Archived
1
0
This repository has been archived on 2024-10-17. You can view files and clone it, but cannot push or open issues or pull requests.
winamp/Src/h264dec/ldecod/inc/global.h
2024-09-24 14:54:57 +02:00

1231 lines
39 KiB
C

/*!
************************************************************************
* \file
* global.h
* \brief
* global definitions for H.264 decoder.
* \author
* Copyright (C) 1999 Telenor Satellite Services,Norway
* Ericsson Radio Systems, Sweden
*
* Inge Lille-Langoy <inge.lille-langoy@telenor.com>
*
* Telenor Satellite Services
* Keysers gt.13 tel.: +47 23 13 86 98
* N-0130 Oslo,Norway fax.: +47 22 77 79 80
*
* Rickard Sjoberg <rickard.sjoberg@era.ericsson.se>
*
* Ericsson Radio Systems
* KI/ERA/T/VV
* 164 80 Stockholm, Sweden
*
************************************************************************
*/
#ifndef _GLOBAL_H_
#define _GLOBAL_H_
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <time.h>
#include <sys/timeb.h>
#include <bfc/platform/types.h>
#include "win32.h"
#include "defines.h"
#include "ifunctions.h"
#include "parsetcommon.h"
#include "types.h"
#include "frame.h"
#include "nalucommon.h"
#include "memcache.h"
#include <mmintrin.h>
#ifdef H264_IPP
//#include "../tools/staticlib/ipp_px.h"
#include "ippdefs.h"
#include "ippcore.h"
#include "ipps.h"
#include "ippi.h"
#include "ippvc.h"
#endif
/* benski> not the best place for this but it works for now */
#ifdef _M_IX86
// must be a multiple of 16
#pragma warning(disable: 4799)
static inline void memzero_cache32(void *dst, unsigned long i)
{
__asm {
pxor mm0, mm0
mov edi, dst
loopwrite:
movq 0[edi], mm0
movq 8[edi], mm0
movq 16[edi], mm0
movq 24[edi], mm0
lea edi, [edi+32]
sub i, 32
jg loopwrite
}
}
static inline void memzero_fast32(void *dst, unsigned long i)
{
__asm {
pxor mm0, mm0
mov edi, dst
loopwrite:
movntq 0[edi], mm0
movntq 8[edi], mm0
movntq 16[edi], mm0
movntq 24[edi], mm0
lea edi, [edi+32]
sub i, 32
jg loopwrite
}
}
static inline void memzero64(void *dst)
{
__asm {
pxor mm0, mm0
mov edi, dst
movq 0[edi], mm0
movq 8[edi], mm0
movq 16[edi], mm0
movq 24[edi], mm0
movq 32[edi], mm0
movq 40[edi], mm0
movq 48[edi], mm0
movq 56[edi], mm0
}
}
static inline void memzero128(void *dst)
{
__asm {
pxor mm0, mm0
mov edi, dst
movq 0[edi], mm0
movq 8[edi], mm0
movq 16[edi], mm0
movq 24[edi], mm0
movq 32[edi], mm0
movq 40[edi], mm0
movq 48[edi], mm0
movq 56[edi], mm0
movq 64[edi], mm0
movq 72[edi], mm0
movq 80[edi], mm0
movq 88[edi], mm0
movq 96[edi], mm0
movq 104[edi], mm0
movq 112[edi], mm0
movq 120[edi], mm0
}
}
static inline void memzero24(void *dst)
{
__asm {
pxor mm0, mm0
mov edi, dst
movq 0[edi], mm0
movq 8[edi], mm0
movq 16[edi], mm0
}
}
static inline void memzero48(void *dst)
{
__asm {
pxor mm0, mm0
mov edi, dst
movq 0[edi], mm0
movq 8[edi], mm0
movq 16[edi], mm0
movq 24[edi], mm0
movq 32[edi], mm0
movq 40[edi], mm0
}
}
static inline void memzero16(void *dst)
{
__asm {
pxor mm0, mm0
mov edi, dst
movq 0[edi], mm0
movq 8[edi], mm0
}
}
static inline void memzero8(void *dst)
{
__asm {
pxor mm0, mm0
mov edi, dst
movq 0[edi], mm0
}
}
static inline void memset_fast_end()
{
_mm_empty();
}
// Very optimized memcpy() routine for all AMD Athlon and Duron family.
// This code uses any of FOUR different basic copy methods, depending
// on the transfer size.
// NOTE: Since this code uses MOVNTQ (also known as "Non-Temporal MOV" or
// "Streaming Store"), and also uses the software prefetchnta instructions,
// be sure youre running on Athlon/Duron or other recent CPU before calling!
#define TINY_BLOCK_COPY 64 // upper limit for movsd type copy
// The smallest copy uses the X86 "movsd" instruction, in an optimized
// form which is an "unrolled loop".
#define IN_CACHE_COPY 64 * 1024 // upper limit for movq/movq copy w/SW prefetch
// Next is a copy that uses the MMX registers to copy 8 bytes at a time,
// also using the "unrolled loop" optimization. This code uses
// the software prefetch instruction to get the data into the cache.
#define UNCACHED_COPY 197 * 1024 // upper limit for movq/movntq w/SW prefetch
// For larger blocks, which will spill beyond the cache, its faster to
// use the Streaming Store instruction MOVNTQ. This write instruction
// bypasses the cache and writes straight to main memory. This code also
// uses the software prefetch instruction to pre-read the data.
