Archived
1
0
This repository has been archived on 2024-10-17. You can view files and clone it, but cannot push or open issues or pull requests.
winamp/Src/external_dependencies/openmpt-trunk/include/lame/libmp3lame/takehiro.c
2024-09-24 14:54:57 +02:00

1376 lines
37 KiB
C
Vendored

/*
* MP3 huffman table selecting and bit counting
*
* Copyright (c) 1999-2005 Takehiro TOMINAGA
* Copyright (c) 2002-2005 Gabriel Bouvigne
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/* $Id: takehiro.c,v 1.80 2017/09/06 15:07:30 robert Exp $ */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "lame.h"
#include "machine.h"
#include "encoder.h"
#include "util.h"
#include "quantize_pvt.h"
#include "tables.h"
static const struct {
const int region0_count;
const int region1_count;
} subdv_table[23] = {
{
0, 0}, /* 0 bands */
{
0, 0}, /* 1 bands */
{
0, 0}, /* 2 bands */
{
0, 0}, /* 3 bands */
{
0, 0}, /* 4 bands */
{
0, 1}, /* 5 bands */
{
1, 1}, /* 6 bands */
{
1, 1}, /* 7 bands */
{
1, 2}, /* 8 bands */
{
2, 2}, /* 9 bands */
{
2, 3}, /* 10 bands */
{
2, 3}, /* 11 bands */
{
3, 4}, /* 12 bands */
{
3, 4}, /* 13 bands */
{
3, 4}, /* 14 bands */
{
4, 5}, /* 15 bands */
{
4, 5}, /* 16 bands */
{
4, 6}, /* 17 bands */
{
5, 6}, /* 18 bands */
{
5, 6}, /* 19 bands */
{
5, 7}, /* 20 bands */
{
6, 7}, /* 21 bands */
{
6, 7}, /* 22 bands */
};
/*********************************************************************
* nonlinear quantization of xr
* More accurate formula than the ISO formula. Takes into account
* the fact that we are quantizing xr -> ix, but we want ix^4/3 to be
* as close as possible to x^4/3. (taking the nearest int would mean
* ix is as close as possible to xr, which is different.)
*
* From Segher Boessenkool <segher@eastsite.nl> 11/1999
*
* 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro
* Tominaga. If you need the ASM code, check CVS circa Aug 2000.
*
* 01/2004: Optimizations by Gabriel Bouvigne
*********************************************************************/
static void
quantize_lines_xrpow_01(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
{
const FLOAT compareval0 = (1.0f - 0.4054f) / istep;
unsigned int i;
assert(l > 0);
assert(l % 2 == 0);
for (i = 0; i < l; i += 2) {
FLOAT const xr_0 = xr[i+0];
FLOAT const xr_1 = xr[i+1];
int const ix_0 = (compareval0 > xr_0) ? 0 : 1;
int const ix_1 = (compareval0 > xr_1) ? 0 : 1;
ix[i+0] = ix_0;
ix[i+1] = ix_1;
}
}
#ifdef TAKEHIRO_IEEE754_HACK
typedef union {
float f;
int i;
} fi_union;
#define MAGIC_FLOAT (65536*(128))
#define MAGIC_INT 0x4b000000
static void
quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xp, int *pi)
{
fi_union *fi;
unsigned int remaining;
assert(l > 0);
fi = (fi_union *) pi;
l = l >> 1;
remaining = l % 2;
l = l >> 1;
while (l--) {
double x0 = istep * xp[0];
double x1 = istep * xp[1];
double x2 = istep * xp[2];
double x3 = istep * xp[3];
x0 += MAGIC_FLOAT;
fi[0].f = x0;
x1 += MAGIC_FLOAT;
fi[1].f = x1;
x2 += MAGIC_FLOAT;
fi[2].f = x2;
x3 += MAGIC_FLOAT;
fi[3].f = x3;
fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT];
fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT];
fi[0].i -= MAGIC_INT;
fi[1].i -= MAGIC_INT;
fi[2].i -= MAGIC_INT;
fi[3].i -= MAGIC_INT;
fi += 4;
xp += 4;
};
if (remaining) {
double x0 = istep * xp[0];
double x1 = istep * xp[1];
x0 += MAGIC_FLOAT;
fi[0].f = x0;
x1 += MAGIC_FLOAT;
fi[1].f = x1;
fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
fi[0].i -= MAGIC_INT;
fi[1].i -= MAGIC_INT;
}
}
#else
/*********************************************************************
* XRPOW_FTOI is a macro to convert floats to ints.
