Archived
1
0
This repository has been archived on 2024-10-17. You can view files and clone it, but cannot push or open issues or pull requests.
winamp/Src/external_dependencies/openmpt-trunk/tracklib/SampleEdit.cpp
2024-09-24 14:54:57 +02:00

582 lines
17 KiB
C++

/*
* SamplEdit.cpp
* -------------
* Purpose: Basic sample editing code (resizing, adding silence, normalizing, ...).
* Notes : (currently none)
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "SampleEdit.h"
#include "../soundlib/AudioCriticalSection.h"
#include "../soundlib/Sndfile.h"
#include "../soundlib/modsmp_ctrl.h"
#include "openmpt/soundbase/SampleConvert.hpp"
#include "openmpt/soundbase/SampleDecode.hpp"
#include "../soundlib/SampleCopy.h"
OPENMPT_NAMESPACE_BEGIN
namespace SampleEdit
{
std::vector<std::reference_wrapper<SmpLength>> GetCuesAndLoops(ModSample &smp)
{
std::vector<std::reference_wrapper<SmpLength>> loopPoints = {smp.nLoopStart, smp.nLoopEnd, smp.nSustainStart, smp.nSustainEnd};
loopPoints.insert(loopPoints.end(), std::begin(smp.cues), std::end(smp.cues));
return loopPoints;
}
SmpLength InsertSilence(ModSample &smp, const SmpLength silenceLength, const SmpLength startFrom, CSoundFile &sndFile)
{
if(silenceLength == 0 || silenceLength > MAX_SAMPLE_LENGTH || smp.nLength > MAX_SAMPLE_LENGTH - silenceLength || startFrom > smp.nLength)
return smp.nLength;
const bool wasEmpty = !smp.HasSampleData();
const SmpLength newLength = smp.nLength + silenceLength;
char *pNewSmp = static_cast<char *>(ModSample::AllocateSample(newLength, smp.GetBytesPerSample()));
if(pNewSmp == nullptr)
return smp.nLength; //Sample allocation failed.
if(!wasEmpty)
{
// Copy over old sample
const SmpLength silenceOffset = startFrom * smp.GetBytesPerSample();
const SmpLength silenceBytes = silenceLength * smp.GetBytesPerSample();
if(startFrom > 0)
{
memcpy(pNewSmp, smp.samplev(), silenceOffset);
}
if(startFrom < smp.nLength)
{
memcpy(pNewSmp + silenceOffset + silenceBytes, smp.sampleb() + silenceOffset, smp.GetSampleSizeInBytes() - silenceOffset);
}
// Update loop points if necessary.
for(SmpLength &point : GetCuesAndLoops(smp))
{
if(point >= startFrom) point += silenceLength;
}
} else
{
// Set loop points automatically
smp.nLoopStart = 0;
smp.nLoopEnd = newLength;
smp.uFlags.set(CHN_LOOP);
}
ctrlSmp::ReplaceSample(smp, pNewSmp, newLength, sndFile);
smp.PrecomputeLoops(sndFile, true);
return smp.nLength;
}
namespace
{
// Update loop points and cues after deleting a sample selection
void AdjustLoopPoints(SmpLength selStart, SmpLength selEnd, SmpLength &loopStart, SmpLength &loopEnd, SmpLength length)
{
Util::DeleteRange(selStart, selEnd - 1, loopStart, loopEnd);
LimitMax(loopEnd, length);
if(loopStart + 2 >= loopEnd)
{
loopStart = loopEnd = 0;
}
}
}
SmpLength RemoveRange(ModSample &smp, SmpLength selStart, SmpLength selEnd, CSoundFile &sndFile)
{
LimitMax(selEnd, smp.nLength);
if(selEnd <= selStart)
{
return smp.nLength;
}
const uint8 bps = smp.GetBytesPerSample();
memmove(smp.sampleb() + selStart * bps, smp.sampleb() + selEnd * bps, (smp.nLength - selEnd) * bps);
smp.nLength -= (selEnd - selStart);
// Did loops or cue points cover the deleted selection?
