29 KiB
MadLisp
MadLisp is a Lisp interpreter written in PHP. It is inspired by the Make a Lisp project, but does not follow that convention or syntax strictly. It provides a fun platform for learning functional programming.
Goals
- REPL environment where the user can interactively experiment with the language. Suitable for executing pieces of code one by one and examining the internal state of the system.
- Minimal safeguards or restrictions as to what can be done. Breaking things or using the language in unexpected ways should be part of the fun.
- Performance does not need to match commercial-grade languages, but needs to be fast enough for real-world programs and uses cases.
- Suitable to be used as a scripting language in Linux shell scripts and similar environments.
- Suitable to be used as an embedded scripting language inside another PHP application.
- Clear and intuitive error messages. This is important for pleasant user experience.
- Provide a library with commonly used features such as HTTP requests, JSON processing and SQL database support.
- Provide a clean interface for extending the language with your own functions defined in PHP.
- Provide a safe-mode where access to the file system and other external I/O is restricted.
- Provide a debug mode which shows what is happening inside the code evaluation.
- Loosely respect the Lisp legacy with things like naming conventions but do not be constrained by it.
Non-goals
- Ability to call arbitrary PHP functions directly. The language should have control over which PHP functions can be called and how.
- Namespaces or similar mechanisms. The global namespace is a feature, not a bug! Use a prefix for your function names if this becomes a problem.
Requirements
The project requires PHP 7.4 or newer.
The core project does not have any dependencies to external Composer libraries, but it does currently use Composer for the autoloader so you need to run composer install for that.
Usage
Use the run.php file to invoke the interpreter from the command line. You can start the Repl with the -r switch:
$ php run.php -r
You can also evaluate code directly with the -e switch:
$ php run.php -e "(+ 1 2 3)"
6
You can evaluate a file by giving it as argument:
$ php run.php file.mad
With no arguments the script will read input from stdin:
$ echo "(+ 1 2 3)" | php run.php
6
Init file
You can create an init file in your home directory with the name .madlisp_init
. This file is automatically executed when the interpreter is started. It is useful for registering commonly used functions and performing other initialization.
Using from PHP
You can use the LispFactory class to create an instance of the interpreter if you wish to embed the MadLisp language in your PHP application and call it directly from your code.
Safe-mode
The language features a safe-mode that disables functions which allow external I/O. This allows a "sandbox" to be created where the evaluated scripts do not have access to the file system or similar resources. It is intended to be used when MadLisp is used as an embedded scripting language inside another application.
Types
Numbers
Numeric literals are interpreted as integer or floating point values. For example 1
or 1.0
.
Strings
Strings are limited by double quotes, for example "this is a string"
.
Comments
Comments start with semicolon ;
and end on a newline character.
Keywords
Special keywords are true
, false
and null
which correspond to same PHP values.
Sequences
Lists are limited by parenthesis. When they are evaluated, the first item of a list is called as a function with the remaining items as arguments. They can be defined using the built-in list
function:
> (list 1 2 3)
(1 2 3)
Vectors are defined using square brackets or the built-in vector
function:
> [1 2 3]
[1 2 3]
> (vector 4 5 6)
[4 5 6]
Internally lists and vectors are just PHP arrays wrapped in a class, and the only difference between the two is how they are evaluated. Another reason for adding vectors is the familiarity of the square bracket syntax for PHP developers. They can be thought of as PHP arrays for most intents and purposes.
Hash maps
Hash maps are collections of key-value pairs. Keys are normal strings, not "keywords" starting with colon characters as in many Lisp languages.
Hash maps are defined using curly brackets or using the built-in hash
function. Odd arguments are treated as keys and even arguments are treated as values. The key-value pair can optionally include colon as a separator to make it more readable, but it is ignored internally.
> (hash "a" 1 "b" 2)
{"a":1 "b":2}
> {"key":"value"}
{"key":"value"}
Internally hash maps are just regular associative PHP arrays wrapped in a class.
Symbols
Symbols are words which do not match any other type and are separated by whitespace. They can contain special characters. Examples of symbols are a
, name
or +
.
Environments
Environments are hash-maps which store key-value pairs and use symbols as keys. Symbols are evaluated by looking up the corresponding value from the current environment. If the key is not defined in current environment the lookup proceeds to the parent environment and so forth. The initial environment is called root
and contains all the built-in functions listed here. Then another environment called user
is created for anything the user wants to define. The let
and fn
special forms create new local environments. Note that def
always uses the current environment, so anything defined with def
is not visible in the parent environment.