// USE 64 * 1024 FOR THIS VALUE IF YOURE ALWAYS FILLING A "CLEAN CACHE"
#define BLOCK_PREFETCH_COPY infinity // no limit for movq/movntq w/block prefetch
#define CACHEBLOCK 80h // number of 64-byte blocks (cache lines) for block prefetch
// For the largest size blocks, a special technique called Block Prefetch
// can be used to accelerate the read operations. Block Prefetch reads
// one address per cache line, for a series of cache lines, in a short loop.
// This is faster than using software prefetch. The technique is great for
// getting maximum read bandwidth, especially in DDR memory systems.
// Inline assembly syntax for use with Visual C++
static void * memcpy_amd(void *dest, const void *src, size_t n)
{
__asm {
mov ecx, [n] // number of bytes to copy
mov edi, [dest] // destination
mov esi, [src] // source
mov ebx, ecx // keep a copy of count
cld
cmp ecx, TINY_BLOCK_COPY
jb $memcpy_ic_3 // tiny? skip mmx copy
cmp ecx, 32*1024 // dont align between 32k-64k because
jbe $memcpy_do_align // it appears to be slower
cmp ecx, 64*1024
jbe $memcpy_align_done
$memcpy_do_align:
mov ecx, 8 // a trick thats faster than rep movsb...
sub ecx, edi // align destination to qword
and ecx, 111b // get the low bits
sub ebx, ecx // update copy count
neg ecx // set up to jump into the array
add ecx, offset $memcpy_align_done
jmp ecx // jump to array of movsbs
align 4
movsb
movsb
movsb
movsb
movsb
movsb
movsb
movsb
$memcpy_align_done: // destination is dword aligned
mov ecx, ebx // number of bytes left to copy
shr ecx, 6 // get 64-byte block count
jz $memcpy_ic_2 // finish the last few bytes
cmp ecx, IN_CACHE_COPY/64 // too big 4 cache? use uncached copy
jae $memcpy_uc_test
// This is small block copy that uses the MMX registers to copy 8 bytes
// at a time. It uses the "unrolled loop" optimization, and also uses
// the software prefetch instruction to get the data into the cache.
align 16
$memcpy_ic_1: // 64-byte block copies, in-cache copy
prefetchnta [esi + (200*64/34+192)] // start reading ahead
movq mm0, [esi+0] // read 64 bits
movq mm1, [esi+8]
movq [edi+0], mm0 // write 64 bits
movq [edi+8], mm1 // note: the normal movq writes the
movq mm2, [esi+16] // data to cache// a cache line will be
movq mm3, [esi+24] // allocated as needed, to store the data
movq [edi+16], mm2
movq [edi+24], mm3
movq mm0, [esi+32]
movq mm1, [esi+40]
movq [edi+32], mm0
movq [edi+40], mm1
movq mm2, [esi+48]
movq mm3, [esi+56]
movq [edi+48], mm2
movq [edi+56], mm3
add esi, 64 // update source pointer
add edi, 64 // update destination pointer
dec ecx // count down
jnz $memcpy_ic_1 // last 64-byte block?
$memcpy_ic_2:
mov ecx, ebx // has valid low 6 bits of the byte count
$memcpy_ic_3:
shr ecx, 2 // dword count
and ecx, 1111b // only look at the "remainder" bits
neg ecx // set up to jump into the array
add ecx, offset $memcpy_last_few
jmp ecx // jump to array of movsds
$memcpy_uc_test:
cmp ecx, UNCACHED_COPY/64 // big enough? use block prefetch copy
jae $memcpy_bp_1
$memcpy_64_test:
or ecx, ecx // _tail end of block prefetch will jump here
jz $memcpy_ic_2 // no more 64-byte blocks left
// For larger blocks, which will spill beyond the cache, its faster to
// use the Streaming Store instruction MOVNTQ. This write instruction
// bypasses the cache and writes straight to main memory. This code also
// uses the software prefetch instruction to pre-read the data.
align 16
$memcpy_uc_1: // 64-byte blocks, uncached copy
prefetchnta [esi + (200*64/34+192)] // start reading ahead
movq mm0,[esi+0] // read 64 bits
add edi,64 // update destination pointer
movq mm1,[esi+8]
add esi,64 // update source pointer
movq mm2,[esi-48]
movntq [edi-64], mm0 // write 64 bits, bypassing the cache
movq mm0,[esi-40] // note: movntq also prevents the CPU
movntq [edi-56], mm1 // from READING the destination address
movq mm1,[esi-32] // into the cache, only to be over-written
movntq [edi-48], mm2 // so that also helps performance
movq mm2,[esi-24]
movntq [edi-40], mm0
movq mm0,[esi-16]
movntq [edi-32], mm1
movq mm1,[esi-8]
movntq [edi-24], mm2
movntq [edi-16], mm0
dec ecx
movntq [edi-8], mm1
jnz $memcpy_uc_1 // last 64-byte block?
jmp $memcpy_ic_2 // almost done
// For the largest size blocks, a special technique called Block Prefetch
// can be used to accelerate the read operations. Block Prefetch reads
// one address per cache line, for a series of cache lines, in a short loop.
// This is faster than using software prefetch, in this case.
// The technique is great for getting maximum read bandwidth,
// especially in DDR memory systems.
