Archived
1
0
This repository has been archived on 2024-10-17. You can view files and clone it, but cannot push or open issues or pull requests.
winamp/Src/Winamp/plush/PLUSH.H
2024-09-24 14:54:57 +02:00

721 lines
21 KiB
C

/******************************************************************************
plush.h
PLUSH 3D VERSION 1.2 MAIN HEADER
Copyright (c) 1996-2000 Justin Frankel
Copyright (c) 1998-2000 Nullsoft, Inc.
For more information on Plush and the latest updates, please visit
http://www.nullsoft.com
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Justin Frankel
justin@nullsoft.com
******************************************************************************/
#ifndef _PLUSH_H_
#define _PLUSH_H_
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "pl_conf.h"
#include "pl_defs.h"
#include "pl_types.h"
#ifdef __cplusplus
extern "C" {
#endif
extern pl_uChar plText_DefaultFont[256*16]; /* Default 8x16 font for plText* */
extern pl_uInt32 plRender_TriStats[4]; /* Three different triangle counts from
the last plRender() block:
0: initial tris
1: tris after culling
2: final polys after real clipping
3: final tris after tesselation
*/
/******************************************************************************
** Material Functions (mat.c)
******************************************************************************/
/*
plMatCreate() creates a material.
Parameters:
none
Returns:
a pointer to the material on success, 0 on failure
*/
pl_Mat *plMatCreate();
/*
plMatDelete() deletes a material that was created with plMatCreate().
Parameters:
m: a pointer to the material to be deleted
Returns:
nothing
*/
void plMatDelete(pl_Mat *m);
/*
plMatInit() initializes a material that was created with plMatCreate().
Parameters:
m: a pointer to the material to be intialized
Returns:
nothing
Notes:
you *must* do this before calling plMatMapToPal() or plMatMakeOptPal().
*/
void plMatInit(pl_Mat *m);
/*
plMatMapToPal() maps a material that was created with plMatCreate() and
initialized with plMatInit() to a palette.
Parameters:
mat: material to map
pal: a 768 byte array of unsigned chars, each 3 being a rgb triplet
(0-255, *not* the cheesy vga 0-63)
pstart: starting offset to use colors of, usually 0
pend: ending offset to use colors of, usually 255
Returns:
nothing
Notes:
Mapping a material with > 2000 colors can take up to a second or two.
Be careful, and go easy on plMat.NumGradients ;)
*/
void plMatMapToPal(pl_Mat *m, pl_uChar *pal, pl_sInt pstart, pl_sInt pend);
/*
plMatMakeOptPal() makes an almost optimal palette from materials
created with plMatCreate() and initialized with plMatInit().
Paramters:
p: palette to create
pstart: first color entry to use
pend: last color entry to use
materials: an array of pointers to materials to generate the palette from
nmats: number of materials
Returns:
nothing
*/
void plMatMakeOptPal(pl_uChar *p, pl_sInt pstart,
pl_sInt pend, pl_Mat **materials, pl_sInt nmats);
/******************************************************************************
** Object Functions (obj.c)
******************************************************************************/
/*
plObjCreate() allocates an object
Paramters:
np: Number of vertices in object
nf: Number of faces in object
Returns:
a pointer to the object on success, 0 on failure
*/
pl_Obj *plObjCreate(pl_uInt32 np, pl_uInt32 nf);
/*
plObjDelete() frees an object and all of it's subobjects
that was allocated with plObjCreate();
Paramters:
o: object to delete
Returns:
nothing
*/
void plObjDelete(pl_Obj *o);
/*
plObjClone() creates an exact but independent duplicate of an object and
all of it's subobjects
Paramters:
o: the object to clone
Returns:
a pointer to the new object on success, 0 on failure
*/
pl_Obj *plObjClone(pl_Obj *o);
/*
plObjScale() scales an object, and all of it's subobjects.
Paramters:
o: a pointer to the object to scale
s: the scaling factor
Returns:
a pointer to o.
Notes: This scales it slowly, by going through each vertex and scaling it's
position. Avoid doing this in realtime.
*/
pl_Obj *plObjScale(pl_Obj *o, pl_Float s);
/*
plObjStretch() stretches an object, and all of it's subobjects
Parameters:
o: a pointer to the object to stretch
x,y,z: the x y and z stretch factors
Returns:
a pointer to o.
Notes: same as plObjScale(). Note that the normals are preserved.