You can get the name of an environment using the meta
function:
> (meta (env) "name")
"root/user"
You can also retrieve the parent environment:
> (meta (env) "parent")
{}
Quoting
Use the quote
special form to skip evaluation:
> (quote (1 2 3))
(1 2 3)
Use the quasiquote
special form when you need to turn on evaluation temporarily inside the quoted element. The special forms unquote
and unquote-splice
are available for that purpose:
> (def lst (quote (2 3)))
(2 3)
> (quasiquote (1 lst 4))
(1 lst 4)
> (quasiquote (1 (unquote lst) 4))
(1 (2 3) 4)
> (quasiquote (1 (unquote-splice lst) 4))
(1 2 3 4)
Internally quasiquote
expands to cons
and concat
functions. We can use the quasiquote-expand
special form to test this expansion without evaluation:
> (def lst (quote (2 3)))
(2 3)
> (quasiquote-expand (1 lst 4))
(cons 1 (cons (quote lst) (cons 4 ())))
> (quasiquote-expand (1 (unquote lst) 4))
(cons 1 (cons lst (cons 4 ())))
> (quasiquote-expand (1 (unquote-splice lst) 4))
(cons 1 (concat lst (cons 4 ())))
Quote shortcuts
You can use the single-quote ('
), backtick and tilde (~
) characters as shortcuts for quote
, quasiquote
and unquote
respectively:
> '(a b c)
(a b c)
> `(a ~(+ 1 2) c)
(a 3 c)
All special forms related to quoting require exactly one argument.
Macros
The language has support for Lisp-style macros. Macros are like preprocessor directives and allow the manipulation of the language syntax before evaluation.
There are two built-in macros: defn
which is a shortcut for the form (def ... (fn ...))
and defmacro
which is a shortcut for the form (def ... (macro ...))
.
We can use the special form macroexpand
to test macro expansion without evaluating the resulting code. To illustrate how macros work, lets use defn
as an example, and then view the expanded form using macroexpand
:
> (def defn (macro (name args body) (quasiquote (def (unquote name) (fn (unquote args) (unquote body))))))
<macro>
> (macroexpand (defn add (a b) (+ a b)))
(def add (fn (a b) (+ a b)))
For another example, lets combine if
and not
into a macro named unless
, this time using a shorter syntax:
> (defmacro unless (pred a b) `(if (not ~pred) ~a ~b))
<macro>
> (macroexpand (unless false "is false" "not false"))
(if (not false) "is false" "not false")
> (unless false "is false" "not false")
"is false"
The quasiquote
form described above is essential for declaring macros. Internally macros are just functions with a special flag.
Reflection
You can use the meta
special form to retrieve the arguments, body, code or full definition of user-defined functions:
> (defn add (a b) (+ a b))
<function>
> (meta add "args")
(a b)
> (meta add "body")
(+ a b)
> (meta add "code")
(fn (a b) (+ a b))
> (meta add "def")
(defn add (a b) (+ a b))
This allows for some fun tricks. For example, we can retrieve the body of a function and evaluate it as part of another function:
> (defn addOne (n) (+ n 1))
<function>
> (defn addTwo (n) (+ n 2))
<function>
> (defn addBoth (n) (+ (eval (meta addOne "body")) (eval (meta addTwo "body"))))
<function>
> (addBoth 1)
5
Special forms
Name | Safe-mode | Example | Example result | Description |
---|---|---|---|---|
and | yes | (and 1 0 2) |
0 |
Return the first value that evaluates to false, or the last value. |
case | yes | (case (= 1 0) 0 (= 1 1) 1) |
1 |
Treat odd arguments as tests and even arguments as values. Evaluate and return the value after the first test that evaluates to true. |
yes | (case (= 1 0) 0 "no match") |
"no match" |
You can also give optional last argument to case which is returned if none of the tests evaluated to true. | |
def | yes | (def addOne (fn (a) (+ a 1))) |
<function> |
Define a value in the current environment. |
do | yes | (do (print 1) 2) |
12 |
Evaluate multiple expressions and return the value of the last. |
env | no | (env +) |
<function> |
Return a definition from the current environment represented by argument. Without arguments return the current environment as a hash-map. |
eval | no | (eval (quote (+ 1 2))) |
3 |
Evaluate the argument. |
fn | yes | (fn (a b) (+ a b)) |
<function> |
Create a function. Arguments can also be given as a vector instead of a list. |
if | yes | (if (< 1 2) "yes" "no") |
