1
0
This commit is contained in:
2026-01-23 14:05:19 +08:00
parent 74b0f4ba55
commit f5d3229b7c
3 changed files with 92 additions and 110 deletions

View File

@@ -9,25 +9,25 @@ services:
- "${OLLAMA_PORT:-11434}:11434"
restart: "no"
ai-qdrant:
container_name: ai-qdrant
image: qdrant/qdrant
env_file: .env
ports:
- "${QDRANT_PORT:-6333}:6333"
volumes:
- ./.data/qdrant/storage:/qdrant/storage
restart: "no"
profiles: ["rag"]
# ai-qdrant:
# container_name: ai-qdrant
# image: qdrant/qdrant
# env_file: .env
# ports:
# - "${QDRANT_PORT:-6333}:6333"
# volumes:
# - ./.data/qdrant/storage:/qdrant/storage
# restart: "no"
# profiles: ["rag"]
ai-webui:
container_name: ai-webui
image: ghcr.io/open-webui/open-webui:main
env_file: .env
volumes:
- ./.data/webui:/app/backend/data
ports:
- "${OWEBUI_PORT:-9999}:8080"
extra_hosts:
- "host.docker.internal:host-gateway"
restart: "no"
# ai-webui:
# container_name: ai-webui
# image: ghcr.io/open-webui/open-webui:main
# env_file: .env
# volumes:
# - ./.data/webui:/app/backend/data
# ports:
# - "${OWEBUI_PORT:-9999}:8080"
# extra_hosts:
# - "host.docker.internal:host-gateway"
# restart: "no"

View File

@@ -8,7 +8,7 @@
cd ..; ./up; cd -
python3 -m venv .venv
source .venv/bin/activate
pip install beautifulsoup4 markdownify sentence-transformers qdrant-client langchain transformers
pip install beautifulsoup4 markdownify sentence-transformers qdrant-client langchain transformers ollama
pip install torch torchvision --index-url https://download.pytorch.org/whl/cpu
./download.sh 123456789 # <<== pageId страницы в Confluence
python3 convert.py
@@ -66,7 +66,7 @@ rag/
```bash
python3 -m venv .venv
source ./venv/bin/activate
pip install beautifulsoup4 markdownify sentence-transformers qdrant-client langchain transformers
pip install beautifulsoup4 markdownify sentence-transformers qdrant-client langchain transformers ollama
pip install torch torchvision --index-url https://download.pytorch.org/whl/cpu
```