AdjustLoopPoints(selStart, selEnd, smp.nLoopStart, smp.nLoopEnd, smp.nLength);
AdjustLoopPoints(selStart, selEnd, smp.nSustainStart, smp.nSustainEnd, smp.nLength);
if(smp.nLoopEnd == 0) smp.uFlags.reset(CHN_LOOP | CHN_PINGPONGLOOP);
if(smp.nSustainEnd == 0) smp.uFlags.reset(CHN_SUSTAINLOOP | CHN_PINGPONGSUSTAIN);
for(auto &cue : smp.cues)
{
if(cue >= selEnd)
cue -= (selEnd - selStart);
else if(cue >= selStart && selStart == 0)
cue = smp.nLength;
else if(cue >= selStart)
cue = selStart;
}
smp.PrecomputeLoops(sndFile);
return smp.nLength;
}
SmpLength ResizeSample(ModSample &smp, const SmpLength newLength, CSoundFile &sndFile)
{
// Invalid sample size
if(newLength > MAX_SAMPLE_LENGTH || newLength == smp.nLength)
return smp.nLength;
// New sample will be bigger so we'll just use "InsertSilence" as it's already there.
if(newLength > smp.nLength)
return InsertSilence(smp, newLength - smp.nLength, smp.nLength, sndFile);
// Else: Shrink sample
const SmpLength newSmpBytes = newLength * smp.GetBytesPerSample();
void *newData = ModSample::AllocateSample(newLength, smp.GetBytesPerSample());
if(newData == nullptr && newLength > 0)
return smp.nLength; //Sample allocation failed.
// Copy over old data and replace sample by the new one
if(newData != nullptr)
memcpy(newData, smp.sampleb(), newSmpBytes);
ctrlSmp::ReplaceSample(smp, newData, newLength, sndFile);
// Sanitize loops and update loop wrap-around buffers
smp.PrecomputeLoops(sndFile);
return smp.nLength;
}
void ResetSamples(CSoundFile &sndFile, ResetFlag resetflag, SAMPLEINDEX minSample, SAMPLEINDEX maxSample)
{
if(minSample == SAMPLEINDEX_INVALID)
minSample = 1;
if(maxSample == SAMPLEINDEX_INVALID)
maxSample = sndFile.GetNumSamples();
Limit(minSample, SAMPLEINDEX(1), SAMPLEINDEX(MAX_SAMPLES - 1));
Limit(maxSample, SAMPLEINDEX(1), SAMPLEINDEX(MAX_SAMPLES - 1));
if(minSample > maxSample)
std::swap(minSample, maxSample);
for(SAMPLEINDEX i = minSample; i <= maxSample; i++)
{
ModSample &sample = sndFile.GetSample(i);
switch(resetflag)
{
case SmpResetInit:
sndFile.m_szNames[i] = "";
sample.filename = "";
sample.nC5Speed = 8363;
[[fallthrough]];
case SmpResetCompo:
sample.nPan = 128;
sample.nGlobalVol = 64;
sample.nVolume = 256;
sample.nVibDepth = 0;
sample.nVibRate = 0;
sample.nVibSweep = 0;
sample.nVibType = VIB_SINE;
sample.uFlags.reset(CHN_PANNING | SMP_NODEFAULTVOLUME);
break;
case SmpResetVibrato:
sample.nVibDepth = 0;
sample.nVibRate = 0;
sample.nVibSweep = 0;
sample.nVibType = VIB_SINE;
break;
default:
break;
}
}
}
namespace
{
struct OffsetData
{
double max = 0.0, min = 0.0, offset = 0.0;
};
// Returns maximum sample amplitude for given sample type (int8/int16).
template <class T>
constexpr double GetMaxAmplitude() {return 1.0 + (std::numeric_limits<T>::max)();}
// Calculates DC offset and returns struct with DC offset, max and min values.
