youtubeUnblock/deps/cyclone/sha256.c

362 lines
10 KiB
C
Raw Permalink Normal View History

2024-09-21 19:13:32 +00:00
/**
* @file sha256.c
* @brief SHA-256 (Secure Hash Algorithm 256)
*
* @section License
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* Copyright (C) 2010-2024 Oryx Embedded SARL. All rights reserved.
*
* This file is part of CycloneCRYPTO Open.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* @section Description
*
* SHA-256 is a secure hash algorithm for computing a condensed representation
* of an electronic message. Refer to FIPS 180-4 for more details
*
* @author Oryx Embedded SARL (www.oryx-embedded.com)
* @version 2.4.4
**/
//Switch to the appropriate trace level
#define TRACE_LEVEL CRYPTO_TRACE_LEVEL
//Dependencies
#include "core/crypto.h"
#include "hash/sha256.h"
//Check crypto library configuration
#if (SHA224_SUPPORT == ENABLED || SHA256_SUPPORT == ENABLED)
//Macro to access the workspace as a circular buffer
#define W(n) w[(n) & 0x0F]
//SHA-256 auxiliary functions
#define CH(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define MAJ(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define SIGMA1(x) (ROR32(x, 2) ^ ROR32(x, 13) ^ ROR32(x, 22))
#define SIGMA2(x) (ROR32(x, 6) ^ ROR32(x, 11) ^ ROR32(x, 25))
#define SIGMA3(x) (ROR32(x, 7) ^ ROR32(x, 18) ^ SHR32(x, 3))
#define SIGMA4(x) (ROR32(x, 17) ^ ROR32(x, 19) ^ SHR32(x, 10))
//SHA-256 padding
static const uint8_t padding[64] =
{
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
//SHA-256 constants
static const uint32_t k[64] =
{
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
};
//SHA-256 object identifier (2.16.840.1.101.3.4.2.1)
const uint8_t SHA256_OID[9] = {0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01};
//Common interface for hash algorithms
const HashAlgo sha256HashAlgo =
{
"SHA-256",
SHA256_OID,
sizeof(SHA256_OID),
sizeof(Sha256Context),
SHA256_BLOCK_SIZE,
SHA256_DIGEST_SIZE,
SHA256_MIN_PAD_SIZE,
TRUE,
(HashAlgoCompute) sha256Compute,
(HashAlgoInit) sha256Init,
(HashAlgoUpdate) sha256Update,
(HashAlgoFinal) sha256Final,
#if ((defined(MIMXRT1050_CRYPTO_HASH_SUPPORT) && MIMXRT1050_CRYPTO_HASH_SUPPORT == ENABLED) || \
(defined(MIMXRT1060_CRYPTO_HASH_SUPPORT) && MIMXRT1060_CRYPTO_HASH_SUPPORT == ENABLED) || \
(defined(MIMXRT1160_CRYPTO_HASH_SUPPORT) && MIMXRT1160_CRYPTO_HASH_SUPPORT == ENABLED) || \
(defined(MIMXRT1170_CRYPTO_HASH_SUPPORT) && MIMXRT1170_CRYPTO_HASH_SUPPORT == ENABLED))
NULL,
#else
(HashAlgoFinalRaw) sha256FinalRaw
#endif
};
/**
* @brief Digest a message using SHA-256
* @param[in] data Pointer to the message being hashed
* @param[in] length Length of the message
* @param[out] digest Pointer to the calculated digest
* @return Error code
**/
__weak_func error_t sha256Compute(const void *data, size_t length, uint8_t *digest)
{
#if (CRYPTO_STATIC_MEM_SUPPORT == DISABLED)
Sha256Context *context;
#else
Sha256Context context[1];
#endif
//Check parameters
if(data == NULL && length != 0)
return ERROR_INVALID_PARAMETER;
if(digest == NULL)
return ERROR_INVALID_PARAMETER;
#if (CRYPTO_STATIC_MEM_SUPPORT == DISABLED)
//Allocate a memory buffer to hold the SHA-256 context
context = cryptoAllocMem(sizeof(Sha256Context));
//Failed to allocate memory?
