetSecondaryChnl_8814A(
IN PADAPTER Adapter
)
{
u8 SCSettingOf40 = 0, SCSettingOf20 = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
//RTW_INFO("SCMapping: Case: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur80MhzPrimeSC,pHalData->nCur40MhzPrimeSC);
if (pHalData->CurrentChannelBW== CHANNEL_WIDTH_80) {
if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf40 = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf40 = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
else {
if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf20 = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf20 = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
}
}
else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
RTW_INFO("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d \n",pHalData->CurrentChannelBW,pHalData->nCur40MhzPrimeSC);
if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
}
/*RTW_INFO("SCMapping: SC Value %x\n", ((SCSettingOf40 << 4) | SCSettingOf20));*/
return ( (SCSettingOf40 << 4) | SCSettingOf20);
}
VOID
phy_SetBwRegMac_8814A(
IN PADAPTER Adapter,
CHANNEL_WIDTH CurrentBW
)
{
u16 RegRfMod_BW, u2tmp = 0;
RegRfMod_BW = PlatformEFIORead2Byte(Adapter, REG_TRXPTCL_CTL_8814A);
switch (CurrentBW) {
case CHANNEL_WIDTH_20:
PlatformEFIOWrite2Byte(Adapter, REG_TRXPTCL_CTL_8814A, (RegRfMod_BW & 0xFE7F)); // BIT 7 = 0, BIT 8 = 0
break;
case CHANNEL_WIDTH_40:
u2tmp = RegRfMod_BW | BIT7;
PlatformEFIOWrite2Byte(Adapter, REG_TRXPTCL_CTL_8814A, (u2tmp & 0xFEFF)); // BIT 7 = 1, BIT 8 = 0
break;
case CHANNEL_WIDTH_80:
u2tmp = RegRfMod_BW | BIT8;
PlatformEFIOWrite2Byte(Adapter, REG_TRXPTCL_CTL_8814A, (u2tmp & 0xFF7F)); // BIT 7 = 0, BIT 8 = 1
break;
default:
RT_DISP(FPHY, PHY_BBW, ("phy_SetBwRegMac_8814A(): unknown Bandwidth: %#X\n",CurrentBW));
break;
}
}
void PHY_Set_SecCCATH_by_RXANT_8814A(PADAPTER pAdapter,u4Byte ulAntennaRx)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
if ((pHalData->bSWToBW40M == TRUE) && (pHalData->CurrentChannelBW != CHANNEL_WIDTH_40)) {
PHY_SetBBReg(pAdapter, rPwed_TH_Jaguar, 0x007c0000,pHalData->BackUp_BB_REG_4_2nd_CCA[0]);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0000ff00,pHalData->BackUp_BB_REG_4_2nd_CCA[1]);
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,pHalData->BackUp_BB_REG_4_2nd_CCA[2]);
pHalData->bSWToBW40M = FALSE;
}
if ((pHalData->bSWToBW80M == TRUE) && (pHalData->CurrentChannelBW != CHANNEL_WIDTH_80)) {
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000, pHalData->BackUp_BB_REG_4_2nd_CCA[2]);
pHalData->bSWToBW80M = FALSE;
}
/*1 Setting CCA TH 2nd CCA parameter by Rx Antenna*/
if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
if (pHalData->bSWToBW80M == FALSE) {
pHalData->BackUp_BB_REG_4_2nd_CCA[2] = PHY_QueryBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000);
}
pHalData->bSWToBW80M = TRUE;
switch (ulAntennaRx) {
case ANTENNA_A:
case ANTENNA_B:
case ANTENNA_C:
case ANTENNA_D:
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0b);/* 0x844[27:24] = 0xb */
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1); /* 0x838 Enable 2ndCCA */
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar, 0x00FF0000, 0x89); /* 0x82C[23:20] = 8, PWDB_TH_QB, 0x82C[19:16] = 9, PWDB_TH_HB*/
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0FFF0000, 0x887); /* 838[27:24]=8, RF80_secondary40, 838[23:20]=8, RF80_secondary20, 838[19:16]=7, RF80_primary*/
PHY_SetBBReg(pAdapter, rL1_Weight_Jaguar, 0x0000F000, 0x7); /* 840[15:12]=7, L1_square_Pk_weight_80M*/
break;
case ANTENNA_AB:
case ANTENNA_AC:
case ANTENNA_AD:
case ANTENNA_BC:
case ANTENNA_BD:
case ANTENNA_CD:
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0d);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1); /* Enable 2ndCCA*/
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar, 0x00FF0000, 0x78); /* 0x82C[23:20] = 7, PWDB_TH_QB, 0x82C[19:16] = 8, PWDB_TH_HB*/
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0FFF0000, 0x444); /* 838[27:24]=4, RF80_secondary40, 838[23:20]=4, RF80_secondary20, 838[19:16]=4, RF80_primary*/
PHY_SetBBReg(pAdapter, rL1_Weight_Jaguar, 0x0000F000, 0x6); /* 840[15:12]=6, L1_square_Pk_weight_80M*/
break;
case ANTENNA_ABC:
case ANTENNA_ABD:
case ANTENNA_ACD:
case ANTENNA_BCD:
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0d);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1); /* Enable 2ndCCA*/
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar, 0x00FF0000, 0x98); /* 0x82C[23:20] = 9, PWDB_TH_QB, 0x82C[19:16] = 8, PWDB_TH_HB*/
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0FFF0000, 0x666); /* 838[27:24]=6, RF80_secondary40, 838[23:20]=6, RF80_secondary20, 838[19:16]=6, RF80_primary*/
PHY_SetBBReg(pAdapter, rL1_Weight_Jaguar, 0x0000F000, 0x6); /* 840[15:12]=6, L1_square_Pk_weight_80M*/
break;
case ANTENNA_ABCD:
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0d);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1); /*Enable 2ndCCA*/
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar, 0x00FF0000, 0x98); /* 0x82C[23:20] = 9, PWDB_TH_QB, 0x82C[19:16] = 8, PWDB_TH_HB*/