$memcpy_bp_1: // large blocks, block prefetch copy
cmp ecx, CACHEBLOCK // big enough to run another prefetch loop?
jl $memcpy_64_test // no, back to regular uncached copy
mov eax, CACHEBLOCK / 2 // block prefetch loop, unrolled 2X
add esi, CACHEBLOCK * 64 // move to the top of the block
align 16
$memcpy_bp_2:
mov edx, [esi-64] // grab one address per cache line
mov edx, [esi-128] // grab one address per cache line
sub esi, 128 // go reverse order
dec eax // count down the cache lines
jnz $memcpy_bp_2 // keep grabbing more lines into cache
mov eax, CACHEBLOCK // now that its in cache, do the copy
align 16
$memcpy_bp_3:
movq mm0, [esi ] // read 64 bits
movq mm1, [esi+ 8]
movq mm2, [esi+16]
movq mm3, [esi+24]
movq mm4, [esi+32]
movq mm5, [esi+40]
movq mm6, [esi+48]
movq mm7, [esi+56]
add esi, 64 // update source pointer
movntq [edi ], mm0 // write 64 bits, bypassing cache
movntq [edi+ 8], mm1 // note: movntq also prevents the CPU
movntq [edi+16], mm2 // from READING the destination address
movntq [edi+24], mm3 // into the cache, only to be over-written,
movntq [edi+32], mm4 // so that also helps performance
movntq [edi+40], mm5
movntq [edi+48], mm6
movntq [edi+56], mm7
add edi, 64 // update dest pointer
dec eax // count down
jnz $memcpy_bp_3 // keep copying
sub ecx, CACHEBLOCK // update the 64-byte block count
jmp $memcpy_bp_1 // keep processing chunks
// The smallest copy uses the X86 "movsd" instruction, in an optimized
// form which is an "unrolled loop". Then it handles the last few bytes.
align 4
movsd
movsd // perform last 1-15 dword copies
movsd
movsd
movsd
movsd
movsd
movsd
movsd
movsd // perform last 1-7 dword copies
movsd
movsd
movsd
movsd
movsd
movsd
$memcpy_last_few: // dword aligned from before movsds
mov ecx, ebx // has valid low 2 bits of the byte count
and ecx, 11b // the last few cows must come home
jz $memcpy_final // no more, lets leave
rep movsb // the last 1, 2, or 3 bytes
$memcpy_final:
// emms // clean up the MMX state
sfence // flush the write buffer
mov eax, [dest] // ret value = destination pointer
}
}
#elif defined(_M_X64)
static inline void memzero24(void *dst)
{
int32_t j;
int32_t *d = (int32_t *)dst;
for (j=0;j<24;j+=4)
{
d[j] = 0;
}
}
static inline void memset_fast_end() {}
#else
static inline void memzero_fast16(void *dst, unsigned long i)
{
int32_t j;
int32_t *d = (int32_t *)dst;
for (j=0;j<i;j+=4)
{
d[j] = 0;
}
}
static inline void memzero24(void *dst)
{
int32_t j;
int32_t *d = (int32_t *)dst;
for (j=0;j<24;j+=4)
{
d[j] = 0;
}
}
static inline void memset_fast_end() {}
#endif
#define UNDEFINED_REFERENCE ((int)0x80000000)
typedef int32_t h264_ref_t;
#define ET_SIZE 300 //!< size of error text buffer
extern char errortext[ET_SIZE]; //!< buffer for error message for exit with error()
extern int sse2_flag, mmx_flag, sse_flag, sse3_flag, sse4_1_flag;
/***********************************************************************
* T y p e d e f i n i t i o n s f o r J M
***********************************************************************
*/
typedef enum
{
LumaComp = 0,
CrComp = 1,
CbComp = 2
} Color_Component;
/***********************************************************************
* D a t a t y p e s f o r C A B A C
***********************************************************************
*/
typedef struct pix_pos
{
int available;
int mb_addr;
short x;
short y;
short pos_x;
short pos_y;
} PixelPos;
//! struct to characterize the state of the arithmetic coding engine
typedef struct
{
unsigned int Drange;
unsigned int Dvalue;
int DbitsLeft;
byte *Dcodestrm;
int *Dcodestrm_len;
} DecodingEnvironment;
typedef DecodingEnvironment *DecodingEnvironmentPtr;
typedef short MotionVector[2];
//! definition of motion parameters
typedef struct pic_motion
{
h264_ref_t ref_pic_id;
h264_ref_t ref_id;
MotionVector mv;
char ref_idx;
} PicMotion;
// TODO: benski> might be more efficient to make a [list][subblock_y][subblock_x] array of these values instead of parallel arrays
typedef struct motion_params
{
PicMotion **motion[2];
byte ** moving_block;
} MotionParams;
//! struct for context management
typedef struct
{
uint16_t state; // index into state-table CP
unsigned char MPS; // Least Probable Symbol 0/1 CP
unsigned char dummy; // for alignment
} BiContextType;
typedef BiContextType *BiContextTypePtr;
/**********************************************************************
* C O N T E X T S F O R T M L S Y N T A X E L E M E N T S
**********************************************************************
*/
#define NUM_MB_TYPE_CTX 11
