Archived
1
0
This repository has been archived on 2024-10-17. You can view files and clone it, but cannot push or open issues or pull requests.
winamp/Src/external_dependencies/openmpt-trunk/include/r8brain/r8bbase.h
2024-09-24 14:54:57 +02:00

1207 lines
28 KiB
C++
Vendored

//$ nobt
/**
* @file r8bbase.h
*
* @brief The "base" inclusion file with basic classes and functions.
*
* This is the "base" inclusion file for the "r8brain-free-src" sample rate
* converter. This inclusion file contains implementations of several small
* utility classes and functions used by the library.
*
* @mainpage
*
* @section intro_sec Introduction
*
* Open source (under the MIT license) high-quality professional audio sample
* rate converter (SRC) (resampling) library. Features routines for SRC, both
* up- and downsampling, to/from any sample rate, including non-integer sample
* rates: it can be also used for conversion to/from SACD sample rate and even
* go beyond that. SRC routines were implemented in multi-platform C++ code,
* and have a high level of optimality.
*
* For more information, please visit
* https://github.com/avaneev/r8brain-free-src
*
* @section license License
*
* The MIT License (MIT)
*
* r8brain-free-src Copyright (c) 2013-2022 Aleksey Vaneev
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Please credit the creator of this library in your documentation in the
* following way: "Sample rate converter designed by Aleksey Vaneev of
* Voxengo"
*
* @version 5.6
*/
#ifndef R8BBASE_INCLUDED
#define R8BBASE_INCLUDED
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "r8bconf.h"
#if defined( _WIN32 )
#include <windows.h>
#else // defined( _WIN32 )
#include <pthread.h>
#endif // defined( _WIN32 )
#if defined( __SSE4_2__ ) || defined( __SSE4_1__ ) || \
defined( __SSSE3__ ) || defined( __SSE3__ ) || defined( __SSE2__ ) || \
defined( __x86_64__ ) || defined( _M_AMD64 ) || defined( _M_X64 ) || \
defined( __amd64 )
#include <immintrin.h>
#define R8B_SSE2
#define R8B_SIMD_ISH
#elif defined( __aarch64__ ) || defined( __arm64__ ) || defined( __ARM_NEON )
#include <arm_neon.h>
#define R8B_NEON
#if !defined( __APPLE__ )
#define R8B_SIMD_ISH // Shuffled interpolation is inefficient on M1.
#endif // !defined( __APPLE__ )
#endif // ARM64
/**
* @brief The "r8brain-free-src" library namespace.
*
* The "r8brain-free-src" sample rate converter library namespace.
*/
namespace r8b {
/**
* Macro defines r8brain-free-src version string.
*/
#define R8B_VERSION "5.6"
/**
* The macro equals to "pi" constant, fits 53-bit floating point mantissa.
*/
#define R8B_PI 3.14159265358979324
/**
* The R8B_2PI macro equals to "2 * pi" constant, fits 53-bit floating point
* mantissa.
*/
#define R8B_2PI 6.28318530717958648
/**
* The R8B_3PI macro equals to "3 * pi" constant, fits 53-bit floating point
* mantissa.
*/
#define R8B_3PI 9.42477796076937972
/**
* The R8B_PId2 macro equals to "pi divided by 2" constant, fits 53-bit
* floating point mantissa.
*/
#define R8B_PId2 1.57079632679489662
/**
* A special macro that defines empty copy-constructor and copy operator with
* the "private:" prefix. This macro should be used in classes that cannot be
* copied in a standard C++ way.
*
* This macro does not need to be defined in classes derived from a class
* where such macro was already used.
*
* @param ClassName The name of the class which uses this macro.
*/
#define R8BNOCTOR( ClassName ) \
private: \
ClassName( const ClassName& ) { } \
ClassName& operator = ( const ClassName& ) { return( *this ); }
/**
* @brief The default base class for objects created on heap.
*
* Class that implements "new" and "delete" operators that use standard
* malloc() and free() functions.
*/
class CStdClassAllocator
{
public:
/**
* @param n The size of the object, in bytes.
* @param p Pointer to object's pre-allocated memory block.
* @return Pointer to object.
*/
void* operator new( size_t, void* p )
{
return( p );
}
/**
* @param n The size of the object, in bytes.
* @return Pointer to the allocated memory block for the object.