"yes" |
If the first argument evaluates to true, evaluate and return the second argument, otherwise the third argument. If the third argument is omitted return null in its place. |
let | yes | (let (a (+ 1 2)) a) |
3 |
Create a new local environment using the first argument (list) to define values. Odd arguments are treated as keys and even arguments are treated as values. The last argument is the body of the let-expression which is evaluated using this new environment. |
load | no | (load "file.mad") |
Read and evaluate a file. The contents are implicitly wrapped in a do expression. |
|
macro | yes | See the section Macros. | ||
macroexpand | yes | See the section Macros. | ||
meta | no | See the sections Environments and Reflection. | ||
or | yes | (or false 0 1) |
1 |
Return the first value that evaluates to true, or the last value. |
quote | yes | See the section Quoting. | ||
quasiquote | yes | See the section Quoting. | ||
quasiquote-expand | yes | See the section Quoting. | ||
undef | yes | (undef myFn) |
<function> |
Remove a definition from the current environment. Return the removed value. |
Functions
Core functions
Name | Safe-mode | Example | Example result | Description |
---|---|---|---|---|
debug | no | (debug) |
true |
Toggle debug output. |
doc | yes | (doc +) |
"Return the sum of all arguments." |
Show the documentation string for a function. |
yes | (doc myfn "Documentation string.") |
"Documentation string." |
Set the documentation string for a function. | |
error | yes | (error "invalid value") |
error: invalid value |
Throw an exception with message as argument. |
exit | no | (exit 1) |
Terminate the script with given exit code using exit. | |
loop | yes | (loop (fn (a) (do (print a) (coinflip))) "hello ") |
hello hello hello false |
Call the given function repeatedly in a loop until it returns false. |
no | (print "hello world") |
"hello world"null |
Print expression on the screen. Print returns null (which is shown due to the extra print in repl). Give optional second argument as true to show strings in readable format. |
|
read | no | (read "(+ 1 2 3)") |
(+ 1 2 3) |
Read a string as code and return the expression. |
sleep | no | (sleep 2000) |
null |
Sleep for the given period given in milliseconds using usleep. |
timer | no | (timer (fn (d) (sleep d)) 200) |
0.20010209 |
Measure the execution time of a function and return it in seconds. |
Collection functions
Name | Example | Example result | Description |
---|---|---|---|
hash | (hash "a" 1 "b" 2) |
{"a":1 "b":2} |
Create a new hash-map. |
list | (list 1 2 3) |
(1 2 3) |
Create a new list. |
vector | (vector 1 2 3) |
[1 2 3] |
Create a new vector. |
range | (range 2 5) |
[2 3 4] |
Create a vector with integer values from first to argument (inclusive) to second argument (exclusive). |
range | (range 5) |
[0 1 2 3 4] |
Range can also be used with one argument in which case it is used as length for a vector of integers starting from 0. |
ltov | (ltov '(1 2 3)) |
[1 2 3] |
Convert list to vector. |
vtol | (vtol [1 2 3]) |
(1 2 3) |
Convert vector to list. |
empty? | (empty? []) |
true |
Return true if collection is empty, otherwise false. |
get | (get [1 2 3] 0) |
1 |
Return the nth element from a sequence, or the corresponding value for the given key from a hash-map. |
len | (len [1 2 3]) |
3 |
Return the number of elements in a collection. |
first | (first [1 2 3 4]) |
1 |
Return the first element of a sequence. |
second | (second [1 2 3 4]) |
2 |
Return the second element of a sequence. |
penult | (penult [1 2 3 4]) |
3 |
Return the second-last element of a sequence. |
last | (last [1 2 3 4]) |
4 |
Return the last element of a sequence. |
head | (head [1 2 3 4]) |
[1 2 3] |
Return new sequence which contains all elements except the last. |
tail | (tail [1 2 3 4]) |
[2 3 4] |
Return new sequence which contains all elements except the first. |
slice | (slice [1 2 3 4 5] 1 3) |
[2 3 4] |
Return a slice of the sequence using offset and length. Uses array_slice. |
apply | (apply + 1 2 [3 4]) |
10 |
Call the first argument using a sequence as argument list. Intervening arguments are prepended to the list. |
chunk | (chunk [1 2 3 4 5] 2) |