#define NUM_B8_TYPE_CTX 9
#define NUM_MV_RES_CTX 10
#define NUM_REF_NO_CTX 6
#define NUM_DELTA_QP_CTX 4
#define NUM_MB_AFF_CTX 4
#define NUM_TRANSFORM_SIZE_CTX 3
// structures that will be declared somewhere else
struct storable_picture;
struct datapartition;
struct syntaxelement;
typedef struct
{
BiContextType mb_type_contexts [3][NUM_MB_TYPE_CTX];
BiContextType b8_type_contexts [2][NUM_B8_TYPE_CTX];
BiContextType mv_res_contexts [2][NUM_MV_RES_CTX];
BiContextType ref_no_contexts [2][NUM_REF_NO_CTX];
BiContextType delta_qp_contexts[NUM_DELTA_QP_CTX];
BiContextType mb_aff_contexts [NUM_MB_AFF_CTX];
} MotionInfoContexts;
#define NUM_IPR_CTX 2
#define NUM_CIPR_CTX 4
#define NUM_CBP_CTX 4
#define NUM_BCBP_CTX 4
#define NUM_MAP_CTX 15
#define NUM_LAST_CTX 15
#define NUM_ONE_CTX 5
#define NUM_ABS_CTX 5
typedef struct
{
BiContextType transform_size_contexts [NUM_TRANSFORM_SIZE_CTX];
BiContextType ipr_contexts [NUM_IPR_CTX];
BiContextType cipr_contexts[NUM_CIPR_CTX];
BiContextType cbp_contexts [3][NUM_CBP_CTX];
BiContextType bcbp_contexts[NUM_BLOCK_TYPES][NUM_BCBP_CTX];
BiContextType map_contexts [2][NUM_BLOCK_TYPES][NUM_MAP_CTX+1]; // +1 for better alignment
BiContextType last_contexts[2][NUM_BLOCK_TYPES][NUM_LAST_CTX+1]; // +1 for better alignment
BiContextType one_contexts [NUM_BLOCK_TYPES][NUM_ONE_CTX];
BiContextType abs_contexts [NUM_BLOCK_TYPES][NUM_ABS_CTX];
} TextureInfoContexts;
//*********************** end of data type definition for CABAC *******************
/***********************************************************************
* N e w D a t a t y p e s f o r T M L
***********************************************************************
*/
/*! Buffer structure for decoded reference picture marking commands */
typedef struct DecRefPicMarking_s
{
int memory_management_control_operation;
int difference_of_pic_nums_minus1;
int long_term_pic_num;
int long_term_frame_idx;
int max_long_term_frame_idx_plus1;
struct DecRefPicMarking_s *Next;
} DecRefPicMarking_t;
//! definition of pic motion parameters
typedef struct pic_motion_params2
{
h264_ref_t ref_pic_id; //!< reference picture identifier [list][subblock_y][subblock_x]
h264_ref_t ref_id; //!< reference picture identifier [list][subblock_y][subblock_x]
short mv[2]; //!< motion vector [list][subblock_x][subblock_y][component]
char ref_idx; //!< reference picture [list][subblock_y][subblock_x]
byte mb_field; //!< field macroblock indicator
byte field_frame; //!< indicates if co_located is field or frame.
} PicMotionParams2;
//! Macroblock
typedef struct macroblock
{
struct slice *p_Slice; //!< pointer to the current slice
struct img_par *p_Vid; //!< pointer to VideoParameters
struct inp_par *p_Inp;
int mbAddrX; //!< current MB address
int mb_x;
int mb_y;
int block_x;
int block_y;
int block_y_aff;
int pix_x;
int pix_y;
int pix_c_x;
int pix_c_y;
int subblock_x;
int subblock_y;
int qp; //!< QP luma
int qpc[2]; //!< QP chroma
int qp_scaled[MAX_PLANE]; //!< QP scaled for all comps.
Boolean is_lossless;
Boolean is_intra_block;
Boolean is_v_block;
short slice_nr;
short delta_quant; //!< for rate control
struct macroblock *mb_up; //!< pointer to neighboring MB (CABAC)
struct macroblock *mb_left; //!< pointer to neighboring MB (CABAC)
// some storage of macroblock syntax elements for global access
int mb_type;
short mvd[2][BLOCK_MULTIPLE][BLOCK_MULTIPLE][2]; //!< indices correspond to [forw,backw][block_y][block_x][x,y]
int cbp;
int64 cbp_blk [3];
int64 cbp_bits [3];
int64 cbp_bits_8x8[3];
int i16mode;
char b8mode[4];
char b8pdir[4];
char ei_flag; //!< error indicator flag that enables concealment
char dpl_flag; //!< error indicator flag that signals a missing data partition
char ipmode_DPCM;
short DFDisableIdc;
short DFAlphaC0Offset;
short DFBetaOffset;
char c_ipred_mode; //!< chroma intra prediction mode
Boolean mb_field;
int skip_flag;
int mb_addr_left, mb_addr_up, mb_addr_upper_right, mb_addr_upper_left;
Boolean mb_avail_left, mb_avail_up, mb_avail_upper_right, mb_avail_upper_left;
Boolean luma_transform_size_8x8_flag;
Boolean NoMbPartLessThan8x8Flag;
void (*itrans_8x8)(struct macroblock *currMB, ColorPlane pl, int ioff, int joff);
void (*GetMVPredictor) (struct macroblock *currMB, PixelPos *block,
short pmv[2], short ref_frame, struct pic_motion **motion, int mb_x, int mb_y, int blockshape_x, int blockshape_y);
int (*read_and_store_CBP_block_bit) (struct macroblock *currMB, DecodingEnvironmentPtr dep_dp, int type);
char (*readRefPictureIdx) (struct syntaxelement *currSE, struct datapartition *dP, int list);