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0FFF0000, 0x666); /* 838[27:24]=6, RF80_secondary40, 838[23:20]=6, RF80_secondary20, 838[19:16]=6, RF80_primary*/
PHY_SetBBReg(pAdapter, rL1_Weight_Jaguar, 0x0000F000, 0x7); /*840[15:12]=7, L1_square_Pk_weight_80M*/
break;
default:
RTW_INFO("Unknown Rx antenna.\n");
break;
}
} else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
if (pHalData->bSWToBW40M == FALSE) {
pHalData->BackUp_BB_REG_4_2nd_CCA[0] = PHY_QueryBBReg(pAdapter, rPwed_TH_Jaguar, 0x007c0000);
pHalData->BackUp_BB_REG_4_2nd_CCA[1] = PHY_QueryBBReg(pAdapter, rCCAonSec_Jaguar, 0x0000ff00);
pHalData->BackUp_BB_REG_4_2nd_CCA[2] = PHY_QueryBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000);
}
switch (ulAntennaRx) {
case ANTENNA_A: /* xT1R*/
case ANTENNA_B:
case ANTENNA_C:
case ANTENNA_D:
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0b);
PHY_SetBBReg(pAdapter, rPwed_TH_Jaguar, 0x007c0000, 0xe);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0000ff00, 0x43);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1);
break;
case ANTENNA_AB: /* xT2R*/
case ANTENNA_AC:
case ANTENNA_AD:
case ANTENNA_BC:
case ANTENNA_BD:
case ANTENNA_CD:
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0d);
PHY_SetBBReg(pAdapter, rPwed_TH_Jaguar, 0x007c0000, 0x8);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0000ff00, 0x43);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1);
break;
case ANTENNA_ABC: /* xT3R*/
case ANTENNA_ABD:
case ANTENNA_ACD:
case ANTENNA_BCD:
case ANTENNA_ABCD: /* xT4R*/
PHY_SetBBReg(pAdapter, r_L1_SBD_start_time, 0x0f000000,0x0d);
PHY_SetBBReg(pAdapter, rPwed_TH_Jaguar, 0x007c0000, 0xa);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0000ff00, 0x43);
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x1);
break;
default:
break;
}
pHalData->bSWToBW40M = TRUE;
} else {
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x00000001, 0x0); /* Enable 2ndCCA*/
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar, 0x00FF0000, 0x43); /* 0x82C[23:20] = 9, PWDB_TH_QB, 0x82C[19:16] = 8, PWDB_TH_HB*/
PHY_SetBBReg(pAdapter, rCCAonSec_Jaguar, 0x0FFF0000, 0x7aa); /* 838[27:24]=6, RF80_secondary40, 838[23:20]=6, RF80_secondary20, 838[19:16]=6, RF80_primary*/
PHY_SetBBReg(pAdapter, rL1_Weight_Jaguar, 0x0000F000, 0x7); /* 840[15:12]=7, L1_square_Pk_weight_80M*/
}
}
VOID PHY_SetRXSC_by_TXSC_8814A(PADAPTER Adapter, u1Byte SubChnlNum)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
if (SubChnlNum == 0)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x1);
else if (SubChnlNum == 1)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x1);
else if (SubChnlNum == 2)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x2);
else if (SubChnlNum == 4)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x4);
else if (SubChnlNum == 3)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x3);
else if (SubChnlNum == 9)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x1);
else if (SubChnlNum == 10)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x2);
} else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
if (SubChnlNum == 1)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x1);
else if (SubChnlNum == 2)
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x2);
} else
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x00000003c, 0x0);
}
/* <20141230, James> A workaround to eliminate the 5280MHz & 5600MHz & 5760MHzspur of 8814A. (Asked by BBSD Neil.)*/
VOID phy_SpurCalibration_8814A(PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BOOLEAN Reset_NBI_CSI = TRUE;
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
/*RTW_INFO("%s(),RFE Type =%d, CurrentCh = %d ,ChannelBW =%d\n", __func__, pHalData->RFEType, pHalData->CurrentChannel, pHalData->CurrentChannelBW);*/
/*RTW_INFO("%s(),Before RrNBI_Setting_Jaguar= %x\n", __func__, PHY_QueryBBReg(Adapter, rNBI_Setting_Jaguar, bMaskDWord));*/
if (pHalData->RFEType == 0) {
switch (pHalData->CurrentChannelBW) {
case CHANNEL_WIDTH_40:
if (pHalData->CurrentChannel == 54 || pHalData->CurrentChannel == 118) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x3e >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, bMaskDWord, 0);
Reset_NBI_CSI = FALSE;
} else if (pHalData->CurrentChannel == 151) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x1e >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, BIT(16), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, bMaskDWord, 0);
Reset_NBI_CSI = FALSE;
}
break;
case CHANNEL_WIDTH_80:
if (pHalData->CurrentChannel == 58 || pHalData->CurrentChannel == 122) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x3a >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, BIT(0), 1);
Reset_NBI_CSI = FALSE;
} else if (pHalData->CurrentChannel == 155) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x5a >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, BIT(16), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, bMaskDWord, 0);
Reset_NBI_CSI = FALSE;
}
break;
case CHANNEL_WIDTH_20:
if (pHalData->CurrentChannel == 153) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x1e >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, BIT(16), 1);