*/
void* operator new( size_t n )
{
return( :: malloc( n ));
}
/**
* @param n The size of the object, in bytes.
* @return Pointer to the allocated memory block for the object.
*/
void* operator new[]( size_t n )
{
return( :: malloc( n ));
}
/**
* Operator frees a previously allocated memory block for the object.
*
* @param p Pointer to the allocated memory block for the object.
*/
void operator delete( void* p )
{
:: free( p );
}
/**
* Operator frees a previously allocated memory block for the object.
*
* @param p Pointer to the allocated memory block for the object.
*/
void operator delete[]( void* p )
{
:: free( p );
}
};
/**
* @brief The default base class for objects that allocate blocks of memory.
*
* Memory buffer allocator that uses "stdlib" standard memory functions.
*/
class CStdMemAllocator : public CStdClassAllocator
{
public:
/**
* Function allocates memory block.
*
* @param Size The size of the block, in bytes.
* @result The pointer to the allocated block.
*/
static void* allocmem( const size_t Size )
{
return( :: malloc( Size ));
}
/**
* Function reallocates a previously allocated memory block.
*
* @param p Pointer to the allocated block, can be NULL.
* @param Size The new size of the block, in bytes.
* @result The pointer to the (re)allocated block.
*/
static void* reallocmem( void* p, const size_t Size )
{
return( :: realloc( p, Size ));
}
/**
* Function frees a previously allocated memory block.
*
* @param p Pointer to the allocated block, can be NULL.
*/
static void freemem( void* p )
{
:: free( p );
}
};
/**
* This function forces the provided "ptr" pointer to be aligned to
* "align" bytes. Works with power-of-2 alignments only.
*
* @param ptr Pointer to align.
* @param align Alignment, in bytes, power-of-2.
* @tparam T Pointer's element type.
*/
template< typename T >
inline T* alignptr( T* const ptr, const uintptr_t align )
{
return( (T*) (( (uintptr_t) ptr + align - 1 ) & ~( align - 1 )));
}
/**
* @brief Templated memory buffer class for element buffers of fixed capacity.
*
* Fixed memory buffer object. Supports allocation of a fixed amount of
* memory. Does not store buffer's capacity - the user should know the actual
* capacity of the buffer. Does not feature "internal" storage, memory is
* always allocated via the R8B_MEMALLOCCLASS class's functions. Thus the
* object of this class can be moved in memory.
*
* This class manages memory space only - it does not perform element class
* construction nor destruction operations.
*
* This class applies 64-byte memory address alignment to the allocated data
* block.
*
* @tparam T The type of the stored elements (e.g. "double").
*/
template< typename T >
class CFixedBuffer : public R8B_MEMALLOCCLASS
{
R8BNOCTOR( CFixedBuffer );
public:
CFixedBuffer()
: Data0( NULL )
, Data( NULL )
{
}
/**
* Constructor allocates memory so that the specified number of elements
* of type T can be stored in *this buffer object.
*
* @param Capacity Storage for this number of elements to allocate.
*/
CFixedBuffer( const int Capacity )
{
R8BASSERT( Capacity > 0 || Capacity == 0 );
Data0 = allocmem( Capacity * sizeof( T ) + Alignment );
Data = (T*) alignptr( Data0, Alignment );
R8BASSERT( Data0 != NULL || Capacity == 0 );
}
~CFixedBuffer()
{
freemem( Data0 );
}
/**
* Function allocates memory so that the specified number of elements of
* type T can be stored in *this buffer object.
*
* @param Capacity Storage for this number of elements to allocate.
*/
void alloc( const int Capacity )
{
R8BASSERT( Capacity > 0 || Capacity == 0 );
freemem( Data0 );
Data0 = allocmem( Capacity * sizeof( T ) + Alignment );
Data = (T*) alignptr( Data0, Alignment );
R8BASSERT( Data0 != NULL || Capacity == 0 );
}
/**
* Function reallocates memory so that the specified number of elements of
* type T can be stored in *this buffer object. Previously allocated data
* is copied to the new memory buffer.
*
* @param PrevCapacity Previous capacity of *this buffer.
* @param NewCapacity Storage for this number of elements to allocate.