} Macroblock;
//! Syntaxelement
typedef struct syntaxelement
{
int value1; //!< numerical value of syntax element
int value2; //!< for blocked symbols, e.g. run/level
int len; //!< length of code
//int inf; //!< info part of CAVLC code
#if TRACE
#define TRACESTRING_SIZE 100 //!< size of trace string
char tracestring[TRACESTRING_SIZE]; //!< trace string
#endif
//! for mapping of CAVLC to syntaxElement
void (*mapping)(int len, int info, int *value1, int *value2);
} SyntaxElement;
//! Bitstream
typedef struct
{
// CABAC Decoding
int read_len; //!< actual position in the codebuffer, CABAC only
int code_len; //!< overall codebuffer length, CABAC only
// CAVLC Decoding
int frame_bitoffset; //!< actual position in the codebuffer, bit-oriented, CAVLC only
int bitstream_length; //!< over codebuffer lnegth, byte oriented, CAVLC only
byte *streamBuffer; //!< actual codebuffer for read bytes
} Bitstream;
/* === 4x4 block typedefs === */
// 32 bit precision
typedef int h264_int_block_row_t[BLOCK_SIZE];
typedef h264_int_block_row_t h264_int_block_t[BLOCK_SIZE];
// 16 bit precision
typedef int16_t h264_short_block_row_t[BLOCK_SIZE];
typedef h264_short_block_row_t h264_short_block_t[BLOCK_SIZE];
// 8 bit precision
/* === 8x8 block typedefs === */
// 32 bit precision
typedef int h264_int_8x8block_row_t[BLOCK_SIZE_8x8];
typedef h264_int_8x8block_row_t h264_int_8x8block_t[BLOCK_SIZE_8x8];
// 16 bit precision
typedef int16_t h264_short_8x8block_row_t[BLOCK_SIZE_8x8];
typedef h264_short_8x8block_row_t h264_short_8x8block_t[BLOCK_SIZE_8x8];
// 8 bit precision
typedef imgpel h264_imgpel_8x8block_row_t[BLOCK_SIZE_8x8];
typedef h264_imgpel_8x8block_row_t h264_imgpel_8x8block_t[BLOCK_SIZE_8x8];
/* === 16x16 block typedefs === */
// 32 bit precision
typedef int h264_int_macroblock_row_t[MB_BLOCK_SIZE];
typedef h264_int_macroblock_row_t h264_int_macroblock_t[MB_BLOCK_SIZE];
// 16 bit precision
typedef int16_t h264_short_macroblock_row_t[MB_BLOCK_SIZE];
typedef h264_short_macroblock_row_t h264_short_macroblock_t[MB_BLOCK_SIZE];
// 8 bit precision
typedef imgpel h264_imgpel_macroblock_row_t[MB_BLOCK_SIZE];
typedef h264_imgpel_macroblock_row_t h264_imgpel_macroblock_t[MB_BLOCK_SIZE];
typedef int h264_pic_position[2];
typedef byte h264_4x4_byte[BLOCK_SIZE][BLOCK_SIZE];
typedef h264_4x4_byte h264_nz_coefficient[3];
//! DataPartition
typedef struct datapartition
{
Bitstream *bitstream;
DecodingEnvironment de_cabac;
} DataPartition;
//! Slice
typedef struct slice
{
struct img_par *p_Vid;
struct inp_par *p_Inp;
pic_parameter_set_rbsp_t *active_pps;
seq_parameter_set_rbsp_t *active_sps;
struct colocated_params *p_colocated;
struct colocated_params *Co_located_JV[MAX_PLANE]; //!< p_colocated to be used during 4:4:4 independent mode decoding
int mb_aff_frame_flag;
int direct_spatial_mv_pred_flag; //!< Indicator for direct mode type (1 for Spatial, 0 for Temporal)
int num_ref_idx_l0_active; //!< number of available list 0 references
int num_ref_idx_l1_active; //!< number of available list 1 references
int qp;
int slice_qp_delta;
int qs;
int slice_qs_delta;
int slice_type; //!< slice type
int model_number; //!< cabac model number
PictureStructure structure; //!< Identify picture structure type
int start_mb_nr; //!< MUST be set by NAL even in case of ei_flag == 1
int max_part_nr;
int dp_mode; //!< data partitioning mode
int last_dquant;
// int last_mb_nr; //!< only valid when entropy coding == CABAC
DataPartition *partArr; //!< array of partitions
MotionInfoContexts *mot_ctx; //!< pointer to struct of context models for use in CABAC
TextureInfoContexts *tex_ctx; //!< pointer to struct of context models for use in CABAC
int mvscale[6][MAX_REFERENCE_PICTURES];
int ref_pic_list_reordering_flag_l0;
int *reordering_of_pic_nums_idc_l0;
int *abs_diff_pic_num_minus1_l0;
int *long_term_pic_idx_l0;
int ref_pic_list_reordering_flag_l1;
int *reordering_of_pic_nums_idc_l1;
int *abs_diff_pic_num_minus1_l1;
int *long_term_pic_idx_l1;
short DFDisableIdc; //!< Disable deblocking filter on slice
short DFAlphaC0Offset; //!< Alpha and C0 offset for filtering slice
short DFBetaOffset; //!< Beta offset for filtering slice
int pic_parameter_set_id; //!<the ID of the picture parameter set the slice is reffering to
int dpB_NotPresent; //!< non-zero, if data partition B is lost
int dpC_NotPresent; //!< non-zero, if data partition C is lost
__declspec(align(32)) h264_imgpel_macroblock_t mb_pred[MAX_PLANE];
__declspec(align(32)) h264_imgpel_macroblock_t mb_rec[MAX_PLANE];
__declspec(align(32)) union
{