if(context == NULL)
return ERROR_OUT_OF_MEMORY;
#endif
//Initialize the SHA-256 context
sha256Init(context);
//Digest the message
sha256Update(context, data, length);
//Finalize the SHA-256 message digest
sha256Final(context, digest);
#if (CRYPTO_STATIC_MEM_SUPPORT == DISABLED)
//Free previously allocated memory
cryptoFreeMem(context);
#endif
//Successful processing
return NO_ERROR;
}
/**
* @brief Initialize SHA-256 message digest context
* @param[in] context Pointer to the SHA-256 context to initialize
**/
__weak_func void sha256Init(Sha256Context *context)
{
//Set initial hash value
context->h[0] = 0x6A09E667;
context->h[1] = 0xBB67AE85;
context->h[2] = 0x3C6EF372;
context->h[3] = 0xA54FF53A;
context->h[4] = 0x510E527F;
context->h[5] = 0x9B05688C;
context->h[6] = 0x1F83D9AB;
context->h[7] = 0x5BE0CD19;
//Number of bytes in the buffer
context->size = 0;
//Total length of the message
context->totalSize = 0;
}
/**
* @brief Update the SHA-256 context with a portion of the message being hashed
* @param[in] context Pointer to the SHA-256 context
* @param[in] data Pointer to the buffer being hashed
* @param[in] length Length of the buffer
**/
__weak_func void sha256Update(Sha256Context *context, const void *data, size_t length)
{
size_t n;
//Process the incoming data
while(length > 0)
{
//The buffer can hold at most 64 bytes
n = MIN(length, 64 - context->size);
//Copy the data to the buffer
osMemcpy(context->buffer + context->size, data, n);
//Update the SHA-256 context
context->size += n;
context->totalSize += n;
//Advance the data pointer
data = (uint8_t *) data + n;
//Remaining bytes to process
length -= n;
//Process message in 16-word blocks
if(context->size == 64)
{
//Transform the 16-word block
sha256ProcessBlock(context);
//Empty the buffer
context->size = 0;
}
}
}
/**
* @brief Finish the SHA-256 message digest
* @param[in] context Pointer to the SHA-256 context
* @param[out] digest Calculated digest (optional parameter)
**/
__weak_func void sha256Final(Sha256Context *context, uint8_t *digest)
{
uint_t i;
size_t paddingSize;
uint64_t totalSize;
//Length of the original message (before padding)
totalSize = context->totalSize * 8;
//Pad the message so that its length is congruent to 56 modulo 64
if(context->size < 56)
{
paddingSize = 56 - context->size;
}
else
{
paddingSize = 64 + 56 - context->size;
}
//Append padding
sha256Update(context, padding, paddingSize);
//Append the length of the original message
context->w[14] = htobe32((uint32_t) (totalSize >> 32));
context->w[15] = htobe32((uint32_t) totalSize);
//Calculate the message digest
sha256ProcessBlock(context);
//Convert from host byte order to big-endian byte order
for(i = 0; i < 8; i++)
{
context->h[i] = htobe32(context->h[i]);
}
//Copy the resulting digest
if(digest != NULL)
{
osMemcpy(digest, context->digest, SHA256_DIGEST_SIZE);
}
}
/**
* @brief Finish the SHA-256 message digest (no padding added)
* @param[in] context Pointer to the SHA-256 context
* @param[out] digest Calculated digest
**/
__weak_func void sha256FinalRaw(Sha256Context *context, uint8_t *digest)
{
uint_t i;
//Convert from host byte order to big-endian byte order
for(i = 0; i < 8; i++)
{
context->h[i] = htobe32(context->h[i]);
}
//Copy the resulting digest
osMemcpy(digest, context->digest, SHA256_DIGEST_SIZE);
//Convert from big-endian byte order to host byte order
for(i = 0; i < 8; i++)
{
context->h[i] = betoh32(context->h[i]);
}
}
/**
* @brief Process message in 16-word blocks
* @param[in] context Pointer to the SHA-256 context
**/
__weak_func void sha256ProcessBlock(Sha256Context *context)
{
uint_t i;
uint32_t temp1;
uint32_t temp2;
//Initialize the 8 working registers
uint32_t a = context->h[0];
uint32_t b = context->h[1];
uint32_t c = context->h[2];
uint32_t d = context->h[3];
uint32_t e = context->h[4];
uint32_t f = context->h[5];
uint32_t g = context->h[6];
uint32_t h = context->h[7];
//Process message in 16-word blocks
uint32_t *w = context->w;
//Convert from big-endian byte order to host byte order
for(i = 0; i < 16; i++)
{
w[i] = betoh32(w[i]);
}
//SHA-256 hash computation (alternate method)
for(i = 0; i < 64; i++)
{
//Prepare the message schedule
if(i >= 16)
{
W(i) += SIGMA4(W(i + 14)) + W(i + 9) + SIGMA3(W(i + 1));
}
//Calculate T1 and T2
temp1 = h + SIGMA2(e) + CH(e, f, g) + k[i] + W(i);
temp2 = SIGMA1(a) + MAJ(a, b, c);
//Update working registers
h = g;
g = f;
f = e;
e = d + temp1;
d = c;
c = b;
b = a;
a = temp1 + temp2;
}
//Update the hash value
context->h[0] += a;
context->h[1] += b;
context->h[2] += c;
context->h[3] += d;
context->h[4] += e;
context->h[5] += f;
context->h[6] += g;
context->h[7] += h;
}
#endif