*/
void realloc( const int PrevCapacity, const int NewCapacity )
{
R8BASSERT( PrevCapacity >= 0 );
R8BASSERT( NewCapacity >= 0 );
void* const NewData0 = allocmem( NewCapacity * sizeof( T ) +
Alignment );
T* const NewData = (T*) alignptr( NewData0, Alignment );
const size_t CopySize = ( PrevCapacity > NewCapacity ?
NewCapacity : PrevCapacity ) * sizeof( T );
if( CopySize > 0 )
{
memcpy( NewData, Data, CopySize );
}
freemem( Data0 );
Data0 = NewData0;
Data = NewData;
R8BASSERT( Data0 != NULL || NewCapacity == 0 );
}
/**
* Function deallocates a previously allocated buffer.
*/
void free()
{
freemem( Data0 );
Data0 = NULL;
Data = NULL;
}
/**
* @return Pointer to the first element of the allocated buffer, NULL if
* not allocated.
*/
T* getPtr() const
{
return( Data );
}
/**
* @return Pointer to the first element of the allocated buffer, NULL if
* not allocated.
*/
operator T* () const
{
return( Data );
}
private:
static const size_t Alignment = 64; ///< Buffer address alignment, in
///< bytes.
///<
void* Data0; ///< Buffer pointer, original unaligned.
///<
T* Data; ///< Element buffer pointer, aligned.
///<
};
/**
* @brief Pointer-to-object "keeper" class with automatic deletion.
*
* An auxiliary class that can be used for keeping a pointer to object that
* should be deleted together with the "keeper" by calling object's "delete"
* operator.
*
* @tparam T Pointer type to operate with, must include the asterisk (e.g.
* "CDSPFIRFilter*").
*/
template< class T >
class CPtrKeeper
{
R8BNOCTOR( CPtrKeeper );
public:
CPtrKeeper()
: Object( NULL )
{
}
/**
* Constructor assigns a pointer to object to *this keeper.
*
* @param aObject Pointer to object to keep, can be NULL.
* @tparam T2 Object's pointer type.
*/
template< class T2 >
CPtrKeeper( T2 const aObject )
: Object( aObject )
{
}
~CPtrKeeper()
{
delete Object;
}
/**
* Function assigns a pointer to object to *this keeper. A previously
* keeped pointer will be reset and object deleted.
*
* @param aObject Pointer to object to keep, can be NULL.
* @tparam T2 Object's pointer type.
*/
template< class T2 >
void operator = ( T2 const aObject )
{
reset();
Object = aObject;
}
/**
* @return Pointer to keeped object, NULL if no object is being kept.
*/
T operator -> () const
{
return( Object );
}
/**
* @return Pointer to keeped object, NULL if no object is being kept.
*/
operator T () const
{
return( Object );
}
/**
* Function resets the keeped pointer and deletes the keeped object.
*/
void reset()
{
T DelObj = Object;
Object = NULL;
delete DelObj;
}
/**
* @return Function returns the keeped pointer and resets it in *this
* keeper without object deletion.
*/
T unkeep()
{
T ResObject = Object;
Object = NULL;
return( ResObject );
}
private:
T Object; ///< Pointer to keeped object.
///<
};
/**
* @brief Multi-threaded synchronization object class.
*
* This class uses standard OS thread-locking (mutex) mechanism which is
* fairly efficient in most cases.
*
* The acquire() function can be called recursively, in the same thread, for
* this kind of thread-locking mechanism. This will not produce a dead-lock.
*/
class CSyncObject
{
R8BNOCTOR( CSyncObject );
public:
CSyncObject()
{
#if defined( _WIN32 )
InitializeCriticalSectionAndSpinCount( &CritSec, 4000 );
#else // defined( _WIN32 )
pthread_mutexattr_t MutexAttrs;
pthread_mutexattr_init( &MutexAttrs );
pthread_mutexattr_settype( &MutexAttrs, PTHREAD_MUTEX_RECURSIVE );
pthread_mutex_init( &Mutex, &MutexAttrs );
pthread_mutexattr_destroy( &MutexAttrs );
#endif // defined( _WIN32 )
}
~CSyncObject()
{
#if defined( _WIN32 )
DeleteCriticalSection( &CritSec );
#else // defined( _WIN32 )
pthread_mutex_destroy( &Mutex );
#endif // defined( _WIN32 )
}
/**
* Function "acquires" *this thread synchronizer object immediately or
* waits until another thread releases it.