// DC offset value is average of [-1.0, 1.0[-normalized offset values.
template<class T>
OffsetData CalculateOffset(const T *pStart, const SmpLength length)
{
OffsetData offsetVals;
if(length < 1)
return offsetVals;
const double intToFloatScale = 1.0 / GetMaxAmplitude<T>();
double max = -1, min = 1, sum = 0;
const T *p = pStart;
for(SmpLength i = 0; i < length; i++, p++)
{
const double val = static_cast<double>(*p) * intToFloatScale;
sum += val;
if(val > max) max = val;
if(val < min) min = val;
}
offsetVals.max = max;
offsetVals.min = min;
offsetVals.offset = (-sum / (double)(length));
return offsetVals;
}
template <class T>
void RemoveOffsetAndNormalize(T *pStart, const SmpLength length, const double offset, const double amplify)
{
T *p = pStart;
for(SmpLength i = 0; i < length; i++, p++)
{
double var = (*p) * amplify + offset;
*p = mpt::saturate_round<T>(var);
}
}
}
// Remove DC offset
double RemoveDCOffset(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
if(!smp.HasSampleData())
return 0;
if(end > smp.nLength) end = smp.nLength;
if(start > end) start = end;
if(start == end)
{
start = 0;
end = smp.nLength;
}
start *= smp.GetNumChannels();
end *= smp.GetNumChannels();
const double maxAmplitude = (smp.GetElementarySampleSize() == 2) ? GetMaxAmplitude<int16>() : GetMaxAmplitude<int8>();
// step 1: Calculate offset.
OffsetData oData;
if(smp.GetElementarySampleSize() == 2)
oData = CalculateOffset(smp.sample16() + start, end - start);
else if(smp.GetElementarySampleSize() == 1)
oData = CalculateOffset(smp.sample8() + start, end - start);
else
return 0;
double offset = oData.offset;
if((int)(offset * maxAmplitude) == 0)
return 0;
// those will be changed...
oData.max += offset;
oData.min += offset;
// ... and that might cause distortion, so we will normalize this.
const double amplify = 1 / std::max(oData.max, -oData.min);
// step 2: centralize + normalize sample
offset *= maxAmplitude * amplify;
if(smp.GetElementarySampleSize() == 2)
RemoveOffsetAndNormalize(smp.sample16() + start, end - start, offset, amplify);
else if(smp.GetElementarySampleSize() == 1)
RemoveOffsetAndNormalize(smp.sample8() + start, end - start, offset, amplify);
// step 3: adjust global vol (if available)
if((sndFile.GetType() & (MOD_TYPE_IT | MOD_TYPE_MPT)) && (start == 0) && (end == smp.nLength * smp.GetNumChannels()))
{
CriticalSection cs;
smp.nGlobalVol = std::min(mpt::saturate_round<uint16>(smp.nGlobalVol / amplify), uint16(64));
for(auto &chn : sndFile.m_PlayState.Chn)
{
if(chn.pModSample == &smp)
{
chn.UpdateInstrumentVolume(&smp, chn.pModInstrument);
}
}
}
smp.PrecomputeLoops(sndFile, false);
return oData.offset;
}
template<typename T>
static void ApplyAmplifyImpl(T * MPT_RESTRICT pSample, const SmpLength length, const double amplifyStart, const double amplifyEnd, const bool isFadeIn, const Fade::Law fadeLaw)
{
Fade::Func fadeFunc = Fade::GetFadeFunc(fadeLaw);
if(amplifyStart != amplifyEnd)
{
const double fadeOffset = isFadeIn ? amplifyStart : amplifyEnd;
const double fadeDiff = isFadeIn ? (amplifyEnd - amplifyStart) : (amplifyStart - amplifyEnd);
const double lengthInv = 1.0 / length;
for(SmpLength i = 0; i < length; i++)
{
const double amp = fadeOffset + fadeFunc(static_cast<double>(isFadeIn ? i : (length - i)) * lengthInv) * fadeDiff;
pSample[i] = mpt::saturate_round<T>(amp * pSample[i]);
}
} else
{
const double amp = fadeFunc(amplifyStart);
for(SmpLength i = 0; i < length; i++)
{
pSample[i] = mpt::saturate_round<T>(amp * pSample[i]);
}
}
}