__declspec(align(32)) h264_short_8x8block_t mb_rres8[MAX_PLANE][4];
__declspec(align(32)) h264_short_macroblock_t cof[MAX_PLANE];
__declspec(align(32)) h264_short_block_t cof4[MAX_PLANE][16]; // TODO: get this to work, one of these days
__declspec(align(32)) h264_short_macroblock_t ipcm[MAX_PLANE];
};
int cofu[16];
// Scaling matrix info
int InvLevelScale4x4_Intra[3][6][4][4];
int InvLevelScale4x4_Inter[3][6][4][4];
int InvLevelScale8x8_Intra[3][6][64];
int InvLevelScale8x8_Inter[3][6][64];
int *qmatrix[12];
// Cabac
// TODO: we could optimize coefficient reading by storing the levels/runs instead of coefficients
int16_t coeff[64]; // one more for EOB
int coeff_ctr;
int pos;
//weighted prediction
unsigned int apply_weights;
unsigned int luma_log2_weight_denom;
unsigned int chroma_log2_weight_denom;
int wp_weight[2][MAX_REFERENCE_PICTURES][3]; // weight in [list][index][component] order
int wp_offset[6][MAX_REFERENCE_PICTURES][3]; // offset in [list][index][component] order
int wbp_weight[6][MAX_REFERENCE_PICTURES][MAX_REFERENCE_PICTURES][3]; //weight in [list][fw_index][bw_index][component] order
int wp_round_luma;
int wp_round_chroma;
void (*read_CBP_and_coeffs_from_NAL) (Macroblock *currMB);
int (*decode_one_component ) (Macroblock *currMB, ColorPlane curr_plane, struct video_image *image, struct storable_picture *dec_picture);
int (*readSlice ) (struct img_par *, struct inp_par *);
int (*nal_startcode_follows ) (struct slice*, int );
void (*read_motion_info_from_NAL) (Macroblock *currMB);
void (*read_one_macroblock ) (Macroblock *currMB);
void (*interpret_mb_mode ) (Macroblock *currMB);
void (*compute_colocated ) (struct slice *currSlice, struct colocated_params *p, struct storable_picture **listX[6]);
void (*linfo_cbp_intra) (int len,int info,int *cbp, int *dummy);
void (*linfo_cbp_inter) (int len,int info,int *cbp, int *dummy);
} Slice;
//****************************** ~DM ***********************************
// image parameters
typedef struct img_par
{
struct inp_par *p_Inp;
pic_parameter_set_rbsp_t *active_pps;
seq_parameter_set_rbsp_t *active_sps;
seq_parameter_set_rbsp_t SeqParSet[MAXSPS];
pic_parameter_set_rbsp_t PicParSet[MAXPPS];
struct sei_params *p_SEI;
struct old_slice_par *old_slice;
int number; //!< frame number
unsigned int current_mb_nr; // bitstream order
unsigned int num_dec_mb;
short current_slice_nr;
int *intra_block;
int qp; //!< quant for the current frame
int sp_switch; //!< 1 for switching sp, 0 for normal sp
int type; //!< image type INTER/INTRA
int width;
int height;
int width_cr; //!< width chroma
int height_cr; //!< height chroma
int mb_x;
int mb_y;
int block_x;
int block_y;
int pix_c_x;
int pix_c_y;
int allrefzero;
byte **ipredmode; //!< prediction type [90][74]
h264_nz_coefficient *nz_coeff;
int **siblock;
int cod_counter; //!< Current count of number of skipped macroblocks in a row
int structure; //!< Identify picture structure type
Slice *currentSlice; //!< pointer to current Slice data struct
Macroblock *mb_data; //!< array containing all MBs of a whole frame
Macroblock *mb_data_JV[MAX_PLANE]; //!< mb_data to be used for 4:4:4 independent mode
int colour_plane_id; //!< colour_plane_id of the current coded slice
int ChromaArrayType;
// For MB level frame/field coding
int mb_aff_frame_flag;
// for signalling to the neighbour logic that this is a deblocker call
int DeblockCall;
byte mixedModeEdgeFlag;
// picture error concealment
// concealment_head points to first node in list, concealment_end points to
// last node in list. Initialize both to NULL, meaning no nodes in list yet
struct concealment_node *concealment_head;
struct concealment_node *concealment_end;
DecRefPicMarking_t *dec_ref_pic_marking_buffer; //!< stores the memory management control operations
int num_ref_idx_l0_active; //!< number of forward reference
int num_ref_idx_l1_active; //!< number of backward reference
int slice_group_change_cycle;
int redundant_pic_cnt;
unsigned int pre_frame_num; //!< store the frame_num in the last decoded slice. For detecting gap in frame_num.
int non_conforming_stream;
// End JVT-D101
// POC200301: from unsigned int to int
int toppoc; //poc for this top field // POC200301
int bottompoc; //poc of bottom field of frame
int framepoc; //poc of this frame // POC200301
unsigned int frame_num; //frame_num for this frame
unsigned int field_pic_flag;
byte bottom_field_flag;
//the following is for slice header syntax elements of poc
// for poc mode 0.