*/
void acquire()
{
#if defined( _WIN32 )
EnterCriticalSection( &CritSec );
#else // defined( _WIN32 )
pthread_mutex_lock( &Mutex );
#endif // defined( _WIN32 )
}
/**
* Function "releases" *this previously acquired thread synchronizer
* object.
*/
void release()
{
#if defined( _WIN32 )
LeaveCriticalSection( &CritSec );
#else // defined( _WIN32 )
pthread_mutex_unlock( &Mutex );
#endif // defined( _WIN32 )
}
private:
#if defined( _WIN32 )
CRITICAL_SECTION CritSec; ///< Standard Windows critical section
///< structure.
///<
#else // defined( _WIN32 )
pthread_mutex_t Mutex; ///< pthread.h mutex object.
///<
#endif // defined( _WIN32 )
};
/**
* @brief A "keeper" class for CSyncObject-based synchronization.
*
* Sync keeper class. The object of this class can be used as auto-init and
* auto-deinit object for calling the acquire() and release() functions of an
* object of the CSyncObject class. This "keeper" object is best used in
* functions as an "automatic" object allocated on the stack, possibly via the
* R8BSYNC() macro.
*/
class CSyncKeeper
{
R8BNOCTOR( CSyncKeeper );
public:
CSyncKeeper()
: SyncObj( NULL )
{
}
/**
* @param aSyncObj Pointer to the sync object which should be used for
* sync'ing, can be NULL.
*/
CSyncKeeper( CSyncObject* const aSyncObj )
: SyncObj( aSyncObj )
{
if( SyncObj != NULL )
{
SyncObj -> acquire();
}
}
/**
* @param aSyncObj Reference to the sync object which should be used for
* sync'ing.
*/
CSyncKeeper( CSyncObject& aSyncObj )
: SyncObj( &aSyncObj )
{
SyncObj -> acquire();
}
~CSyncKeeper()
{
if( SyncObj != NULL )
{
SyncObj -> release();
}
}
protected:
CSyncObject* SyncObj; ///< Sync object in use (can be NULL).
///<
};
/**
* The synchronization macro. The R8BSYNC( obj ) macro, which creates and
* object of the r8b::CSyncKeeper class on stack, should be put before
* sections of the code that may potentially change data asynchronously with
* other threads at the same time. The R8BSYNC( obj ) macro "acquires" the
* synchronization object thus blocking execution of other threads that also
* use the same R8BSYNC( obj ) macro. The blocked section begins with the
* R8BSYNC( obj ) macro and finishes at the end of the current C++ code block.
* Multiple R8BSYNC() macros may be defined from within the same code block.
*
* @param SyncObject An object of the CSyncObject type that is used for
* synchronization.
*/
#define R8BSYNC( SyncObject ) R8BSYNC_( SyncObject, __LINE__ )
#define R8BSYNC_( SyncObject, id ) R8BSYNC__( SyncObject, id )
#define R8BSYNC__( SyncObject, id ) CSyncKeeper SyncKeeper##id( SyncObject )
/**
* @brief Sine signal generator class.
*
* Class implements sine signal generator without biasing.
*/
class CSineGen
{
public:
CSineGen()
{
}
/**
* Constructor initializes *this sine signal generator, with unity gain
* output.
*
* @param si Sine function increment, in radians.
* @param ph Starting phase, in radians. Add R8B_PId2 for cosine function.
*/
CSineGen( const double si, const double ph )
: svalue1( sin( ph ))
, svalue2( sin( ph - si ))
, sincr( 2.0 * cos( si ))
{
}
/**
* Constructor initializes *this sine signal generator.
*
* @param si Sine function increment, in radians.
* @param ph Starting phase, in radians. Add R8B_PId2 for cosine function.
* @param g The overall gain factor, 1.0 for unity gain (-1.0 to 1.0
* amplitude).
*/
CSineGen( const double si, const double ph, const double g )
: svalue1( sin( ph ) * g )
, svalue2( sin( ph - si ) * g )
, sincr( 2.0 * cos( si ))
{
}
/**
* Function initializes *this sine signal generator, with unity gain
* output.
*
* @param si Sine function increment, in radians.
* @param ph Starting phase, in radians. Add R8B_PId2 for cosine function.
*/
void init( const double si, const double ph )
{
svalue1 = sin( ph );
svalue2 = sin( ph - si );
sincr = 2.0 * cos( si );
}
/**
* Function initializes *this sine signal generator.