Reset_NBI_CSI = FALSE;
}
break;
default:
break;
}
} else if (pHalData->RFEType == 1 || pHalData->RFEType == 2) {
switch (pHalData->CurrentChannelBW) {
case CHANNEL_WIDTH_20:
if (pHalData->CurrentChannel == 153) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x1E >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, BIT(16), 1);
Reset_NBI_CSI = FALSE;
}
break;
case CHANNEL_WIDTH_40:
if (pHalData->CurrentChannel == 151) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x1e >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, BIT(16), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, bMaskDWord, 0);
Reset_NBI_CSI = FALSE;
}
break;
case CHANNEL_WIDTH_80:
if (pHalData->CurrentChannel == 155) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0x5a >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, BIT(16), 1);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, bMaskDWord, 0);
Reset_NBI_CSI = FALSE;
}
break;
default:
break;
}
}
if (Reset_NBI_CSI) {
PHY_SetBBReg(Adapter, rNBI_Setting_Jaguar, 0x000fe000, 0xfc >> 1);
PHY_SetBBReg(Adapter, rCSI_Mask_Setting1_Jaguar, BIT(0), 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask0_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask1_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask6_Jaguar, bMaskDWord, 0);
PHY_SetBBReg(Adapter, rCSI_Fix_Mask7_Jaguar, bMaskDWord, 0);
}
phydm_spur_nbi_setting_8814a(pDM_Odm);
/*RTW_INFO("%s(),After RrNBI_Setting_Jaguar= %x\n", __func__, PHY_QueryBBReg(Adapter, rNBI_Setting_Jaguar, bMaskDWord));*/
}
void phy_ModifyInitialGain_8814A(
PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 channel = pHalData->CurrentChannel;
s1Byte offset[4]; /*{A,B,C,D}*/
u8 i = 0;
u8 chnl_section = 0xff;
if (channel <= 14 && channel > 0)
chnl_section = 0; /*2G*/
else if (channel <= 64 && channel >= 36)
chnl_section = 1; /*5GL*/
else if (channel <= 144 && channel >= 100)
chnl_section = 2; /*5GM*/
else if (channel <= 177 && channel >= 149)
chnl_section = 3; /*5GH*/
if (chnl_section > 3) {
RTW_INFO("%s: worng channel section\n", __func__);
return;
}
for (i = 0; i < 4; i++) {
u1Byte hex_offset;
hex_offset = (u1Byte)(pHalData->RxGainOffset[chnl_section] >> (12-4*i))&0x0f;
RTW_INFO("%s: pHalData->RxGainOffset[%d] = %x\n", __func__, chnl_section, pHalData->RxGainOffset[chnl_section]);
RTW_INFO("%s: hex_offset = %x\n", __func__, hex_offset);
if (hex_offset == 0xf)
offset[i] = 0;
else if (hex_offset >= 0x8)
offset[i] = 0x11 - hex_offset;
else
offset[i] = 0x0 - hex_offset;
offset[i] = (offset[i] / 2) * 2;
RTW_INFO("%s: offset[%d] = %x\n", __func__, i, offset[i]);
RTW_INFO("%s: BackUp_IG_REG_4_Chnl_Section[%d] = %x\n", __func__, i, pHalData->BackUp_IG_REG_4_Chnl_Section[i]);
}
if (pHalData->BackUp_IG_REG_4_Chnl_Section[0] != 0 &&
pHalData->BackUp_IG_REG_4_Chnl_Section[1] != 0 &&
pHalData->BackUp_IG_REG_4_Chnl_Section[2] != 0 &&
pHalData->BackUp_IG_REG_4_Chnl_Section[3] != 0
) {
PHY_SetBBReg(Adapter, rA_IGI_Jaguar, 0x000000ff, pHalData->BackUp_IG_REG_4_Chnl_Section[0] + offset[0]);
PHY_SetBBReg(Adapter, rB_IGI_Jaguar, 0x000000ff, pHalData->BackUp_IG_REG_4_Chnl_Section[1] + offset[1]);
PHY_SetBBReg(Adapter, rC_IGI_Jaguar2, 0x000000ff, pHalData->BackUp_IG_REG_4_Chnl_Section[2] + offset[2]);
PHY_SetBBReg(Adapter, rD_IGI_Jaguar2, 0x000000ff, pHalData->BackUp_IG_REG_4_Chnl_Section[3] + offset[3]);
}
}
VOID phy_SetBwMode8814A(PADAPTER Adapter)
{
u8 SubChnlNum = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//3 Set Reg668 BW
phy_SetBwRegMac_8814A(Adapter, pHalData->CurrentChannelBW);
//3 Set Reg483
SubChnlNum = phy_GetSecondaryChnl_8814A(Adapter);
rtw_write8(Adapter, REG_DATA_SC_8814A, SubChnlNum);
if (pHalData->rf_chip == RF_PSEUDO_11N)
{
RTW_INFO("phy_SetBwMode8814A: return for PSEUDO \n");
return;
}
//3 Set Reg8AC Reg8C4 Reg8C8
phy_SetBwRegAdc_8814A(Adapter, pHalData->CurrentBandType, pHalData->CurrentChannelBW);
//3 Set Reg82C
phy_SetBwRegAgc_8814A(Adapter, pHalData->CurrentBandType, pHalData->CurrentChannelBW);
//3 Set Reg848 RegA00
switch (pHalData->CurrentChannelBW) {
case CHANNEL_WIDTH_20:
break;
case CHANNEL_WIDTH_40:
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x3C, SubChnlNum); // 0x8ac[5:2]=1/2
if(SubChnlNum == VHT_DATA_SC_20_UPPER_OF_80MHZ) // 0xa00[4]=1/0
PHY_SetBBReg(Adapter, rCCK_System_Jaguar, bCCK_System_Jaguar, 1);
else
PHY_SetBBReg(Adapter, rCCK_System_Jaguar, bCCK_System_Jaguar, 0);
break;
case CHANNEL_WIDTH_80:
PHY_SetBBReg(Adapter, rRFMOD_Jaguar, 0x3C, SubChnlNum); // 0x8ac[5:2]=1/2/3/4/9/10
break;
default:
RTW_INFO("%s():unknown Bandwidth:%#X\n", __func__, pHalData->CurrentChannelBW);
break;
}
#if (MP_DRIVER == 1)
if (Adapter->registrypriv.mp_mode == 1) {
/* 2 Set Reg 0x8AC */
PHY_SetRXSC_by_TXSC_8814A(Adapter, (SubChnlNum & 0xf));
PHY_Set_SecCCATH_by_RXANT_8814A(Adapter, pHalData->AntennaRxPath);
}
#endif
/* 3 Set RF related register */
PHY_RF6052SetBandwidth8814A(Adapter, pHalData->CurrentChannelBW);
phy_ADC_CLK_8814A(Adapter);
phy_SpurCalibration_8814A(Adapter);
}
//1 6. Channel setting API
// <YuChen, 140529> Add for KFree Feature Requested by RF David.