* if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
* ROUNDFAC= -0.0946
*
* if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
* ROUNDFAC=0.4054
*
* Note: using floor() or (int) is extremely slow. On machines where
* the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
* to write some ASM for XRPOW_FTOI().
*********************************************************************/
#define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
#define QUANTFAC(rx) adj43[rx]
#define ROUNDFAC 0.4054
static void
quantize_lines_xrpow(unsigned int l, FLOAT istep, const FLOAT * xr, int *ix)
{
unsigned int remaining;
assert(l > 0);
l = l >> 1;
remaining = l % 2;
l = l >> 1;
while (l--) {
FLOAT x0, x1, x2, x3;
int rx0, rx1, rx2, rx3;
x0 = *xr++ * istep;
x1 = *xr++ * istep;
XRPOW_FTOI(x0, rx0);
x2 = *xr++ * istep;
XRPOW_FTOI(x1, rx1);
x3 = *xr++ * istep;
XRPOW_FTOI(x2, rx2);
x0 += QUANTFAC(rx0);
XRPOW_FTOI(x3, rx3);
x1 += QUANTFAC(rx1);
XRPOW_FTOI(x0, *ix++);
x2 += QUANTFAC(rx2);
XRPOW_FTOI(x1, *ix++);
x3 += QUANTFAC(rx3);
XRPOW_FTOI(x2, *ix++);
XRPOW_FTOI(x3, *ix++);
};
if (remaining) {
FLOAT x0, x1;
int rx0, rx1;
x0 = *xr++ * istep;
x1 = *xr++ * istep;
XRPOW_FTOI(x0, rx0);
XRPOW_FTOI(x1, rx1);
x0 += QUANTFAC(rx0);
x1 += QUANTFAC(rx1);
XRPOW_FTOI(x0, *ix++);
XRPOW_FTOI(x1, *ix++);
}
}
#endif
/*********************************************************************
* Quantization function
* This function will select which lines to quantize and call the
* proper quantization function
*********************************************************************/
static void
quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info,
calc_noise_data const *prev_noise)
{
/* quantize on xr^(3/4) instead of xr */
int sfb;
int sfbmax;
int j = 0;
int prev_data_use;
int *iData;
int accumulate = 0;
int accumulate01 = 0;
int *acc_iData;
const FLOAT *acc_xp;
iData = pi;
acc_xp = xp;
acc_iData = iData;
/* Reusing previously computed data does not seems to work if global gain
is changed. Finding why it behaves this way would allow to use a cache of
previously computed values (let's 10 cached values per sfb) that would
probably provide a noticeable speedup */
prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain));
if (cod_info->block_type == SHORT_TYPE)
sfbmax = 38;
else
sfbmax = 21;
for (sfb = 0; sfb <= sfbmax; sfb++) {
int step = -1;
if (prev_data_use || cod_info->block_type == NORM_TYPE) {
step =
cod_info->global_gain
- ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0))
<< (cod_info->scalefac_scale + 1))
- cod_info->subblock_gain[cod_info->window[sfb]] * 8;
}
assert(cod_info->width[sfb] >= 0);
if (prev_data_use && (prev_noise->step[sfb] == step)) {
/* do not recompute this part,
but compute accumulated lines */
if (accumulate) {
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
accumulate = 0;
}
if (accumulate01) {
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
accumulate01 = 0;
}
}
else { /*should compute this part */
int l;
l = cod_info->width[sfb];
if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) {
/*do not compute upper zero part */
int usefullsize;
usefullsize = cod_info->max_nonzero_coeff - j + 1;
memset(&pi[cod_info->max_nonzero_coeff], 0,
sizeof(int) * (576 - cod_info->max_nonzero_coeff));
l = usefullsize;
if (l < 0) {
l = 0;
}
/* no need to compute higher sfb values */
sfb = sfbmax + 1;
}
/*accumulate lines to quantize */
if (!accumulate && !accumulate01) {
acc_iData = iData;
acc_xp = xp;
}
if (prev_noise &&
prev_noise->sfb_count1 > 0 &&
sfb >= prev_noise->sfb_count1 &&
prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) {
if (accumulate) {