bool AmplifySample(ModSample &smp, SmpLength start, SmpLength end, double amplifyStart, double amplifyEnd, bool isFadeIn, Fade::Law fadeLaw, CSoundFile &sndFile)
{
if(!smp.HasSampleData()) return false;
if(end == 0 || start >= end || end > smp.nLength)
{
start = 0;
end = smp.nLength;
}
if(end - start < 2) return false;
start *= smp.GetNumChannels();
end *= smp.GetNumChannels();
if (smp.GetElementarySampleSize() == 2)
ApplyAmplifyImpl(smp.sample16() + start, end - start, amplifyStart, amplifyEnd, isFadeIn, fadeLaw);
else if (smp.GetElementarySampleSize() == 1)
ApplyAmplifyImpl(smp.sample8() + start, end - start, amplifyStart, amplifyEnd, isFadeIn, fadeLaw);
else
return false;
smp.PrecomputeLoops(sndFile, false);
return true;
}
// Reverse sample data
bool ReverseSample(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
return ctrlSmp::ReverseSample(smp, start, end, sndFile);
}
template <class T>
static void UnsignSampleImpl(T *pStart, const SmpLength length)
{
const T offset = (std::numeric_limits<T>::min)();
for(SmpLength i = 0; i < length; i++)
{
pStart[i] += offset;
}
}
// Virtually unsign sample data
bool UnsignSample(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
if(!smp.HasSampleData()) return false;
if(end == 0 || start > smp.nLength || end > smp.nLength)
{
start = 0;
end = smp.nLength;
}
start *= smp.GetNumChannels();
end *= smp.GetNumChannels();
if(smp.GetElementarySampleSize() == 2)
UnsignSampleImpl(smp.sample16() + start, end - start);
else if(smp.GetElementarySampleSize() == 1)
UnsignSampleImpl(smp.sample8() + start, end - start);
else
return false;
smp.PrecomputeLoops(sndFile, false);
return true;
}
// Invert sample data (flip by 180 degrees)
bool InvertSample(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
return ctrlSmp::InvertSample(smp, start, end, sndFile);
}
// Crossfade sample data to create smooth loops
bool XFadeSample(ModSample &smp, SmpLength fadeLength, int fadeLaw, bool afterloopFade, bool useSustainLoop, CSoundFile &sndFile)
{
return ctrlSmp::XFadeSample(smp, fadeLength, fadeLaw, afterloopFade, useSustainLoop, sndFile);
}
template <class T>
static void SilenceSampleImpl(T *p, SmpLength length, SmpLength inc, bool fromStart, bool toEnd)
{
const int dest = toEnd ? 0 : p[(length - 1) * inc];
const int base = fromStart ? 0 :p[0];
const int delta = dest - base;
const int64 len_m1 = length - 1;
for(SmpLength i = 0; i < length; i++)
{
int n = base + static_cast<int>((static_cast<int64>(delta) * static_cast<int64>(i)) / len_m1);
*p = static_cast<T>(n);
p += inc;
}
}
// Silence parts of the sample data
bool SilenceSample(ModSample &smp, SmpLength start, SmpLength end, CSoundFile &sndFile)
{
LimitMax(end, smp.nLength);
if(!smp.HasSampleData() || start >= end) return false;
const SmpLength length = end - start;
const bool fromStart = start == 0;
const bool toEnd = end == smp.nLength;
const uint8 numChn = smp.GetNumChannels();
for(uint8 chn = 0; chn < numChn; chn++)
{
if(smp.GetElementarySampleSize() == 2)
SilenceSampleImpl(smp.sample16() + start * numChn + chn, length, numChn, fromStart, toEnd);
else if(smp.GetElementarySampleSize() == 1)
SilenceSampleImpl(smp.sample8() + start * numChn + chn, length, numChn, fromStart, toEnd);
else
return false;
}
smp.PrecomputeLoops(sndFile, false);
return true;
}
template <class T>
static void StereoSepSampleImpl(T *p, SmpLength length, int32 separation)
{
const int32 fac1 = static_cast<int32>(32768 + separation / 2), fac2 = static_cast<int32>(32768 - separation / 2);
while(length--)
{
const int32 l = p[0], r = p[1];