// We need support ABCD four path Kfree
VOID
phy_SetKfreeToRF_8814A(
IN PADAPTER Adapter,
IN u8 eRFPath,
IN u8 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(GetDefaultAdapter(Adapter));
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
BOOLEAN bOdd;
PODM_RF_CAL_T pRFCalibrateInfo = &(pDM_Odm->RFCalibrateInfo);
if ((Data%2) != 0) { //odd -> positive
Data = Data - 1;
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT19, 1);
bOdd = TRUE;
} else { // even -> negative
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT19, 0);
bOdd = FALSE;
}
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): RF_0x55[19]= %d\n", bOdd));
switch (Data) {
case 2:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT14, 1);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 0;
break;
case 4:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 1);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 1;
break;
case 6:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT14, 1);
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 1);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 1;
break;
case 8:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 2);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 2;
break;
case 10:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT14, 1);
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 2);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 2;
break;
case 12:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 3);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 3;
break;
case 14:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT14, 1);
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 3);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 3;
break;
case 16:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 4);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 4;
break;
case 18:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT14, 1);
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 4);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 4;
break;
case 20:
PHY_SetRFReg(Adapter, eRFPath, rRF_TxGainOffset, BIT17|BIT16|BIT15, 5);
pRFCalibrateInfo->KfreeOffset[eRFPath] = 5;
break;
default:
break;
}
if (bOdd == FALSE) { // that means Kfree offset is negative, we need to record it.
pRFCalibrateInfo->KfreeOffset[eRFPath] = (-1)*pRFCalibrateInfo->KfreeOffset[eRFPath];
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): KfreeOffset = %d\n", pRFCalibrateInfo->KfreeOffset[eRFPath]));
}
else
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): KfreeOffset = %d\n", pRFCalibrateInfo->KfreeOffset[eRFPath]));
}
VOID
phy_ConfigKFree8814A(
IN PADAPTER Adapter,
IN u8 channelToSW,
IN BAND_TYPE bandType
)
{
u8 targetval_A = 0xFF;
u8 targetval_B = 0xFF;
u8 targetval_C = 0xFF;
u8 targetval_D = 0xFF;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//RTW_INFO("===>phy_ConfigKFree8814A()\n");
if (Adapter->registrypriv.RegPwrTrimEnable == 2) {
//RTW_INFO("phy_ConfigKFree8814A(): RegPwrTrimEnable == 2, Disable \n");
return;
}
else if (Adapter->registrypriv.RegPwrTrimEnable == 1 || Adapter->registrypriv.RegPwrTrimEnable == 0) {
RTW_INFO("phy_ConfigKFree8814A(): RegPwrTrimEnable == TRUE \n");
if (bandType == BAND_ON_2_4G) { // 2G
RTW_INFO("phy_ConfigKFree8814A(): bandType == BAND_ON_2_4G, channelToSW= %d \n", channelToSW);
if (channelToSW <= 14 && channelToSW >= 1) {
efuse_OneByteRead(Adapter, 0x3F4, &targetval_A, FALSE); // for Path A and B
efuse_OneByteRead(Adapter, 0x3F5, &targetval_B, FALSE); // for Path C and D
}
}
else if (bandType == BAND_ON_5G) {
RTW_INFO("phy_ConfigKFree8814A(): bandType == BAND_ON_5G, channelToSW= %d \n", channelToSW);
if (channelToSW >= 36 && channelToSW < 50) { // 5GLB_1
efuse_OneByteRead(Adapter, 0x3E0, &targetval_A, FALSE);
efuse_OneByteRead(Adapter, 0x3E1, &targetval_B, FALSE);
efuse_OneByteRead(Adapter, 0x3E2, &targetval_C, FALSE);
efuse_OneByteRead(Adapter, 0x3E3, &targetval_D, FALSE);
}
else if (channelToSW >= 50 && channelToSW <= 64) { // 5GLB_2
efuse_OneByteRead(Adapter, 0x3E4, &targetval_A, FALSE);
efuse_OneByteRead(Adapter, 0x3E5, &targetval_B, FALSE);
efuse_OneByteRead(Adapter, 0x3E6, &targetval_C, FALSE);
efuse_OneByteRead(Adapter, 0x3E7, &targetval_D, FALSE);
}
else if (channelToSW >= 100 && channelToSW <= 118) { // 5GMB_1
efuse_OneByteRead(Adapter, 0x3E8, &targetval_A, FALSE);
efuse_OneByteRead(Adapter, 0x3E9, &targetval_B, FALSE);