unsigned int pic_order_cnt_lsb;
int delta_pic_order_cnt_bottom;
// for poc mode 1.
int delta_pic_order_cnt[3];
// ////////////////////////
// for POC mode 0:
signed int PrevPicOrderCntMsb;
unsigned int PrevPicOrderCntLsb;
signed int PicOrderCntMsb;
// for POC mode 1:
unsigned int AbsFrameNum;
signed int ExpectedPicOrderCnt, PicOrderCntCycleCnt, FrameNumInPicOrderCntCycle;
unsigned int PreviousFrameNum, FrameNumOffset;
int ExpectedDeltaPerPicOrderCntCycle;
int PreviousPOC, ThisPOC;
int PreviousFrameNumOffset;
// /////////////////////////
int idr_flag;
int nal_reference_idc; //!< nal_reference_idc from NAL unit
int idr_pic_id;
int MaxFrameNum;
unsigned int PicWidthInMbs;
unsigned int PicHeightInMapUnits;
unsigned int FrameHeightInMbs;
unsigned int PicHeightInMbs;
unsigned int PicSizeInMbs;
unsigned int FrameSizeInMbs;
unsigned int oldFrameSizeInMbs;
int no_output_of_prior_pics_flag;
int long_term_reference_flag;
int adaptive_ref_pic_buffering_flag;
int last_has_mmco_5;
int last_pic_bottom_field;
// Fidelity Range Extensions Stuff
short bitdepth_luma;
short bitdepth_chroma;
int bitdepth_scale[2];
int bitdepth_luma_qp_scale;
int bitdepth_chroma_qp_scale;
unsigned int dc_pred_value_comp[MAX_PLANE]; //!< component value for DC prediction (depends on component pel bit depth)
int max_pel_value_comp[MAX_PLANE]; //!< max value that one picture element (pixel) can take (depends on pic_unit_bitdepth)
int Transform8x8Mode;
int profile_idc;
int yuv_format;
int lossless_qpprime_flag;
int num_blk8x8_uv;
int num_uv_blocks;
int num_cdc_coeff;
int mb_cr_size_x;
int mb_cr_size_y;
int mb_cr_size_x_blk;
int mb_cr_size_y_blk;
int mb_size[3][2]; //!< component macroblock dimensions
int mb_size_blk[3][2]; //!< component macroblock dimensions
int mb_size_shift[3][2];
int subpel_x;
int subpel_y;
int shiftpel_x;
int shiftpel_y;
int max_vmv_r; //!< maximum vertical motion vector range in luma quarter frame pixel units for the current level_idc
int max_mb_vmv_r; //!< maximum vertical motion vector range in luma quarter pixel units for the current level_idc
// picture error concealment
int last_ref_pic_poc;
int ref_poc_gap;
int poc_gap;
int earlier_missing_poc;
unsigned int frame_to_conceal;
int IDR_concealment_flag;
int conceal_slice_type;
// random access point decoding
int recovery_point;
int recovery_point_found;
int recovery_frame_cnt;
int recovery_frame_num;
int recovery_poc;
int separate_colour_plane_flag;
int frame_number;
int init_bl_done;
// Redundant slices. Should be moved to another structure and allocated only if extended profile
unsigned int previous_frame_num; //!< frame number of previous slice
int ref_flag[17]; //!< 0: i-th previous frame is incorrect
//!< non-zero: i-th previous frame is correct
int Is_primary_correct; //!< if primary frame is correct, 0: incorrect
int Is_redundant_correct; //!< if redundant frame is correct, 0:incorrect
int redundant_slice_ref_idx; //!< reference index of redundant slice
//FILE *p_log; //!< SNR file
int LastAccessUnitExists;
int NALUCount;
Boolean global_init_done;
int *qp_per_matrix;
int *qp_rem_matrix;
struct frame_store *last_out_fs;
int pocs_in_dpb[100];
struct storable_picture *dec_picture;
struct storable_picture *dec_picture_JV[MAX_PLANE]; //!< dec_picture to be used during 4:4:4 independent mode decoding
struct storable_picture *no_reference_picture; //!< dummy storable picture for recovery point
struct storable_picture **listX[6];
// Error parameters
struct object_buffer *erc_object_list;
struct ercVariables_s *erc_errorVar;
int erc_mvperMB;
struct img_par *erc_img;
int ec_flag[SE_MAX_ELEMENTS]; //!< array to set errorconcealment
struct memory_input_struct *mem_input;
struct frame_store *out_buffer;
struct storable_picture *pending_output;
int pending_output_state;
int recovery_flag;
// dpb
struct decoded_picture_buffer *p_Dpb;
char listXsize[6];
// report
char cslice_type[9];
// FMO
int *MbToSliceGroupMap;
int *MapUnitToSliceGroupMap;
int NumberOfSliceGroups; // the number of slice groups -1 (0 == scan order, 7 == maximum)
#if (ENABLE_OUTPUT_TONEMAPPING)
struct tone_mapping_struct_s *seiToneMapping;
#endif
// benski> buffer of storablge pictures ready for output.
// might be able to optimize a tad by making a ringbuffer, but i doubt it matters
struct storable_picture **out_pictures;
size_t size_out_pictures;
size_t num_out_pictures;
ImageCache image_cache[2]; // [0] is luma [1] is chroma (shared for both planes)
MotionCache motion_cache;
h264_pic_position *PicPos; //! Helper array to access macroblock positions.