[[1 2] [3 4] [5]] |
Divide a sequence to multiple sequences with specified length using array_chunk. |
concat | (concat [1 2] '(3 4)) |
(1 2 3 4) |
Concatenate multiple sequences together and return them as a list. |
push | (push [1 2] 3 4) |
[1 2 3 4] |
Create new sequence by inserting arguments at the end. |
cons | (cons 1 2 [3 4]) |
[1 2 3 4] |
Create new sequence by inserting arguments at the beginning. |
map | (map (fn (a) (* a 2)) [1 2 3]) |
[2 4 6] |
Create new sequence by calling a function for each item. Uses array_map internally. |
map2 | (map2 + [1 2 3] [4 5 6]) |
[5 7 9] |
Create new sequence by calling a function for each item from both sequences. |
reduce | (reduce + [2 3 4] 1) |
10 |
Reduce a sequence to a single value by calling a function sequentially of all arguments. Optional third argument is used to give the initial value for first iteration. Uses array_reduce internally. |
filter | (filter odd? [1 2 3 4 5]) |
[1 3 5] |
Create a new sequence by using the given function as a filter. Uses array_filter internally. |
filterh | (filterh (fn (v k) (prefix? k "a")) {"aa":1 "ab":2 "bb":3}) |
{"aa":1 "ab":2} |
Same as filter but for hash-maps. First argument passed to the callback is the value and second is the key. |
reverse | (reverse [1 2 3]) |
[3 2 1] |
Reverse the order of a sequence. Uses array_reverse internally. |
key? | (key? {"a" "b"} "a") |
true |
Return true if the hash-map contains the given key. |
set | (set {"a" 1} "b" 2) |
{"a":1 "b":2} |
Create new hash-map which contains the given key-value pair. |
set! | (set! {"a" 1} "b" 2) |
2 |
Modify the given hash-map by setting the given key-value pair and return the set value. This function is mutable! |
unset | (unset {"a":1 "b":2 "c":3} "b") |
{"a":1 "c":3} |
Create a new hash-map with the given key removed. |
unset! | (unset! {"a":1 "b":2 "c":3} "b") |
2 |
Modify the given hash-map by removing the given key and return the corresponding value. This function is mutable! |
keys | (keys {"a" 1 "b" 2}) |
("a" "b") |
Return a list of the keys for a hash-map. |
values | (values {"a" 1 "b" 2}) |
(1 2) |
Return a list of the values for a hash-map. |
zip | (zip ["a" "b"] [1 2]) |
{"a":1 "b":2} |
Create a hash-map using the first sequence as keys and the second as values. Uses array_combine internally. |
sort | (sort [6 4 8 1]) |
[1 4 6 8] |
Sort the sequence using sort. |
usort | (usort (fn (a b) (if (< a b) 0 1)) [3 1 5 4 2]) |
[1 2 3 4 5] |
Sort the sequence using custom comparison function using usort. |
Comparison functions
Name | Example | Example result | Description |
---|---|---|---|
= |
(= 1 "1") |
true |
Compare arguments for equality using the == operator in PHP. |
== |
(== 1 "1") |
false |
Compare arguments for strict equality using the === operator in PHP. |
!= |
(!= 1 "1") |
false |
Compare arguments for not-equality using the != operator in PHP. |
!== |
(!== 1 "1") |
true |
Compare arguments for strict not-equality using the !== operator in PHP. |
< |
(< 1 2) |
true |
Return true if first argument is less than second. |
<= |
(<= 1 2) |
true |
Return true if first argument is less or equal to second. |
> |
(> 1 2) |
false |
Return true if first argument is greater than second. |
>= |
(>= 1 2) |
false |
Return true if first argument is greater or equal to second. |
Database functions
This is a simple wrapper for PDO. This library is disabled in safe-mode.
Name | Example | Example result | Description |
---|---|---|---|
db-open | (def d (db-open "mysql:host=localhost;dbname=test" "testuser" "testpw")) |
<object<PDO>> |
Open a database connection. |
db-execute | (db-execute d "INSERT INTO test_table (col1, col2) values (?, ?)" [1, 2]) |
1 |
Execute a SQL statement and return the number of affected rows. |
db-query | (db-query d "SELECT * FROM test_table WHERE col1 = ?" [1]) |
Execute a SELECT statement. | |
db-last-id | (db-last-id d) |
"1" |
Return the last id of auto-increment column. |
db-trans | (db-trans d) |
true |
Start a transaction. |
db-commit | (db-commit d) |
true |
Commit a transaction. |
db-rollback | (db-rollback d) |
true |
Roll back a transaction. |
Http functions
This is a simple wrapper for cURL. This library is disabled in safe-mode.