efuse_OneByteRead(Adapter, 0x3EA, &targetval_C, FALSE);
efuse_OneByteRead(Adapter, 0x3EB, &targetval_D, FALSE);
}
else if (channelToSW >= 120 && channelToSW <= 140) { // 5GMB_2
efuse_OneByteRead(Adapter, 0x3EC, &targetval_A, FALSE);
efuse_OneByteRead(Adapter, 0x3ED, &targetval_B, FALSE);
efuse_OneByteRead(Adapter, 0x3EE, &targetval_C, FALSE);
efuse_OneByteRead(Adapter, 0x3EF, &targetval_D, FALSE);
}
else if (channelToSW >= 149 && channelToSW <= 165) { // 5GHB
efuse_OneByteRead(Adapter, 0x3F0, &targetval_A, FALSE);
efuse_OneByteRead(Adapter, 0x3F1, &targetval_B, FALSE);
efuse_OneByteRead(Adapter, 0x3F2, &targetval_C, FALSE);
efuse_OneByteRead(Adapter, 0x3F3, &targetval_D, FALSE);
}
}
RTW_INFO("phy_ConfigKFree8814A(): targetval_A= %#x \n", targetval_A);
RTW_INFO("phy_ConfigKFree8814A(): targetval_B= %#x \n", targetval_B);
RTW_INFO("phy_ConfigKFree8814A(): targetval_C= %#x \n", targetval_C);
RTW_INFO("phy_ConfigKFree8814A(): targetval_D= %#x \n", targetval_D);
// Make sure the targetval is defined
if ((Adapter->registrypriv.RegPwrTrimEnable == 1) && ((targetval_A != 0xFF) || (pHalData->RfKFreeEnable == TRUE))) {
if (bandType == BAND_ON_2_4G) { // 2G
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_A: %#x \n", targetval_A&0x0F));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_A, targetval_A&0x0F);
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_B: %#x \n", (targetval_A&0xF0)>>4));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_B, (targetval_A&0xF0)>>4);
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_C: %#x \n", targetval_B&0x0F));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_C, targetval_B&0x0F);
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_D: %#x \n", (targetval_B&0xF0)>>4));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_D, (targetval_B&0xF0)>>4);
}
else if(bandType == BAND_ON_5G) {
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_A: %#x \n", targetval_A&0x1F));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_A, targetval_A&0x1F);
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_B: %#x \n", targetval_B&0x1F));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_B, targetval_B&0x1F);
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_C: %#x \n", targetval_C&0x1F));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_C, targetval_C&0x1F);
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): PATH_D: %#x \n", targetval_D&0x1F));
phy_SetKfreeToRF_8814A(Adapter, ODM_RF_PATH_D, targetval_D&0x1F);
}
} else {
RT_TRACE(COMP_MP, DBG_LOUD, ("phy_ConfigKFree8814A(): targetval not defined, Don't execute KFree Process.\n"));
return;
}
}
RT_TRACE(COMP_MP, DBG_LOUD, ("<===phy_ConfigKFree8814A()\n"));
}
VOID
phy_SwChnl8814A(
IN PADAPTER pAdapter
)
{
u8 eRFPath = 0 , channelIdx = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
#ifdef CONFIG_RF_GAIN_OFFSET
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
#endif
u8 channelToSW = pHalData->CurrentChannel;
u32 RFValToWR , RFTmpVal, BitShift, BitMask;
//RTW_INFO("[BW:CHNL], phy_SwChnl8814A(), switch to channel %d !!\n", channelToSW);
if (phy_SwBand8814A(pAdapter, channelToSW) == FALSE) {
RTW_INFO("error Chnl %d", channelToSW);
}
if(pHalData->rf_chip == RF_PSEUDO_11N) {
RT_TRACE(COMP_MLME, DBG_LOUD, ("phy_SwChnl8814A: return for PSEUDO\n"));
return;
}
#ifdef CONFIG_RF_GAIN_OFFSET
/* <YuChen, 140529> Add for KFree Feature Requested by RF David. */
if (kfree_data->flag & KFREE_FLAG_ON) {
channelIdx = rtw_ch_to_bb_gain_sel(channelToSW);
#if 0
if (pHalData->RfKFree_ch_group != channelIdx) {
/* Todo: wait for new phydm ready */
phy_ConfigKFree8814A(pAdapter, channelToSW, pHalData->CurrentBandType);
phydm_ConfigKFree(pDM_Odm, channelToSW, kfree_data->bb_gain);
RTW_INFO("RfKFree_ch_group =%d\n", channelIdx);
}
#endif
pHalData->RfKFree_ch_group = channelIdx;
}
#endif
if (pHalData->RegFWOffload == 2) {
FillH2CCmd_8814(pAdapter, H2C_CHNL_SWITCH_OFFLOAD, 1, &channelToSW);
} else {
// fc_area
if (36 <= channelToSW && channelToSW <= 48)
PHY_SetBBReg(pAdapter, rFc_area_Jaguar, 0x1ffe0000, 0x494);
else if (50 <= channelToSW && channelToSW <= 64)
PHY_SetBBReg(pAdapter, rFc_area_Jaguar, 0x1ffe0000, 0x453);
else if (100 <= channelToSW && channelToSW <= 116)
PHY_SetBBReg(pAdapter, rFc_area_Jaguar, 0x1ffe0000, 0x452);
else if (118 <= channelToSW)
PHY_SetBBReg(pAdapter, rFc_area_Jaguar, 0x1ffe0000, 0x412);
else
PHY_SetBBReg(pAdapter, rFc_area_Jaguar, 0x1ffe0000, 0x96a);
for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++) {