*
* @param si Sine function increment, in radians.
* @param ph Starting phase, in radians. Add R8B_PId2 for cosine function.
* @param g The overall gain factor, 1.0 for unity gain (-1.0 to 1.0
* amplitude).
*/
void init( const double si, const double ph, const double g )
{
svalue1 = sin( ph ) * g;
svalue2 = sin( ph - si ) * g;
sincr = 2.0 * cos( si );
}
/**
* @return Next value of the sine function, without biasing.
*/
double generate()
{
const double res = svalue1;
svalue1 = sincr * res - svalue2;
svalue2 = res;
return( res );
}
private:
double svalue1; ///< Current sine value.
///<
double svalue2; ///< Previous sine value.
///<
double sincr; ///< Sine value increment.
///<
};
/**
* @param v Input value.
* @return Calculated bit occupancy of the specified input value. Bit
* occupancy means how many significant lower bits are necessary to store a
* specified value. Function treats the input value as unsigned.
*/
inline int getBitOccupancy( const int v )
{
static const uint8_t OccupancyTable[] =
{
1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
};
const int tt = v >> 16;
if( tt != 0 )
{
const int t = v >> 24;
return( t != 0 ? 24 + OccupancyTable[ t & 0xFF ] :
16 + OccupancyTable[ tt ]);
}
else
{
const int t = v >> 8;
return( t != 0 ? 8 + OccupancyTable[ t ] : OccupancyTable[ v ]);
}
}
/**
* Function calculates frequency response of the specified FIR filter at the
* specified circular frequency. Phase can be calculated as atan2( im, re ).
*
* @param flt FIR filter's coefficients.
* @param fltlen Number of coefficients (taps) in the filter.
* @param th Circular frequency [0; pi].
* @param[out] re0 Resulting real part of the complex frequency response.
* @param[out] im0 Resulting imaginary part of the complex frequency response.
* @param fltlat Filter's latency, in samples.
*/
inline void calcFIRFilterResponse( const double* flt, int fltlen,
const double th, double& re0, double& im0, const int fltlat = 0 )
{
const double sincr = 2.0 * cos( th );
double cvalue1;
double svalue1;
if( fltlat == 0 )
{
cvalue1 = 1.0;
svalue1 = 0.0;
}
else
{
cvalue1 = cos( -fltlat * th );
svalue1 = sin( -fltlat * th );
}
double cvalue2 = cos( -( fltlat + 1 ) * th );
double svalue2 = sin( -( fltlat + 1 ) * th );
double re = 0.0;
double im = 0.0;
while( fltlen > 0 )
{
re += cvalue1 * flt[ 0 ];
im += svalue1 * flt[ 0 ];
flt++;
fltlen--;
double tmp = cvalue1;
cvalue1 = sincr * cvalue1 - cvalue2;
cvalue2 = tmp;
tmp = svalue1;
svalue1 = sincr * svalue1 - svalue2;
svalue2 = tmp;
}
re0 = re;
im0 = im;
}
/**
* Function calculates frequency response and group delay of the specified FIR
* filter at the specified circular frequency. The group delay is calculated
* by evaluating the filter's response at close side-band frequencies of "th".
*
* @param flt FIR filter's coefficients.
* @param fltlen Number of coefficients (taps) in the filter.
* @param th Circular frequency [0; pi].
* @param[out] re Resulting real part of the complex frequency response.
* @param[out] im Resulting imaginary part of the complex frequency response.
* @param[out] gd Resulting group delay at the specified frequency, in
* samples.
*/
inline void calcFIRFilterResponseAndGroupDelay( const double* const flt,
const int fltlen, const double th, double& re, double& im, double& gd )
{
// Calculate response at "th".
calcFIRFilterResponse( flt, fltlen, th, re, im );
// Calculate response at close sideband frequencies.
const int Count = 2;
const double thd2 = 1e-9;
double ths[ Count ] = { th - thd2, th + thd2 };
if( ths[ 0 ] < 0.0 )
{
ths[ 0 ] = 0.0;
}
if( ths[ 1 ] > R8B_PI )
{
ths[ 1 ] = R8B_PI;
}
double ph1[ Count ];
int i;
for( i = 0; i < Count; i++ )
{
double re1;
double im1;
calcFIRFilterResponse( flt, fltlen, ths[ i ], re1, im1 );
ph1[ i ] = atan2( im1, re1 );
}
if( fabs( ph1[ 1 ] - ph1[ 0 ]) > R8B_PI )
{
if( ph1[ 1 ] > ph1[ 0 ])
{
ph1[ 1 ] -= R8B_2PI;
}
else
{
ph1[ 1 ] += R8B_2PI;
}
}
const double thd = ths[ 1 ] - ths[ 0 ];
gd = ( ph1[ 1 ] - ph1[ 0 ]) / thd;
}
/**
* Function normalizes FIR filter so that its frequency response at DC is
* equal to DCGain.