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
accumulate = 0;
acc_iData = iData;
acc_xp = xp;
}
accumulate01 += l;
}
else {
if (accumulate01) {
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
accumulate01 = 0;
acc_iData = iData;
acc_xp = xp;
}
accumulate += l;
}
if (l <= 0) {
/* rh: 20040215
* may happen due to "prev_data_use" optimization
*/
if (accumulate01) {
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
accumulate01 = 0;
}
if (accumulate) {
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
accumulate = 0;
}
break; /* ends for-loop */
}
}
if (sfb <= sfbmax) {
iData += cod_info->width[sfb];
xp += cod_info->width[sfb];
j += cod_info->width[sfb];
}
}
if (accumulate) { /*last data part */
quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
accumulate = 0;
}
if (accumulate01) { /*last data part */
quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
accumulate01 = 0;
}
}
/*************************************************************************/
/* ix_max */
/*************************************************************************/
static int
ix_max(const int *ix, const int *end)
{
int max1 = 0, max2 = 0;
do {
int const x1 = *ix++;
int const x2 = *ix++;
if (max1 < x1)
max1 = x1;
if (max2 < x2)
max2 = x2;
} while (ix < end);
if (max1 < max2)
max1 = max2;
return max1;
}
static int
count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, unsigned int *const s)
{
/* ESC-table is used */
unsigned int const linbits = ht[t1].xlen * 65536u + ht[t2].xlen;
unsigned int sum = 0, sum2;
do {
unsigned int x = *ix++;
unsigned int y = *ix++;
if (x >= 15u) {
x = 15u;
sum += linbits;
}
if (y >= 15u) {
y = 15u;
sum += linbits;
}
x <<= 4u;
x += y;
sum += largetbl[x];
} while (ix < end);
sum2 = sum & 0xffffu;
sum >>= 16u;
if (sum > sum2) {
sum = sum2;
t1 = t2;
}
*s += sum;
return t1;
}
static int
count_bit_noESC(const int *ix, const int *end, int mx, unsigned int *s)
{
/* No ESC-words */
unsigned int sum1 = 0;
const uint8_t *const hlen1 = ht[1].hlen;
(void) mx;
do {
unsigned int const x0 = *ix++;
unsigned int const x1 = *ix++;
sum1 += hlen1[ x0+x0 + x1 ];
} while (ix < end);
*s += sum1;
return 1;
}
static const int huf_tbl_noESC[] = {
1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13
};
static int
count_bit_noESC_from2(const int *ix, const int *end, int max, unsigned int *s)
{
int t1 = huf_tbl_noESC[max - 1];
/* No ESC-words */
const unsigned int xlen = ht[t1].xlen;
uint32_t const* table = (t1 == 2) ? &table23[0] : &table56[0];
unsigned int sum = 0, sum2;
do {
unsigned int const x0 = *ix++;
unsigned int const x1 = *ix++;
sum += table[ x0 * xlen + x1 ];
} while (ix < end);
sum2 = sum & 0xffffu;
sum >>= 16u;
if (sum > sum2) {
sum = sum2;
t1++;
}
*s += sum;
return t1;
}
inline static int
count_bit_noESC_from3(const int *ix, const int *end, int max, unsigned int * s)
{
int t1 = huf_tbl_noESC[max - 1];
/* No ESC-words */
unsigned int sum1 = 0;
unsigned int sum2 = 0;
unsigned int sum3 = 0;
const unsigned int xlen = ht[t1].xlen;
const uint8_t *const hlen1 = ht[t1].hlen;
const uint8_t *const hlen2 = ht[t1 + 1].hlen;
const uint8_t *const hlen3 = ht[t1 + 2].hlen;
int t;
do {
unsigned int x0 = *ix++;
unsigned int x1 = *ix++;
unsigned int x = x0 * xlen + x1;
sum1 += hlen1[x];
sum2 += hlen2[x];
sum3 += hlen3[x];
} while (ix < end);
t = t1;
if (sum1 > sum2) {
sum1 = sum2;
t++;
}
if (sum1 > sum3) {
sum1 = sum3;
t = t1 + 2;
}
*s += sum1;
return t;
}
/*************************************************************************/
/* choose table */
/*************************************************************************/
/*
Choose the Huffman table that will encode ix[begin..end] with
the fewest bits.