View File

@@ -1,10 +1,9 @@
import os
import requests
import json
import time
import sys
from qdrant_client import QdrantClient
from sentence_transformers import SentenceTransformer, CrossEncoder
import ollama
DEFAULT_CHAT_MODEL = "openchat:7b"
DEFAULT_EMBED_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
@@ -38,33 +37,26 @@ class RagSystem:
self.qdrant_port = qdrant_port
self.chat_model = chat_model
self.emb_model = SentenceTransformer(embed_model)
self.qdrant = QdrantClient(host=args.qdrant_host, port=args.qdrant_port)
self.qdrant = QdrantClient(host=qdrant_host, port=qdrant_port)
self.use_rank = use_rank
if self.use_rank:
self.rank_model = CrossEncoder(rank_model)
self.conversation_history = []
self.ollama = ollama.Client(base_url=ollama_url)
def check_chat_model(self):
response = requests.get(f"{self.ollama_url}/api/tags")
if response.status_code != 200:
return False
for model in response.json().get("models", []):
if model["name"] == self.chat_model:
return True
return False
models = self.ollama.list()
return any(model.name == self.chat_model for model in models)
def install_chat_model(self, model: str = DEFAULT_CHAT_MODEL):
try:
response = requests.post(f"{self.ollama_url}/api/pull", json={"model": model})
if response.status_code == 200:
print(f"Модель {self.chat_model} установлена успешно")
else:
print(f"Ошибка установки модели: {response.text}")
result = self.ollama.pull(model)
print(f"Модель {model} установлена успешно")
except Exception as e:
print(f"Ошибка проверки модели: {str(e)}")
print(f"Ошибка установки модели: {str(e)}")
def load_chat_model(self):
requests.post(f"{self.ollama_url}/api/generate", json={"model": self.chat_model}, timeout=600)
self.ollama.generate(model=self.chat_model, keep_alive=True)
def search_qdrant(self, query: str, doc_count: int = DEFAULT_TOP_K, collection_name = DEFAULT_QDRANT_COLLECTION):
query_vec = self.emb_model.encode(query, show_progress_bar=False).tolist()
@@ -100,85 +92,71 @@ class RagSystem:
return ranked_docs[:top_n]
def generate_answer(self, sys_prompt: str, user_prompt: str):
url = f"{self.ollama_url}/api/generate"
body = {
"model": self.chat_model,
"system": sys_prompt,
"prompt": user_prompt,
"stream": False,
"options": {
"temperature": 0.5,
# "top_p": 0.2,
},
}
response = requests.post(url, json=body, timeout=900)
if response.status_code != 200:
return f"Ошибка генерации ответа: {response.status_code} {response.text}"
self.response = response.json()
return self.response["response"]
try:
with self.ollama.generate(
model=self.chat_model,
prompt=sys_prompt + "\n" + user_prompt,
options={
"temperature": 0.5,
},
stream=False,
) as generator:
response = next(generator)
if response.error:
raise RuntimeError(f"Ошибка генерации: {response.error}")
self.last_response = response
return response.output
except Exception as e:
print(f"Ошибка генерации ответа: {str(e)}")
return str(e)
def generate_answer_stream(self, sys_prompt: str, user_prompt: str):
url = f"{self.ollama_url}/api/generate"
body = {
"model": self.chat_model,
"system": sys_prompt,
"prompt": user_prompt,
"stream": True,
"options": {
"temperature": 0.5,
# "top_p": 0.2,
},
}
resp = requests.post(url, json=body, stream=True, timeout=900)
if resp.status_code != 200:
raise RuntimeError(f"Ошибка генерации ответа: {resp.status_code} {resp.text}")
answer = ""
self.response = None
for chunk in resp.iter_lines():
if chunk:
try:
decoded_chunk = chunk.decode('utf-8')
data = json.loads(decoded_chunk)
if "response" in data:
yield data["response"]
answer += data["response"]
if "done" in data and data["done"] is True:
self.response = data
break
elif "error" in data:
answer += f" | Ошибка стриминга ответа: {data['error']}"
break
except json.JSONDecodeError as e:
answer += f" | Ошибка конвертации чанка: {chunk.decode('utf-8')} - {e}"
except Exception as e:
answer += f" | Ошибка обработки чанка: {e}"
try:
generator = self.ollama.generate(
model=self.chat_model,
prompt=sys_prompt + "\n" + user_prompt,
options={
"temperature": 0.5,
},
stream=True,
)
answer = ""
for response in generator:
if response.data:
yield response.data
answer += response.data
if response.done:
self.last_response = response
break
return answer
except Exception as e:
print(f"Ошибка стриминга: {str(e)}")
return str(e)
def get_prompt_eval_count(self):
if not self.response:
if not hasattr(self, "last_response"):
return 0
return self.response["prompt_eval_count"]
return self.last_response.prompt_eval_count or 0
def get_prompt_eval_duration(self):
if not self.response:
if not hasattr(self, "last_response"):
return 0
return self.response["prompt_eval_duration"] / (10 ** 9)
return self.last_response.prompt_eval_duration / (10 ** 9)
def get_eval_count(self):
if not self.response:
if not hasattr(self, "last_response"):
return 0
return self.response["eval_count"]
return self.last_response.eval_count or 0
def get_eval_duration(self):
if not self.response:
if not hasattr(self, "last_response"):
return 0
return self.response["eval_duration"] / (10 ** 9)
return self.last_response.eval_duration / (10 ** 9)
def get_total_duration(self):
if not self.response:
if not hasattr(self, "last_response"):
return 0
return self.response["total_duration"] / (10 ** 9)
return self.last_response.total_duration / (10 ** 9)
def get_tps(self):
eval_count = self.get_eval_count()
@@ -360,19 +338,23 @@ Context:
def process_query(self, sys_prompt: str, user_prompt: str, streaming: bool = DEFAULT_STREAM):
answer = ""
# try:
if streaming:
self.print_v(text="\nГенерация потокового ответа (^C для остановки)...\n")
print(f"<<< ", end='', flush=True)
for token in self.rag.generate_answer_stream(sys_prompt, user_prompt):
answer += token
print(token, end='', flush=True)
try:
for token in self.rag.generate_answer_stream(sys_prompt, user_prompt):
answer += token
print(token, end='', flush=True)
except KeyboardInterrupt:
print("\n*** Генерация ответа прервана")
return answer
else:
self.print_v(text="\nГенерация ответа (^C для остановки)...\n")
answer = self.rag.generate_answer(sys_prompt, user_prompt)
print(f"<<< {answer}\n")
# except RuntimeError as e:
# answer = str(e)
try:
answer = self.rag.generate_answer(sys_prompt, user_prompt)
except KeyboardInterrupt:
print("\n*** Генерация ответа прервана")
return ""
print(f"\n===================================================")
return answer