*
* @param[in,out] p Filter coefficients.
* @param l Filter length.
* @param DCGain Filter's gain at DC (linear, non-decibel value).
* @param pstep "p" array step.
*/
inline void normalizeFIRFilter( double* const p, const int l,
const double DCGain, const int pstep = 1 )
{
R8BASSERT( l > 0 );
R8BASSERT( pstep != 0 );
double s = 0.0;
double* pp = p;
int i = l;
while( i > 0 )
{
s += *pp;
pp += pstep;
i--;
}
s = DCGain / s;
pp = p;
i = l;
while( i > 0 )
{
*pp *= s;
pp += pstep;
i--;
}
}
/**
* Function calculates coefficients used to calculate 3rd order spline
* (polynomial) on the equidistant lattice, using 8 points.
*
* @param[out] c Output coefficients buffer, length = 4.
* @param xm3 Point at x-3 position.
* @param xm2 Point at x-2 position.
* @param xm1 Point at x-1 position.
* @param x0 Point at x position.
* @param x1 Point at x+1 position.
* @param x2 Point at x+2 position.
* @param x3 Point at x+3 position.
* @param x4 Point at x+4 position.
*/
inline void calcSpline3p8Coeffs( double* const c, const double xm3,
const double xm2, const double xm1, const double x0, const double x1,
const double x2, const double x3, const double x4 )
{
c[ 0 ] = x0;
c[ 1 ] = ( 61.0 * ( x1 - xm1 ) + 16.0 * ( xm2 - x2 ) +
3.0 * ( x3 - xm3 )) / 76.0;
c[ 2 ] = ( 106.0 * ( xm1 + x1 ) + 10.0 * x3 + 6.0 * xm3 - 3.0 * x4 -
29.0 * ( xm2 + x2 ) - 167.0 * x0 ) / 76.0;
c[ 3 ] = ( 91.0 * ( x0 - x1 ) + 45.0 * ( x2 - xm1 ) +
13.0 * ( xm2 - x3 ) + 3.0 * ( x4 - xm3 )) / 76.0;
}
/**
* Function calculates coefficients used to calculate 2rd order spline
* (polynomial) on the equidistant lattice, using 8 points. This function is
* based on the calcSpline3p8Coeffs() function, but without the 3rd order
* coefficient.
*
* @param[out] c Output coefficients buffer, length = 3.
* @param xm3 Point at x-3 position.
* @param xm2 Point at x-2 position.
* @param xm1 Point at x-1 position.
* @param x0 Point at x position.
* @param x1 Point at x+1 position.
* @param x2 Point at x+2 position.
* @param x3 Point at x+3 position.
* @param x4 Point at x+4 position.
*/
inline void calcSpline2p8Coeffs( double* const c, const double xm3,
const double xm2, const double xm1, const double x0, const double x1,
const double x2, const double x3, const double x4 )
{
c[ 0 ] = x0;
c[ 1 ] = ( 61.0 * ( x1 - xm1 ) + 16.0 * ( xm2 - x2 ) +
3.0 * ( x3 - xm3 )) / 76.0;
c[ 2 ] = ( 106.0 * ( xm1 + x1 ) + 10.0 * x3 + 6.0 * xm3 - 3.0 * x4 -
29.0 * ( xm2 + x2 ) - 167.0 * x0 ) / 76.0;
}
/**
* Function calculates coefficients used to calculate 3rd order segment
* interpolation polynomial on the equidistant lattice, using 4 points.
*
* @param[out] c Output coefficients buffer, length = 4.
* @param[in] y Equidistant point values. Value at offset 1 corresponds to
* x=0 point.