// RF_MOD_AG
if (36 <= channelToSW && channelToSW <= 64)
RFValToWR = 0x101; //5'b00101
else if (100 <= channelToSW && channelToSW <= 140)
RFValToWR = 0x301; //5'b01101
else if (140 < channelToSW)
RFValToWR = 0x501; //5'b10101
else
RFValToWR = 0x000; //5'b00000
// Channel to switch
BitMask = BIT18|BIT17|BIT16|BIT9|BIT8;
BitShift = PHY_CalculateBitShift(BitMask);
RFTmpVal = channelToSW | (RFValToWR << BitShift);
BitMask = BIT18|BIT17|BIT16|BIT9|BIT8|bMaskByte0;
PHY_SetRFReg(pAdapter, eRFPath, RF_CHNLBW_Jaguar, BitMask, RFTmpVal);
}
if (36 <= channelToSW && channelToSW <= 64) // Band 1 & Band 2
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar2, 0x1F, 1); // 0x958[4:0] = 0x1
else if (100 <= channelToSW && channelToSW <= 144) // Band 3
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar2, 0x1F, 2); // 0x958[4:0] = 0x2
else if(channelToSW >= 149) // Band 4
PHY_SetBBReg(pAdapter, rAGC_table_Jaguar2, 0x1F, 3); // 0x958[4:0] = 0x3
}
if (pAdapter->registrypriv.mp_mode == 1) {
if (!pHalData->bSetChnlBW)
phy_ADC_CLK_8814A(pAdapter);
phy_SpurCalibration_8814A(pAdapter);
phy_ModifyInitialGain_8814A(pAdapter);
}
/* 2.4G CCK TX DFIR */
if (channelToSW >= 1 && channelToSW <= 11) {
PHY_SetBBReg(pAdapter, rCCK0_TxFilter1, bMaskDWord, 0x1a1b0030);
PHY_SetBBReg(pAdapter, rCCK0_TxFilter2, bMaskDWord, 0x090e1317);
PHY_SetBBReg(pAdapter, rCCK0_DebugPort, bMaskDWord, 0x00000204);
} else if (channelToSW >= 12 && channelToSW <= 13) {
PHY_SetBBReg(pAdapter, rCCK0_TxFilter1, bMaskDWord, 0x1a1b0030);
PHY_SetBBReg(pAdapter, rCCK0_TxFilter2, bMaskDWord, 0x090e1217);
PHY_SetBBReg(pAdapter, rCCK0_DebugPort, bMaskDWord, 0x00000305);
} else if (channelToSW == 14) {
PHY_SetBBReg(pAdapter, rCCK0_TxFilter1, bMaskDWord, 0x1a1b0030);
PHY_SetBBReg(pAdapter, rCCK0_TxFilter2, bMaskDWord, 0x00000E17);
PHY_SetBBReg(pAdapter, rCCK0_DebugPort, bMaskDWord, 0x00000000);
}
}
/*
VOID
PHY_SwChnlTimerCallback8814A(
IN PRT_TIMER pTimer
)
{
PADAPTER pAdapter = (PADAPTER)pTimer->Adapter;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
RT_TRACE(COMP_SCAN, DBG_LOUD, ("==>PHY_SwChnlTimerCallback8814A(), switch to channel %d\n", pHalData->CurrentChannel));
if (rtw_is_drv_stopped(padapter))
return;
if(pHalData->rf_chip == RF_PSEUDO_11N) {
pHalData->SwChnlInProgress=FALSE;
return; //return immediately if it is peudo-phy
}
PlatformAcquireSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
pHalData->SwChnlInProgress=TRUE;
PlatformReleaseSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
phy_SwChnl8814A(pAdapter);
PlatformAcquireSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
pHalData->SwChnlInProgress=FALSE;
PlatformReleaseSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
RT_TRACE(COMP_SCAN, DBG_LOUD, ("<==PHY_SwChnlTimerCallback8814()\n"));
}
VOID
PHY_SwChnlWorkItemCallback8814A(
IN PVOID pContext
)
{
PADAPTER pAdapter = (PADAPTER)pContext;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
RT_TRACE(COMP_SCAN, DBG_LOUD, ("==>PHY_SwChnlWorkItemCallback8814A(), switch to channel %d\n", pHalData->CurrentChannel));
if(pAdapter->bInSetPower && RT_USB_CANNOT_IO(pAdapter)) {
RT_TRACE(COMP_SCAN, DBG_LOUD, ("<== PHY_SwChnlWorkItemCallback8814A() SwChnlInProgress FALSE driver sleep or unload\n"));
pHalData->SwChnlInProgress = FALSE;
return;
}
if (rtw_is_drv_stopped(padapter))
return;
if(pHalData->rf_chip == RF_PSEUDO_11N) {
pHalData->SwChnlInProgress=FALSE;
return; //return immediately if it is peudo-phy
}
PlatformAcquireSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
pHalData->SwChnlInProgress=TRUE;
PlatformReleaseSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
phy_SwChnl8814A(pAdapter);
PlatformAcquireSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
pHalData->SwChnlInProgress=FALSE;
PlatformReleaseSpinLock(pAdapter, RT_CHANNEL_AND_BANDWIDTH_SPINLOCK);
RT_TRACE(COMP_P2P, DBG_LOUD, ("PHY_SwChnlWorkItemCallback8814A(), switch to channel %d\n", pHalData->CurrentChannel));
RT_TRACE(COMP_SCAN, DBG_LOUD, ("<==PHY_SwChnlWorkItemCallback8814A()\n"));
}
VOID
HAL_HandleSwChnl8814A( // Call after initialization
IN PADAPTER pAdapter,
IN u8 channel
)
{
PADAPTER Adapter = GetDefaultAdapter(pAdapter);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
RT_TRACE(COMP_SCAN | COMP_RM, DBG_LOUD, ("HAL_HandleSwChnl8814A()===>\n"));
pHalData->CurrentChannel = channel;
phy_SwChnl8814A(Adapter);
#if (MP_DRIVER == 1)
// <20120712, Kordan> IQK on each channel, asked by James.