Note: This code contains knowledge about the sizes and characteristics
of the Huffman tables as defined in the IS (Table B.7), and will not work
with any arbitrary tables.
*/
static int count_bit_null(const int* ix, const int* end, int max, unsigned int* s)
{
(void) ix;
(void) end;
(void) max;
(void) s;
return 0;
}
typedef int (*count_fnc)(const int* ix, const int* end, int max, unsigned int* s);
static const count_fnc count_fncs[] =
{ &count_bit_null
, &count_bit_noESC
, &count_bit_noESC_from2
, &count_bit_noESC_from2
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
, &count_bit_noESC_from3
};
static int
choose_table_nonMMX(const int *ix, const int *const end, int *const _s)
{
unsigned int* s = (unsigned int*)_s;
unsigned int max;
int choice, choice2;
max = ix_max(ix, end);
if (max <= 15) {
return count_fncs[max](ix, end, max, s);
}
/* try tables with linbits */
if (max > IXMAX_VAL) {
*s = LARGE_BITS;
return -1;
}
max -= 15u;
for (choice2 = 24; choice2 < 32; choice2++) {
if (ht[choice2].linmax >= max) {
break;
}
}
for (choice = choice2 - 8; choice < 24; choice++) {
if (ht[choice].linmax >= max) {
break;
}
}
return count_bit_ESC(ix, end, choice, choice2, s);
}
/*************************************************************************/
/* count_bit */
/*************************************************************************/
int
noquant_count_bits(lame_internal_flags const *const gfc,
gr_info * const gi, calc_noise_data * prev_noise)
{
SessionConfig_t const *const cfg = &gfc->cfg;
int bits = 0;
int i, a1, a2;
int const *const ix = gi->l3_enc;
i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1);
if (prev_noise)
prev_noise->sfb_count1 = 0;
/* Determine count1 region */
for (; i > 1; i -= 2)
if (ix[i - 1] | ix[i - 2])
break;
gi->count1 = i;
/* Determines the number of bits to encode the quadruples. */
a1 = a2 = 0;
for (; i > 3; i -= 4) {
int x4 = ix[i-4];
int x3 = ix[i-3];
int x2 = ix[i-2];
int x1 = ix[i-1];
int p;
/* hack to check if all values <= 1 */
if ((unsigned int) (x4 | x3 | x2 | x1) > 1)
break;
p = ((x4 * 2 + x3) * 2 + x2) * 2 + x1;
a1 += t32l[p];
a2 += t33l[p];
}
bits = a1;
gi->count1table_select = 0;
if (a1 > a2) {
bits = a2;
gi->count1table_select = 1;
}
gi->count1bits = bits;
gi->big_values = i;
if (i == 0)
return bits;
if (gi->block_type == SHORT_TYPE) {
a1 = 3 * gfc->scalefac_band.s[3];
if (a1 > gi->big_values)
a1 = gi->big_values;
a2 = gi->big_values;
}
else if (gi->block_type == NORM_TYPE) {
assert(i <= 576); /* bv_scf has 576 entries (0..575) */
a1 = gi->region0_count = gfc->sv_qnt.bv_scf[i - 2];
a2 = gi->region1_count = gfc->sv_qnt.bv_scf[i - 1];
assert(a1 + a2 + 2 < SBPSY_l);
a2 = gfc->scalefac_band.l[a1 + a2 + 2];
a1 = gfc->scalefac_band.l[a1 + 1];
if (a2 < i)
gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits);
}
else {
gi->region0_count = 7;
/*gi->region1_count = SBPSY_l - 7 - 1; */
gi->region1_count = SBMAX_l - 1 - 7 - 1;
a1 = gfc->scalefac_band.l[7 + 1];
a2 = i;
if (a1 > a2) {
a1 = a2;
}
}
/* have to allow for the case when bigvalues < region0 < region1 */
/* (and region0, region1 are ignored) */
a1 = Min(a1, i);
a2 = Min(a2, i);
assert(a1 >= 0);
assert(a2 >= 0);
/* Count the number of bits necessary to code the bigvalues region. */
if (0 < a1)
gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits);
if (a1 < a2)
gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits);