*/
inline void calcSpline3p4Coeffs( double* const c, const double* const y )
{
c[ 0 ] = y[ 1 ];
c[ 1 ] = 0.5 * ( y[ 2 ] - y[ 0 ]);
c[ 2 ] = y[ 0 ] - 2.5 * y[ 1 ] + y[ 2 ] + y[ 2 ] - 0.5 * y[ 3 ];
c[ 3 ] = 0.5 * ( y[ 3 ] - y[ 0 ] ) + 1.5 * ( y[ 1 ] - y[ 2 ]);
}
/**
* Function calculates coefficients used to calculate 3rd order segment
* interpolation polynomial on the equidistant lattice, using 6 points.
*
* @param[out] c Output coefficients buffer, length = 4.
* @param[in] y Equidistant point values. Value at offset 2 corresponds to
* x=0 point.
*/
inline void calcSpline3p6Coeffs( double* const c, const double* const y )
{
c[ 0 ] = y[ 2 ];
c[ 1 ] = ( 11.0 * ( y[ 3 ] - y[ 1 ]) + 2.0 * ( y[ 0 ] - y[ 4 ])) / 14.0;
c[ 2 ] = ( 20.0 * ( y[ 1 ] + y[ 3 ]) + 2.0 * y[ 5 ] - 4.0 * y[ 0 ] -
7.0 * y[ 4 ] - 31.0 * y[ 2 ]) / 14.0;
c[ 3 ] = ( 17.0 * ( y[ 2 ] - y[ 3 ]) + 9.0 * ( y[ 4 ] - y[ 1 ]) +
2.0 * ( y[ 0 ] - y[ 5 ])) / 14.0;
}
#if !defined( min )
/**
* @param v1 Value 1.
* @param v2 Value 2.
* @tparam T Values' type.
* @return The minimum of 2 values.
*/
template< typename T >
inline T min( const T& v1, const T& v2 )
{
return( v1 < v2 ? v1 : v2 );
}
#endif // min
#if !defined( max )
/**
* @param v1 Value 1.
* @param v2 Value 2.
* @tparam T Values' type.
* @return The maximum of 2 values.
*/
template< typename T >
inline T max( const T& v1, const T& v2 )
{
return( v1 > v2 ? v1 : v2 );
}
#endif // max
/**
* Function "clamps" (clips) the specified value so that it is not lesser than
* "minv", and not greater than "maxv".
*
* @param Value Value to clamp.
* @param minv Minimal allowed value.
* @param maxv Maximal allowed value.
* @return "Clamped" value.
*/
inline double clampr( const double Value, const double minv,
const double maxv )
{
if( Value < minv )
{
return( minv );
}
else
if( Value > maxv )
{
return( maxv );
}
else
{
return( Value );
}
}
/**
* @param x Value to square.
* @return Squared value of the argument.
*/
inline double sqr( const double x )
{
return( x * x );
}
/**
* @param v Input value.
* @param p Power factor.
* @return Returns pow() function's value with input value's sign check.
*/
inline double pows( const double v, const double p )
{
return( v < 0.0 ? -pow( -v, p ) : pow( v, p ));
}
/**
* @param v Input value.
* @return Calculated single-argument Gaussian function of the input value.
*/
inline double gauss( const double v )
{
return( exp( -( v * v )));
}
/**
* @param v Input value.
* @return Calculated inverse hyperbolic sine of the input value.
*/
inline double asinh( const double v )
{
return( log( v + sqrt( v * v + 1.0 )));
}
/**
* @param x Input value.
* @return Calculated zero-th order modified Bessel function of the first kind
* of the input value. Approximate value.
*/
inline double besselI0( const double x )
{
const double ax = fabs( x );
double y;
if( ax < 3.75 )
{
y = x / 3.75;
y *= y;
return( 1.0 + y * ( 3.5156229 + y * ( 3.0899424 + y * ( 1.2067492 +
y * ( 0.2659732 + y * ( 0.360768e-1 + y * 0.45813e-2 ))))));
}
y = 3.75 / ax;
return( exp( ax ) / sqrt( ax ) * ( 0.39894228 + y * ( 0.1328592e-1 +
y * ( 0.225319e-2 + y * ( -0.157565e-2 + y * ( 0.916281e-2 +
y * ( -0.2057706e-1 + y * ( 0.2635537e-1 + y * ( -0.1647633e-1 +
y * 0.392377e-2 )))))))));
}
} // namespace r8b
#endif // R8BBASE_INCLUDED