PHY_IQCalibrate_8814A(pAdapter, FALSE);
#endif
RT_TRACE(COMP_SCAN | COMP_RM, DBG_LOUD, ("<==HAL_HandleSwChnl8814A()\n"));
}
*/
VOID
phy_SwChnlAndSetBwMode8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T pDM_Odm = &pHalData->odmpriv;
//RTW_INFO("phy_SwChnlAndSetBwMode8814A(): bSwChnl %d, bSetChnlBW %d \n", pHalData->bSwChnl, pHalData->bSetChnlBW);
if ( Adapter->bNotifyChannelChange ) {
RTW_INFO( "[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n",
__FUNCTION__,
pHalData->bSwChnl,
pHalData->CurrentChannel,
pHalData->bSetChnlBW,
pHalData->CurrentChannelBW);
}
if (RTW_CANNOT_RUN(Adapter)) {
pHalData->bSwChnlAndSetBWInProgress= FALSE;
return;
}
if (pHalData->bSwChnl) {
phy_SwChnl8814A(Adapter);
pHalData->bSwChnl = FALSE;
}
if (pHalData->bSetChnlBW) {
phy_SetBwMode8814A(Adapter);
pHalData->bSetChnlBW = FALSE;
}
if (Adapter->registrypriv.mp_mode == 0) {
ODM_ClearTxPowerTrackingState(pDM_Odm);
PHY_SetTxPowerLevel8814(Adapter, pHalData->CurrentChannel);
if (pHalData->bNeedIQK == _TRUE) {
PHY_IQCalibrate_8814A(pDM_Odm, _FALSE);
pHalData->bNeedIQK = _FALSE;
}
} else
PHY_IQCalibrate_8814A(pDM_Odm, _FALSE);
#if 0 //todo
#if (AUTO_CHNL_SEL_NHM == 1)
if(IS_AUTO_CHNL_SUPPORT(Adapter) &&
P2PIsSocialChannel(pHalData->CurrentChannel))
{
RT_TRACE(COMP_SCAN, DBG_TRACE, ("[ACS] phy_SwChnlAndSetBwMode8723B(): CurrentChannel %d Reset NHM counter!!\n", pHalData->CurrentChannel));
RT_TRACE(COMP_SCAN, DBG_TRACE, ("[ACS] phy_SwChnlAndSetBwMode8723B(): AutoChnlSelPeriod(%d)\n",
GetDefaultAdapter(Adapter)->MgntInfo.AutoChnlSel.AutoChnlSelPeriod));
// Reset NHM counter
odm_AutoChannelSelectReset(GET_PDM_ODM(Adapter));
SET_AUTO_CHNL_STATE(Adapter, ACS_BEFORE_NHM);// Before NHM measurement
}
#endif
#endif //0
pHalData->bSwChnlAndSetBWInProgress= FALSE;
}
VOID
PHY_SwChnlAndSetBWModeCallback8814A(
IN PVOID pContext
)
{
PADAPTER Adapter = (PADAPTER)pContext;
phy_SwChnlAndSetBwMode8814A(Adapter);
}
/*
//
// Description:
// Switch channel synchronously. Called by SwChnlByDelayHandler.
//
// Implemented by Bruce, 2008-02-14.
// The following procedure is operted according to SwChanlCallback8190Pci().
// However, this procedure is performed synchronously which should be running under
// passive level.
//
VOID
PHY_SwChnlSynchronously8814A( // Only called during initialize
IN PADAPTER Adapter,
IN u8 channel
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
RT_TRACE(COMP_SCAN | COMP_RM, DBG_LOUD, ("==>PHY_SwChnlSynchronously(), switch from channel %d to channel %d.\n", pHalData->CurrentChannel, channel));
// Cannot IO.
if(RT_CANNOT_IO(Adapter))
return;
// Channel Switching is in progress.
if(pHalData->bSwChnlAndSetBWInProgress)
return;
//return immediately if it is peudo-phy
if(pHalData->rf_chip == RF_PSEUDO_11N) {
pHalData->bSwChnlAndSetBWInProgress=FALSE;
return;
}
switch(pHalData->CurrentWirelessMode) {
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
case WIRELESS_MODE_AC_5G:
//Get first channel error when change between 5G and 2.4G band.
//FIX ME!!!
if(channel <=14)
return;
RT_ASSERT((channel>14), ("WIRELESS_MODE_A but channel<=14"));
break;
case WIRELESS_MODE_B:
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_AC_24G:
//Get first channel error when change between 5G and 2.4G band.
//FIX ME!!!
if(channel > 14)
return;
RT_ASSERT((channel<=14), ("WIRELESS_MODE_G but channel>14"));
break;
default:
RT_ASSERT(FALSE, ("Invalid WirelessMode(%#x)!!\n", pHalData->CurrentWirelessMode));
break;
}
pHalData->bSwChnlAndSetBWInProgress = TRUE;
if( channel == 0)
channel = 1;
pHalData->bSwChnl = TRUE;
pHalData->bSetChnlBW = FALSE;
pHalData->CurrentChannel=channel;
phy_SwChnlAndSetBwMode8814A(Adapter);
RT_TRACE(COMP_SCAN | COMP_RM, DBG_LOUD, ("<==PHY_SwChnlSynchronously(), switch from channel %d to channel %d.\n", pHalData->CurrentChannel, channel));
}
*/
VOID
PHY_HandleSwChnlAndSetBW8814A(
IN PADAPTER Adapter,
IN BOOLEAN bSwitchChannel,
IN BOOLEAN bSetBandWidth,
IN u8 ChannelNum,
IN CHANNEL_WIDTH ChnlWidth,
IN u8 ChnlOffsetOf40MHz,
IN u8 ChnlOffsetOf80MHz,
IN u8 CenterFrequencyIndex1
)
{
PADAPTER pDefAdapter = GetDefaultAdapter(Adapter);
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pDefAdapter);
u8 tmpChannel = pHalData->CurrentChannel;
CHANNEL_WIDTH tmpBW= pHalData->CurrentChannelBW;
u8 tmpnCur40MhzPrimeSC = pHalData->nCur40MhzPrimeSC;
u8 tmpnCur80MhzPrimeSC = pHalData->nCur80MhzPrimeSC;
u8 tmpCenterFrequencyIndex1 =pHalData->CurrentCenterFrequencyIndex1;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
//check is swchnl or setbw
if (!bSwitchChannel && !bSetBandWidth) {
RTW_INFO("PHY_HandleSwChnlAndSetBW8812: not switch channel and not set bandwidth \n");
return;
}