if (cfg->use_best_huffman == 2) {
gi->part2_3_length = bits;
best_huffman_divide(gfc, gi);
bits = gi->part2_3_length;
}
if (prev_noise) {
if (gi->block_type == NORM_TYPE) {
int sfb = 0;
while (gfc->scalefac_band.l[sfb] < gi->big_values) {
sfb++;
}
prev_noise->sfb_count1 = sfb;
}
}
return bits;
}
int
count_bits(lame_internal_flags const *const gfc,
const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise)
{
int *const ix = gi->l3_enc;
/* since quantize_xrpow uses table lookup, we need to check this first: */
FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain);
if (gi->xrpow_max > w)
return LARGE_BITS;
quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise);
if (gfc->sv_qnt.substep_shaping & 2) {
int sfb, j = 0;
/* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
int const gain = gi->global_gain + gi->scalefac_scale;
const FLOAT roundfac = 0.634521682242439 / IPOW20(gain);
for (sfb = 0; sfb < gi->sfbmax; sfb++) {
int const width = gi->width[sfb];
assert(width >= 0);
if (!gfc->sv_qnt.pseudohalf[sfb]) {
j += width;
}
else {
int k;
for (k = j, j += width; k < j; ++k) {
ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
}
}
}
}
return noquant_count_bits(gfc, gi, prev_noise);
}
/***********************************************************************
re-calculate the best scalefac_compress using scfsi
the saved bits are kept in the bit reservoir.
**********************************************************************/
inline static void
recalc_divide_init(const lame_internal_flags * const gfc,
gr_info const *cod_info,
int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[])
{
int r0, r1, bigv, r0t, r1t, bits;
bigv = cod_info->big_values;
for (r0 = 0; r0 <= 7 + 15; r0++) {
r01_bits[r0] = LARGE_BITS;
}
for (r0 = 0; r0 < 16; r0++) {
int const a1 = gfc->scalefac_band.l[r0 + 1];
int r0bits;
if (a1 >= bigv)
break;
r0bits = 0;
r0t = gfc->choose_table(ix, ix + a1, &r0bits);
for (r1 = 0; r1 < 8; r1++) {
int const a2 = gfc->scalefac_band.l[r0 + r1 + 2];
if (a2 >= bigv)
break;
bits = r0bits;
r1t = gfc->choose_table(ix + a1, ix + a2, &bits);
if (r01_bits[r0 + r1] > bits) {
r01_bits[r0 + r1] = bits;
r01_div[r0 + r1] = r0;
r0_tbl[r0 + r1] = r0t;
r1_tbl[r0 + r1] = r1t;
}
}
}
}
inline static void
recalc_divide_sub(const lame_internal_flags * const gfc,
const gr_info * cod_info2,
gr_info * const gi,
const int *const ix,
const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[])
{
int bits, r2, a2, bigv, r2t;
bigv = cod_info2->big_values;
for (r2 = 2; r2 < SBMAX_l + 1; r2++) {
a2 = gfc->scalefac_band.l[r2];
if (a2 >= bigv)
break;
bits = r01_bits[r2 - 2] + cod_info2->count1bits;
if (gi->part2_3_length <= bits)
break;
r2t = gfc->choose_table(ix + a2, ix + bigv, &bits);
if (gi->part2_3_length <= bits)
continue;
memcpy(gi, cod_info2, sizeof(gr_info));
gi->part2_3_length = bits;
gi->region0_count = r01_div[r2 - 2];
gi->region1_count = r2 - 2 - r01_div[r2 - 2];
gi->table_select[0] = r0_tbl[r2 - 2];
gi->table_select[1] = r1_tbl[r2 - 2];
gi->table_select[2] = r2t;
}
}
void
best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi)
{
SessionConfig_t const *const cfg = &gfc->cfg;
int i, a1, a2;
gr_info cod_info2;
int const *const ix = gi->l3_enc;
int r01_bits[7 + 15 + 1];
int r01_div[7 + 15 + 1];
int r0_tbl[7 + 15 + 1];
int r1_tbl[7 + 15 + 1];
/* SHORT BLOCK stuff fails for MPEG2 */
if (gi->block_type == SHORT_TYPE && cfg->mode_gr == 1)