NALU_t *nalu; // a cache so we don't re-alloc every time
void (*getNeighbour) (const Macroblock *currMB, int xN, int yN, const int mb_size[2], PixelPos *pix);
void (*getNeighbourPX_NoPos)(const Macroblock *currMB, int xN, int yN, const int mb_size[2], PixelPos *pix);
void (*getNeighbourXP_NoPos)(const Macroblock *currMB, int xN, int yN, const int mb_size[2], PixelPos *pix);
void (*getNeighbourLuma) (const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*getNeighbourPXLuma) (const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*getNeighbourXPLuma) (const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*getNeighbourLeftLuma)(const Macroblock *currMB, PixelPos *pix);
void (*getNeighbourNXLuma) (const Macroblock *currMB, int yN, PixelPos *pix); // xN<0, yN full range
void (*getNeighbourLeft) (const Macroblock *currMB, const int mb_size[2], PixelPos *pix); // xN<0, yN=0
void (*getNeighbourUp) (const Macroblock *currMB, const int mb_size[2], PixelPos *pix); // xN=0, yN<0
void (*getNeighbourNX) (const Macroblock *currMB, int yN, const int mb_size[2], PixelPos *pix); // xN<0, yN full range
void (*getNeighbourNP) (const Macroblock *currMB, int yN, const int mb_size[2], PixelPos *pix); // xN<0, yN>=0
void (*getNeighbourNPChromaNB)(const Macroblock *currMB, int yN, const int mb_size[2], PixelPos *pix); // xN<0, yN>=0
void (*getNeighbour0X) (const Macroblock *currMB, int yN, const int mb_size[2], PixelPos *pix); // xN=0, yN full range
void (*getNeighbour0XLuma) (const Macroblock *currMB, int yN, PixelPos *pix); // xN=0, yN full range
void (*getNeighbourX0) (const Macroblock *currMB, int xN, const int mb_size[2], PixelPos *pix); // xN full range, yN = 0
void (*getNeighbourUpLuma) (const Macroblock *currMB, PixelPos *pix); // xN=0, yN<0
void (*getNeighbourNPLumaNB)(const Macroblock *currMB, int yN, PixelPos *pix);
void (*getNeighbourPXLumaNB) (const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*getNeighbourPXLumaNB_NoPos)(const Macroblock *currMB, int yN, PixelPos *pix);
void (*getNeighbourPPLumaNB) (const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*getNeighbourXPLumaNB) (const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*getNeighbourXPLumaNB_NoPos)(const Macroblock *currMB, int xN, int yN, PixelPos *pix);
void (*get_mb_block_pos) (const h264_pic_position *PicPos, int mb_addr, short *x, short *y);
void (*GetStrength) (byte Strength[16], Macroblock *MbQ, int dir,int edge, int mvlimit, struct storable_picture *p);
void (*EdgeLoopLuma) (ColorPlane pl, struct video_image *image, const byte Strength[16], Macroblock *MbQ, int dir, int edge, struct storable_picture *p);
void (*EdgeLoopChroma) (struct video_image *image, byte Strength[16], Macroblock *MbQ, int dir, int edge, int uv, struct storable_picture *p);
} VideoParameters;
// input parameters from configuration file
typedef struct inp_par
{
int intra_profile_deblocking; //!< Loop filter usage determined by flags and parameters in bitstream
// Output sequence format related variables
FrameFormat output; //!< output related information
#ifdef _LEAKYBUCKET_
unsigned long R_decoder; //!< Decoder Rate in HRD Model
unsigned long B_decoder; //!< Decoder Buffer size in HRD model
unsigned long F_decoder; //!< Decoder Initial buffer fullness in HRD model
char LeakyBucketParamFile[FILE_NAME_SIZE]; //!< LeakyBucketParamFile
#endif
// picture error concealment
int ref_poc_gap;
int poc_gap;
} InputParameters;
typedef struct old_slice_par
{
unsigned field_pic_flag;
unsigned frame_num;
int nal_ref_idc;
unsigned pic_oder_cnt_lsb;
int delta_pic_oder_cnt_bottom;
int delta_pic_order_cnt[2];
byte bottom_field_flag;
byte idr_flag;
int idr_pic_id;
int pps_id;
} OldSliceParams;
typedef struct decoder_params
{
InputParameters *p_Inp; //!< Input Parameters
VideoParameters *p_Vid; //!< Image Parameters
} DecoderParams;
#ifdef TRACE
extern FILE *p_trace; //!< Trace file
extern int bitcounter;
#endif
// prototypes
extern void error(char *text, int code);
// dynamic mem allocation
extern int init_global_buffers(VideoParameters *p_Vid);
extern void free_global_buffers(VideoParameters *p_Vid);
extern int RBSPtoSODB(byte *streamBuffer, int last_byte_pos);
extern int EBSPtoRBSP(byte *streamBuffer, int end_bytepos);
void FreePartition (DataPartition *dp, int n);
DataPartition *AllocPartition(int n);
void tracebits(const char *trace_str, int len, int info,int value1);
void tracebits2(const char *trace_str, int len, int info);
unsigned CeilLog2 ( unsigned uiVal);
unsigned CeilLog2_sf( unsigned uiVal);
// For 4:4:4 independent mode
extern void change_plane_JV( VideoParameters *p_Vid, int nplane );
extern void make_frame_picture_JV(VideoParameters *p_Vid);
#endif