*/
pl_Obj *plObjStretch(pl_Obj *o, pl_Float x, pl_Float y, pl_Float z);
/*
plObjTranslate() translates an object
Parameters:
o: a pointer to the object to translate
x,y,z: translation in object space
Returns:
a pointer to o
Notes: same has plObjScale().
*/
pl_Obj *plObjTranslate(pl_Obj *o, pl_Float x, pl_Float y, pl_Float z);
/*
plObjFlipNormals() flips all vertex and face normals of and object
and allo of it's subobjects.
Parameters:
o: a pointer to the object to flip normals of
Returns:
a pointer to o
Notes:
Not especially fast.
A call to plObjFlipNormals() or plObjCalcNormals() will restore the normals
*/
pl_Obj *plObjFlipNormals(pl_Obj *o);
/*
plObjSetMat() sets the material of all faces in an object.
Paramters:
o: the object to set the material of
m: the material to set it to
th: "transcend hierarchy". If set, it will set the
material of all subobjects too.
Returns:
nothing
*/
void plObjSetMat(pl_Obj *o, pl_Mat *m, pl_Bool th);
/*
plObjCalcNormals() calculates all face and vertex normals for an object
and all subobjects.
Paramters:
obj: the object
Returns:
nothing
*/
void plObjCalcNormals(pl_Obj *obj);
/******************************************************************************
** Frustum Clipping Functions (clip.c)
******************************************************************************/
/*
plClipSetFrustum() sets up the clipping frustum.
Parameters:
cam: a camera allocated with plCamCreate().
Returns:
nothing
Notes:
Sets up the internal structures.
DO NOT CALL THIS ROUTINE FROM WITHIN A plRender*() block.
*/
void plClipSetFrustum(pl_Cam *cam);
/*
plClipRenderFace() renders a face and clips it to the frustum initialized
with plClipSetFrustum().
Parameters:
face: the face to render
Returns:
nothing
Notes: this is used internally by plRender*(), so be careful. Kinda slow too.
*/
void plClipRenderFace(pl_Face *face);
/*
plClipNeeded() decides whether the face is in the frustum, intersecting
the frustum, or completely out of the frustum craeted with
plClipSetFrustum().
Parameters:
face: the face to check
Returns:
0: the face is out of the frustum, no drawing necessary
1: the face is intersecting the frustum, splitting and drawing necessary
Notes: this is used internally by plRender*(), so be careful. Kinda slow too.
*/
pl_sInt plClipNeeded(pl_Face *face);
/******************************************************************************
** Light Handling Routines (light.c)
******************************************************************************/
/*
plLightCreate() creates a new light
Parameters:
none
Returns:
a pointer to the light
*/
pl_Light *plLightCreate();
/*
plLightSet() sets up a light allocated with plLightCreate()
Parameters:
light: the light to set up
mode: the mode of the light (PL_LIGHT_*)
x,y,z: either the position of the light (PL_LIGHT_POINT*) or the angle
in degrees of the light (PL_LIGHT_VECTOR)
intensity: the intensity of the light (0.0-1.0)
halfDist: the distance at which PL_LIGHT_POINT_DISTANCE is 1/2 intensity
Returns:
a pointer to light.
*/
pl_Light *plLightSet(pl_Light *light, pl_uChar mode, pl_Float x, pl_Float y,
pl_Float z, pl_Float intensity, pl_Float halfDist);
/*
plLightDelete() frees a light allocated with plLightCreate().
Paramters:
l: light to delete
Returns:
nothing
*/
void plLightDelete(pl_Light *l);
/* PUT ME SOMEWHERE */
/*
** plTexDelete() frees all memory associated with "t"
*/
void plTexDelete(pl_Texture *t);
/******************************************************************************
** Camera Handling Routines (cam.c)
******************************************************************************/
/*
plCamCreate() allocates a new camera
Parameters:
sw: screen width
sh: screen height
ar: aspect ratio (usually 1.0)
fov: field of view (usually 45-120)
fb: pointer to framebuffer
zb: pointer to Z buffer (or NULL)
Returns:
a pointer to the newly allocated camera
*/
pl_Cam *plCamCreate(pl_uInt sw, pl_uInt sh, pl_Float ar, pl_Float fov,
pl_uChar *fb, pl_ZBuffer *zb);
/*
plCamSetTarget() sets the target of a camera allocated with plCamCreate().
Parameters:
c: the camera to set the target of
x,y,z: the worldspace coordinate of the target
Returns:
nothing
Notes:
Sets the pitch and pan of the camera. Does not touch the roll.