return;
memcpy(&cod_info2, gi, sizeof(gr_info));
if (gi->block_type == NORM_TYPE) {
recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
}
i = cod_info2.big_values;
if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1)
return;
i = gi->count1 + 2;
if (i > 576)
return;
/* Determines the number of bits to encode the quadruples. */
memcpy(&cod_info2, gi, sizeof(gr_info));
cod_info2.count1 = i;
a1 = a2 = 0;
assert(i <= 576);
for (; i > cod_info2.big_values; i -= 4) {
int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
a1 += t32l[p];
a2 += t33l[p];
}
cod_info2.big_values = i;
cod_info2.count1table_select = 0;
if (a1 > a2) {
a1 = a2;
cod_info2.count1table_select = 1;
}
cod_info2.count1bits = a1;
if (cod_info2.block_type == NORM_TYPE)
recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
else {
/* Count the number of bits necessary to code the bigvalues region. */
cod_info2.part2_3_length = a1;
a1 = gfc->scalefac_band.l[7 + 1];
if (a1 > i) {
a1 = i;
}
if (a1 > 0)
cod_info2.table_select[0] =
gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length);
if (i > a1)
cod_info2.table_select[1] =
gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length);
if (gi->part2_3_length > cod_info2.part2_3_length)
memcpy(gi, &cod_info2, sizeof(gr_info));
}
}
static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 };
static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 };
const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
static void
scfsi_calc(int ch, III_side_info_t * l3_side)
{
unsigned int i;
int s1, s2, c1, c2;
int sfb;
gr_info *const gi = &l3_side->tt[1][ch];
gr_info const *const g0 = &l3_side->tt[0][ch];
for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) {
for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
if (g0->scalefac[sfb] != gi->scalefac[sfb]
&& gi->scalefac[sfb] >= 0)
break;
}
if (sfb == scfsi_band[i + 1]) {
for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
gi->scalefac[sfb] = -1;
}
l3_side->scfsi[ch][i] = 1;
}
}
s1 = c1 = 0;
for (sfb = 0; sfb < 11; sfb++) {
if (gi->scalefac[sfb] == -1)
continue;
c1++;
if (s1 < gi->scalefac[sfb])
s1 = gi->scalefac[sfb];
}
s2 = c2 = 0;
for (; sfb < SBPSY_l; sfb++) {
if (gi->scalefac[sfb] == -1)
continue;
c2++;
if (s2 < gi->scalefac[sfb])
s2 = gi->scalefac[sfb];
}
for (i = 0; i < 16; i++) {
if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
if (gi->part2_length > c) {
gi->part2_length = c;
gi->scalefac_compress = (int)i;
}
}
}
}
/*
Find the optimal way to store the scalefactors.
Only call this routine after final scalefactors have been
chosen and the channel/granule will not be re-encoded.
*/
void
best_scalefac_store(const lame_internal_flags * gfc,
const int gr, const int ch, III_side_info_t * const l3_side)
{
SessionConfig_t const *const cfg = &gfc->cfg;
/* use scalefac_scale if we can */
gr_info *const gi = &l3_side->tt[gr][ch];
int sfb, i, j, l;
int recalc = 0;
/* remove scalefacs from bands with ix=0. This idea comes
* from the AAC ISO docs. added mt 3/00 */
/* check if l3_enc=0 */
j = 0;
for (sfb = 0; sfb < gi->sfbmax; sfb++) {
int const width = gi->width[sfb];
assert(width >= 0);
for (l = j, j += width; l < j; ++l) {
if (gi->l3_enc[l] != 0)
break;
}
if (l == j)
gi->scalefac[sfb] = recalc = -2; /* anything goes. */
/* only best_scalefac_store and calc_scfsi
* know--and only they should know--about the magic number -2.