//skip change for channel or bandwidth is the same
if (bSwitchChannel) {
if(pHalData->CurrentChannel != ChannelNum) {
if (HAL_IsLegalChannel(Adapter, ChannelNum))
pHalData->bSwChnl = _TRUE;
else
return;
}
}
if (bSetBandWidth) {
if (pHalData->bChnlBWInitialized == _FALSE) {
pHalData->bChnlBWInitialized = _TRUE;
pHalData->bSetChnlBW = _TRUE;
}
else if ((pHalData->CurrentChannelBW != ChnlWidth) ||
(pHalData->nCur40MhzPrimeSC != ChnlOffsetOf40MHz) ||
(pHalData->nCur80MhzPrimeSC != ChnlOffsetOf80MHz) ||
(pHalData->CurrentCenterFrequencyIndex1!= CenterFrequencyIndex1))
{
pHalData->bSetChnlBW = _TRUE;
}
}
if (!pHalData->bSetChnlBW && !pHalData->bSwChnl) {
//RTW_INFO("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d \n",pHalData->bSwChnl,pHalData->bSetChnlBW);
return;
}
if (pHalData->bSwChnl) {
pHalData->CurrentChannel=ChannelNum;
pHalData->CurrentCenterFrequencyIndex1 = ChannelNum;
}
if (pHalData->bSetChnlBW) {
pHalData->CurrentChannelBW = ChnlWidth;
#if 0
if (ExtChnlOffsetOf40MHz==EXTCHNL_OFFSET_LOWER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (ExtChnlOffsetOf40MHz==EXTCHNL_OFFSET_UPPER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
if (ExtChnlOffsetOf80MHz==EXTCHNL_OFFSET_LOWER)
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (ExtChnlOffsetOf80MHz==EXTCHNL_OFFSET_UPPER)
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur80MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#else
pHalData->nCur40MhzPrimeSC = ChnlOffsetOf40MHz;
pHalData->nCur80MhzPrimeSC = ChnlOffsetOf80MHz;
#endif
pHalData->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1;
}
//Switch workitem or set timer to do switch channel or setbandwidth operation
if (!RTW_CANNOT_RUN(Adapter))
phy_SwChnlAndSetBwMode8814A(Adapter);
else {
if (pHalData->bSwChnl) {
pHalData->CurrentChannel = tmpChannel;
pHalData->CurrentCenterFrequencyIndex1 = tmpChannel;
}
if (pHalData->bSetChnlBW) {
pHalData->CurrentChannelBW = tmpBW;
pHalData->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC;
pHalData->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC;
pHalData->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1;
}
}
//RTW_INFO("Channel %d ChannelBW %d ",pHalData->CurrentChannel, pHalData->CurrentChannelBW);
//RTW_INFO("40MhzPrimeSC %d 80MhzPrimeSC %d ",pHalData->nCur40MhzPrimeSC, pHalData->nCur80MhzPrimeSC);
//RTW_INFO("CenterFrequencyIndex1 %d \n",pHalData->CurrentCenterFrequencyIndex1);
//RTW_INFO("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d \n",pHalData->bSwChnl,pHalData->bSetChnlBW);
}
/*
//
// Description:
// Configure H/W functionality to enable/disable Monitor mode.
// Note, because we possibly need to configure BB and RF in this function,
// so caller should in PASSIVE_LEVEL. 080118, by rcnjko.
//
VOID
PHY_SetMonitorMode8814A(
IN PADAPTER pAdapter,
IN BOOLEAN bEnableMonitorMode
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
BOOLEAN bFilterOutNonAssociatedBSSID = FALSE;
//2 Note: we may need to stop antenna diversity.
if(bEnableMonitorMode) {
bFilterOutNonAssociatedBSSID = FALSE;
RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8814A(): enable monitor mode\n"));
pHalData->bInMonitorMode = TRUE;
pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, TRUE, TRUE);
rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (u8*)&bFilterOutNonAssociatedBSSID);
} else {
bFilterOutNonAssociatedBSSID = TRUE;
RT_TRACE(COMP_RM, DBG_LOUD, ("PHY_SetMonitorMode8814A(): disable monitor mode\n"));
pAdapter->HalFunc.AllowAllDestAddrHandler(pAdapter, FALSE, TRUE);
pHalData->bInMonitorMode = FALSE;
rtw_hal_set_hwreg(pAdapter, HW_VAR_CHECK_BSSID, (u8*)&bFilterOutNonAssociatedBSSID);
}
}
*/
BOOLEAN
SetAntennaConfig8814A(
IN PADAPTER pAdapter,
IN u8 DefaultAnt // 0: Main, 1: Aux.
)
{
return TRUE;
}
VOID
PHY_SetBWMode8814(
IN PADAPTER Adapter,
IN CHANNEL_WIDTH Bandwidth, // 20M or 40M
IN u8 Offset // Upper, Lower, or Don't care
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
//RTW_INFO("%s()===>\n",__FUNCTION__);
PHY_HandleSwChnlAndSetBW8814A(Adapter, _FALSE, _TRUE, pHalData->CurrentChannel, Bandwidth, Offset, Offset, pHalData->CurrentChannel);
//RTW_INFO("<==%s()\n",__FUNCTION__);
}
VOID
PHY_SwChnl8814(
IN PADAPTER Adapter,
IN u8 channel
)
{
//RTW_INFO("%s()===>\n",__FUNCTION__);
PHY_HandleSwChnlAndSetBW8814A(Adapter, _TRUE, _FALSE, channel, 0, 0, 0, channel);
//RTW_INFO("<==%s()\n",__FUNCTION__);
}
VOID
PHY_SetSwChnlBWMode8814(
IN PADAPTER Adapter,
IN u8 channel,
IN CHANNEL_WIDTH Bandwidth,
IN u8 Offset40,
IN u8 Offset80
)
{
//RTW_INFO("%s()===>\n",__FUNCTION__);
PHY_HandleSwChnlAndSetBW8814A(Adapter, _TRUE, _TRUE, channel, Bandwidth, Offset40, Offset80, channel);
//RTW_INFO("<==%s()\n",__FUNCTION__);
}