p[0] = mpt::saturate_cast<T>((Util::mul32to64(l, fac1) + Util::mul32to64(r, fac2)) >> 16);
p[1] = mpt::saturate_cast<T>((Util::mul32to64(l, fac2) + Util::mul32to64(r, fac1)) >> 16);
p += 2;
}
}
// Change stereo separation
bool StereoSepSample(ModSample &smp, SmpLength start, SmpLength end, double separation, CSoundFile &sndFile)
{
LimitMax(end, smp.nLength);
if(!smp.HasSampleData() || start >= end || smp.GetNumChannels() != 2) return false;
const SmpLength length = end - start;
const uint8 numChn = smp.GetNumChannels();
const int32 sep32 = mpt::saturate_round<int32>(separation * (65536.0 / 100.0));
if(smp.GetElementarySampleSize() == 2)
StereoSepSampleImpl(smp.sample16() + start * numChn, length, sep32);
else if(smp.GetElementarySampleSize() == 1)
StereoSepSampleImpl(smp.sample8() + start * numChn, length, sep32);
else
return false;
smp.PrecomputeLoops(sndFile, false);
return true;
}
// Convert 16-bit sample to 8-bit
bool ConvertTo8Bit(ModSample &smp, CSoundFile &sndFile)
{
if(!smp.HasSampleData() || smp.GetElementarySampleSize() != 2)
return false;
CopySample<SC::ConversionChain<SC::Convert<int8, int16>, SC::DecodeIdentity<int16>>>(static_cast<int8 *>(smp.samplev()), smp.nLength * smp.GetNumChannels(), 1, smp.sample16(), smp.GetSampleSizeInBytes(), 1);
smp.uFlags.reset(CHN_16BIT);
for(auto &chn : sndFile.m_PlayState.Chn)
{
if(chn.pModSample == &smp)
chn.dwFlags.reset(CHN_16BIT);
}
smp.PrecomputeLoops(sndFile, false);
return true;
}
// Convert 8-bit sample to 16-bit
bool ConvertTo16Bit(ModSample &smp, CSoundFile &sndFile)
{
if(!smp.HasSampleData() || smp.GetElementarySampleSize() != 1)
return false;
int16 *newSample = static_cast<int16 *>(ModSample::AllocateSample(smp.nLength, 2 * smp.GetNumChannels()));
if(newSample == nullptr)
return false;
CopySample<SC::ConversionChain<SC::Convert<int16, int8>, SC::DecodeIdentity<int8>>>(newSample, smp.nLength * smp.GetNumChannels(), 1, smp.sample8(), smp.GetSampleSizeInBytes(), 1);
smp.uFlags.set(CHN_16BIT);
ctrlSmp::ReplaceSample(smp, newSample, smp.nLength, sndFile);
smp.PrecomputeLoops(sndFile, false);
return true;
}
template <class T>
static void ConvertPingPongLoopImpl(T *pStart, SmpLength length)
{
auto *out = pStart, *in = pStart;
while(length--)
{
*(out++) = *(--in);
}
}
// Convert ping-pong loops to regular loops
bool ConvertPingPongLoop(ModSample &smp, CSoundFile &sndFile, bool sustainLoop)
{
if(!smp.HasSampleData()
|| (!smp.HasPingPongLoop() && !sustainLoop)
|| (!smp.HasPingPongSustainLoop() && sustainLoop))
return false;
const SmpLength loopStart = sustainLoop ? smp.nSustainStart : smp.nLoopStart;
const SmpLength loopEnd = sustainLoop ? smp.nSustainEnd : smp.nLoopEnd;
const SmpLength oldLoopLength = loopEnd - loopStart;
const SmpLength oldLength = smp.nLength;
if(InsertSilence(smp, oldLoopLength, loopEnd, sndFile) <= oldLength)
return false;
static_assert(MaxSamplingPointSize <= 4);
if(smp.GetBytesPerSample() == 4) // 16 bit stereo
ConvertPingPongLoopImpl(static_cast<int32 *>(smp.samplev()) + loopEnd, oldLoopLength);
else if(smp.GetBytesPerSample() == 2) // 16 bit mono / 8 bit stereo
ConvertPingPongLoopImpl(static_cast<int16 *>(smp.samplev()) + loopEnd, oldLoopLength);
else if(smp.GetBytesPerSample() == 1) // 8 bit mono
ConvertPingPongLoopImpl(static_cast<int8 *>(smp.samplev()) + loopEnd, oldLoopLength);
else
return false;
smp.uFlags.reset(sustainLoop ? CHN_PINGPONGSUSTAIN : CHN_PINGPONGLOOP);
smp.PrecomputeLoops(sndFile, true);
return true;
}
} // namespace SampleEdit
OPENMPT_NAMESPACE_END