Name | Example | Example result | Description |
---|---|---|---|
http | (http "POST" "http://example.com/" (to-json {"key":"value"}) {"Content-Type":"application/json"}) |
{"status":200 "body":"" "headers":{}} |
Perform a HTTP request. First argument is the HTTP method, second is URL, third is request body and fourth is headers as a hash-map. The function returns a hash-map which contains keys status , body and headers . |
IO functions
This library is disabled in safe-mode.
Name | Example | Example result | Description |
---|---|---|---|
wd | (wd) |
"/home/pekka/code/madlisp/" |
Get the current working directory. |
chdir | (chdir "/tmp") |
true |
Change the current working directory. |
file? | (file? "test.txt") |
true |
Return true if the file exists. |
fget | (fget "test.txt") |
"content" |
Read the contents of a file using file_get_contents. |
fput | (fput "test.txt" "content") |
true |
Write string to file using file_put_contents. Give optional third parameter as true to append. |
fopen | (def f (fopen "test.txt" "w")) |
<resource> |
Open a file for reading or writing. Give the mode as second argument. |
fclose | (fclose f) |
true |
Close a file resource. |
fwrite | (fwrite f "abc") |
3 |
Write to a file resource. |
fflush | (fflush f) |
true |
Persist buffered writes to disk for a file resource. |
fread | (fread f 16) |
"abc" |
Read from a file resource. |
feof? | (feof? f) |
true |
Return true if end of file has been reached for a file resource. |
readline | (readline "What is your name? ") |
What is your name? |
Read line of user input using readline. |
readline-add | (readline-add "What is your name? ") |
true |
Add line of user input to readline history using readline_add_history. |
readline-load | (readline-load "historyfile") |
true |
Read readline history from file using readline_read_history. |
readline-save | (readline-save "historyfile") |
true |
Write readline history into file using readline_write_history. |
Json functions
Name | Example | Example result | Description |
---|---|---|---|
to-json | (to-json { "a" [1 2 3] "b" [4 5 6] }) |
"{\"a\":[1,2,3],\"b\":[4,5,6]}" |
Encode the argument as a JSON string. |
from-json | (from-json "{\"a\":[1,2,3],\"b\":[4,5,6]}") |
{"a":[1 2 3] "b":[4 5 6]} |
Decode the JSON string given as argument. |
Math functions
Name | Example | Example result | Description |
---|---|---|---|
+ |
(+ 1 2 3) |
6 |
Return the sum of the arguments. |
- |
(- 4 2 1) |
1 |
Subtract the other arguments from the first. |
* |
(* 2 3 4) |
24 |
Multiply the arguments. |
/ |
(/ 7 2) |
3.5 |
Divide the arguments. |
// |
(// 7 2) |
3 |
Divide the arguments using integer division. |
% |
(% 6 4) |
2 |
Calculate the modulo. |
inc | (inc 1) |
2 |
Increment the argument by one. |
dec | (dec 2) |
1 |
Decrement the argument by one. |
sin | (sin 1) |
0.84 |
Calculate the sine. |
cos | (cos 1) |
0.54 |
Calculate the cosine. |
tan | (tan 1) |
1.55 |
Calculate the tangent. |
abs | (abs -2) |
2 |
Get the absolute value. |
floor | (floor 2.5) |
2 |
Get the next lowest integer. |
ceil | (ceil 2.5) |
3 |
Get the next highest integer. |
pow | (pow 2 4) |
16 |
Raise the first argument to the power of the second argument. |
sqrt | (sqrt 2) |
1.41 |
Calculate the square root. |
coinflip | (coinflip) |
true |
Return true or false with equal probability. |
rand | (rand 5 10) |
8 |
Return a random integer between given min and max values. |
Regular expression functions
Name | Example | Example result | Description |
---|---|---|---|
re-match | (re-match "/^[a-z]{4}[0-9]{4}$/" "test1234") |
true |
Match subject to regular expression using preg_match. |
re-match | (re-match "/[a-z]{5}/" "one three five" true) |
"three" |
Give true as third argument to return the matched text. |
re-match-all | (re-match-all "/[A-Z][a-z]{2}[0-9]/" "One1 Two2 Three3") |
["One1" "Two2"] |
Find multiple matches to regular expression using preg_match_all. |
re-replace | (re-replace "/year ([0-9]{4}) month ([0-9]{2})/" "$1-$2-01" "year 2020 month 10") |
"2020-10-01" |
Perform search and replace with regular expression using preg_replace. |