*/
}
if (!gi->scalefac_scale && !gi->preflag) {
int s = 0;
for (sfb = 0; sfb < gi->sfbmax; sfb++)
if (gi->scalefac[sfb] > 0)
s |= gi->scalefac[sfb];
if (!(s & 1) && s != 0) {
for (sfb = 0; sfb < gi->sfbmax; sfb++)
if (gi->scalefac[sfb] > 0)
gi->scalefac[sfb] >>= 1;
gi->scalefac_scale = recalc = 1;
}
}
if (!gi->preflag && gi->block_type != SHORT_TYPE && cfg->mode_gr == 2) {
for (sfb = 11; sfb < SBPSY_l; sfb++)
if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2)
break;
if (sfb == SBPSY_l) {
for (sfb = 11; sfb < SBPSY_l; sfb++)
if (gi->scalefac[sfb] > 0)
gi->scalefac[sfb] -= pretab[sfb];
gi->preflag = recalc = 1;
}
}
for (i = 0; i < 4; i++)
l3_side->scfsi[ch][i] = 0;
if (cfg->mode_gr == 2 && gr == 1
&& l3_side->tt[0][ch].block_type != SHORT_TYPE
&& l3_side->tt[1][ch].block_type != SHORT_TYPE) {
scfsi_calc(ch, l3_side);
recalc = 0;
}
for (sfb = 0; sfb < gi->sfbmax; sfb++) {
if (gi->scalefac[sfb] == -2) {
gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */
}
}
if (recalc) {
(void) scale_bitcount(gfc, gi);
}
}
#ifndef NDEBUG
static int
all_scalefactors_not_negative(int const *scalefac, int n)
{
int i;
for (i = 0; i < n; ++i) {
if (scalefac[i] < 0)
return 0;
}
return 1;
}
#endif
/* number of bits used to encode scalefacs */
/* 18*slen1_tab[i] + 18*slen2_tab[i] */
static const int scale_short[16] = {
0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126
};
/* 17*slen1_tab[i] + 18*slen2_tab[i] */
static const int scale_mixed[16] = {
0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122
};
/* 11*slen1_tab[i] + 10*slen2_tab[i] */
static const int scale_long[16] = {
0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74
};
/*************************************************************************/
/* scale_bitcount */
/*************************************************************************/
/* Also calculates the number of bits necessary to code the scalefactors. */
static int
mpeg1_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
{
int k, sfb, max_slen1 = 0, max_slen2 = 0;
/* maximum values */
const int *tab;
int *const scalefac = cod_info->scalefac;
(void) gfc;
assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax));
if (cod_info->block_type == SHORT_TYPE) {
tab = scale_short;
if (cod_info->mixed_block_flag)
tab = scale_mixed;
}
else { /* block_type == 1,2,or 3 */
tab = scale_long;
if (!cod_info->preflag) {
for (sfb = 11; sfb < SBPSY_l; sfb++)
if (scalefac[sfb] < pretab[sfb])
break;
if (sfb == SBPSY_l) {
cod_info->preflag = 1;
for (sfb = 11; sfb < SBPSY_l; sfb++)
scalefac[sfb] -= pretab[sfb];
}
}
}
for (sfb = 0; sfb < cod_info->sfbdivide; sfb++)
if (max_slen1 < scalefac[sfb])
max_slen1 = scalefac[sfb];
for (; sfb < cod_info->sfbmax; sfb++)
if (max_slen2 < scalefac[sfb])
max_slen2 = scalefac[sfb];
/* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99
* loop over *all* posible values of scalefac_compress to find the
* one which uses the smallest number of bits. ISO would stop
* at first valid index */
cod_info->part2_length = LARGE_BITS;
for (k = 0; k < 16; k++) {
if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
&& cod_info->part2_length > tab[k]) {
cod_info->part2_length = tab[k];
cod_info->scalefac_compress = k;
}
}
return cod_info->part2_length == LARGE_BITS;
}
/*
table of largest scalefactor values for MPEG2
*/
static const int max_range_sfac_tab[6][4] = {
{15, 15, 7, 7},
{15, 15, 7, 0},
{7, 3, 0, 0},
{15, 31, 31, 0},
{7, 7, 7, 0},
{3, 3, 0, 0}
};
/*************************************************************************/
/* scale_bitcount_lsf */
/*************************************************************************/
/* Also counts the number of bits to encode the scalefacs but for MPEG 2 */
/* Lower sampling frequencies (24, 22.05 and 16 kHz.) */
/* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */
/* "Audio Decoding Layer III" */
static int
mpeg2_scale_bitcount(const lame_internal_flags * gfc, gr_info * const cod_info)
{
int table_number, row_in_table, partition, nr_sfb, window, over;
int i, sfb, max_sfac[4];
const int *partition_table;
int const *const scalefac = cod_info->scalefac;
/*
Set partition table. Note that should try to use table one,
but do not yet...