re-split | (re-split "/\\s+/" "aa bb cc ") |
["aa" "bb" "cc"] |
Split the subject by regular expression using preg_split. The flag PREG_SPLIT_NO_EMPTY is enabled. |
String functions
Name | Example | Example result | Description |
---|---|---|---|
empty? | (empty? "") |
true |
Return true if argument is empty string. |
len | (len "hello world") |
11 |
Return the length of a string using strlen. |
trim | (trim " abc ") |
"abc" |
Trim the string using trim. |
upcase | (upcase "abc") |
"ABC" |
Make the string upper case using strtoupper. |
lowcase | (lowcase "Abc") |
"abc" |
Make the string lower case using strtolower. |
substr | (substr "hello world" 3 5) |
"lo wo" |
Get a substring using substr. |
replace | (replace "hello world" "hello" "bye") |
"bye world" |
Replace substrings using str_replace. |
split | (split "-" "a-b-c") |
["a" "b" "c"] |
Split string using explode. |
join | (join "-" "a" "b" "c") |
"a-b-c" |
Join string together using implode. |
format | (format "%d %.2f" 56 4.5) |
"56 4.50" |
Format string using sprintf. |
prefix? | (prefix? "hello world" "hello") |
true |
Return true if the first argument starts with the second argument. |
suffix? | (suffix? "hello world" "world") |
true |
Return true if the first argument ends with the second argument. |
Note that support for multibyte characters in strings is limited because the provided functions do not use the mbstring extension.
Time functions
Name | Example | Example result | Description |
---|---|---|---|
time | (time) |
1592011969 |
Return the current unix timestamp using time. |
date | (date "Y-m-d H:i:s") |
"2020-06-13 08:33:29" |
Format the current time and date using date. |
strtotime | (strtotime "2020-06-13 08:34:47") |
1592012087 |
Parse datetime string into unix timestamp using strtotime. |
Type functions
Skipped examples here as these are pretty self-explanatory.
Name | Description |
---|---|
bool | Convert the argument to boolean. |
float | Convert the argument to floating-point value. |
int | Convert the argument to integer. |
str | Convert the argument to string. Also concatenate multiple strings together. |
symbol | Convert the argument to symbol. |
not | Turns true to false and vice versa. |
type | Return the type of the argument as a string. |
fn? | Return true if the argument is a function. |
macro? | Return true if the argument is a macro. |
list? | Return true if the argument is a list. |
vector? | Return true if the argument is a vector. |
seq? | Return true if the argument is a sequence (list or vector). |
hash? | Return true if the argument is a hash-map. |
symbol? | Return true if the argument is a symbol. |
object? | Return true if the argument is an object. |
resource? | Return true if the argument is a resource. |
bool? | Return true if the argument is a boolean value (strict comparison). |
true? | Return true if the argument evaluates to true (non-strict comparison). |
false? | Return true if the argument evaluates to false (non-strict comparison). |
null? | Return true if the argument is null (strict comparison). |
int? | Return true if the argument is an integer. |
float? | Return true if the argument is a floating-point value. |
str? | Return true if the argument is a string. |
zero? | Return true if the argument is integer 0 (strict comparison). |
one? | Return true if the argument is integer 1 (strict comparison). |
even? | Return true if the argument is even number (0, 2, 4, ...). |
odd? | Return true if the argument is odd number (1, 3, 5, ...). |
Constants
The following constants are defined by default:
Name | Value |
---|---|
DIRSEP | PHP constant DIRECTORY_SEPARATOR |
HOME | PHP constant $_SERVER['HOME'] |
EOL | PHP constant PHP_EOL |
PI | PHP constant M_PI |
__DIR__ | Directory of a file being evaluated using the special form load . Otherwise null. |
__FILE__ | Filename of a file being evaluated using the special form load . Otherwise null. |
Extending
The project is easy to extend because it is trivial to add new functions whether the implementation is defined on the PHP or Lisp side.