*/
if (cod_info->preflag)
table_number = 2;
else
table_number = 0;
for (i = 0; i < 4; i++)
max_sfac[i] = 0;
if (cod_info->block_type == SHORT_TYPE) {
row_in_table = 1;
partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
for (sfb = 0, partition = 0; partition < 4; partition++) {
nr_sfb = partition_table[partition] / 3;
for (i = 0; i < nr_sfb; i++, sfb++)
for (window = 0; window < 3; window++)
if (scalefac[sfb * 3 + window] > max_sfac[partition])
max_sfac[partition] = scalefac[sfb * 3 + window];
}
}
else {
row_in_table = 0;
partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
for (sfb = 0, partition = 0; partition < 4; partition++) {
nr_sfb = partition_table[partition];
for (i = 0; i < nr_sfb; i++, sfb++)
if (scalefac[sfb] > max_sfac[partition])
max_sfac[partition] = scalefac[sfb];
}
}
for (over = 0, partition = 0; partition < 4; partition++) {
if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
over++;
}
if (!over) {
/*
Since no bands have been over-amplified, we can set scalefac_compress
and slen[] for the formatter
*/
static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
int slen1, slen2, slen3, slen4;
cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table];
for (partition = 0; partition < 4; partition++)
cod_info->slen[partition] = log2tab[max_sfac[partition]];
/* set scalefac_compress */
slen1 = cod_info->slen[0];
slen2 = cod_info->slen[1];
slen3 = cod_info->slen[2];
slen4 = cod_info->slen[3];
switch (table_number) {
case 0:
cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4)
+ (slen3 << 2)
+ slen4;
break;
case 1:
cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
+ slen3;
break;
case 2:
cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2;
break;
default:
ERRORF(gfc, "intensity stereo not implemented yet\n");
break;
}
}
#ifdef DEBUG
if (over)
ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n");
#endif
if (!over) {
assert(cod_info->sfb_partition_table);
cod_info->part2_length = 0;
for (partition = 0; partition < 4; partition++)
cod_info->part2_length +=
cod_info->slen[partition] * cod_info->sfb_partition_table[partition];
}
return over;
}
int
scale_bitcount(const lame_internal_flags * gfc, gr_info * cod_info)
{
if (gfc->cfg.mode_gr == 2) {
return mpeg1_scale_bitcount(gfc, cod_info);
}
else {
return mpeg2_scale_bitcount(gfc, cod_info);
}
}
#ifdef MMX_choose_table
extern int choose_table_MMX(const int *ix, const int *const end, int *const s);
#endif
void
huffman_init(lame_internal_flags * const gfc)
{
int i;
gfc->choose_table = choose_table_nonMMX;
#ifdef MMX_choose_table
if (gfc->CPU_features.MMX) {
gfc->choose_table = choose_table_MMX;
}
#endif
for (i = 2; i <= 576; i += 2) {
int scfb_anz = 0, bv_index;
while (gfc->scalefac_band.l[++scfb_anz] < i);
bv_index = subdv_table[scfb_anz].region0_count;
while (gfc->scalefac_band.l[bv_index + 1] > i)
bv_index--;
if (bv_index < 0) {
/* this is an indication that everything is going to
be encoded as region0: bigvalues < region0 < region1
so lets set region0, region1 to some value larger
than bigvalues */
bv_index = subdv_table[scfb_anz].region0_count;
}
gfc->sv_qnt.bv_scf[i - 2] = bv_index;
bv_index = subdv_table[scfb_anz].region1_count;
while (gfc->scalefac_band.l[bv_index + gfc->sv_qnt.bv_scf[i - 2] + 2] > i)
bv_index--;
if (bv_index < 0) {
bv_index = subdv_table[scfb_anz].region1_count;
}
gfc->sv_qnt.bv_scf[i - 1] = bv_index;
}
}