*/
void plCamSetTarget(pl_Cam *c, pl_Float x, pl_Float y, pl_Float z);
/*
plCamDelete() frees all memory associated with a camera excluding
framebuffers and Z buffers
Paramters:
c: camera to free
Returns:
nothing
*/
void plCamDelete(pl_Cam *c);
/******************************************************************************
** Easy Rendering Interface (render.c)
******************************************************************************/
/*
plRenderBegin() begins the rendering process.
Parameters:
Camera: camera to use for rendering
Returns:
nothing
Notes:
Only one rendering process can occur at a time.
Uses plClip*(), so don't use them within or around a plRender() block.
*/
void plRenderBegin(pl_Cam *Camera);
/*
plRenderLight() adds a light to the scene.
Parameters:
light: light to add to scene
Returns:
nothing
Notes: Any objects rendered before will be unaffected by this.
*/
void plRenderLight(pl_Light *light);
/*
plRenderObj() adds an object and all of it's subobjects to the scene.
Parameters:
obj: object to render
Returns:
nothing
Notes: if Camera->Sort is zero, objects are rendered in the order that
they are added to the scene.
*/
void plRenderObj(pl_Obj *obj);
/*
plRenderEnd() actually does the rendering, and closes the rendering process
Paramters:
none
Returns:
nothing
*/
void plRenderEnd();
/******************************************************************************
** Object Primitives Code (make.c)
******************************************************************************/
/*
plMakePlane() makes a plane centered at the origin facing up the y axis.
Parameters:
w: width of the plane (along the x axis)
d: depth of the plane (along the z axis)
res: resolution of plane, i.e. subdivisions
m: material to use
Returns:
pointer to object created.
*/
pl_Obj *plMakePlane(pl_Float w, pl_Float d, pl_uInt res, pl_Mat *m);
/*
plMakeBox() makes a box centered at the origin
Parameters:
w: width of the box (x axis)
d: depth of the box (z axis)
h: height of the box (y axis)
Returns:
pointer to object created.
*/
pl_Obj *plMakeBox(pl_Float w, pl_Float d, pl_Float h, pl_Mat *m);
/*
plMakeCone() makes a cone centered at the origin
Parameters:
r: radius of the cone (x-z axis)
h: height of the cone (y axis)
div: division of cone (>=3)
cap: close the big end?
m: material to use
Returns:
pointer to object created.
*/
pl_Obj *plMakeCone(pl_Float r, pl_Float h, pl_uInt div, pl_Bool cap, pl_Mat *m);
/*
plMakeCylinder() makes a cylinder centered at the origin
Parameters:
r: radius of the cylinder (x-z axis)
h: height of the cylinder (y axis)
divr: division of of cylinder (around the circle) (>=3)
captop: close the top
capbottom: close the bottom
m: material to use
Returns:
pointer to object created.
*/
pl_Obj *plMakeCylinder(pl_Float r, pl_Float h, pl_uInt divr, pl_Bool captop,
pl_Bool capbottom, pl_Mat *m);
/*
plMakeSphere() makes a sphere centered at the origin.
Parameters:
r: radius of the sphere
divr: division of the sphere (around the y axis) (>=3)
divh: division of the sphere (around the x,z axis) (>=3)
m: material to use
Returns:
pointer to object created.
*/
pl_Obj *plMakeSphere(pl_Float r, pl_uInt divr, pl_uInt divh, pl_Mat *m);
/*
plMakeTorus() makes a torus centered at the origin
Parameters:
r1: inner radius of the torus
r2: outer radius of the torus
divrot: division of the torus (around the y axis) (>=3)
divrad: division of the radius of the torus (x>=3)
m: material to use
Returns:
pointer to object created.
*/
pl_Obj *plMakeTorus(pl_Float r1, pl_Float r2, pl_uInt divrot,
pl_uInt divrad, pl_Mat *m);
/******************************************************************************
** File Readers (read_*.c)
******************************************************************************/
/*
plRead3DSObj() reads a 3DS object
Parameters:
fn: filename of object to read
m: material to assign it
Returns:
pointer to object
Notes:
This reader organizes multiple objects like so:
1) the first object is returned
2) the second object is the first's first child
3) the third object is the second's first child
4) etc
*/
pl_Obj *plRead3DSObj(char *fn, pl_Mat *m);
/*
plReadCOBObj() reads an ascii .COB object
Parameters:
fn: filename of object to read
mat: material to assign it
Returns:
pointer to object
Notes:
This is Caligari's ASCII object format.
This reader doesn't handle multiple objects. It just reads the first one.
Polygons with lots of sides are not always tesselated correctly. Just
use the "Tesselate" button from within truespace to improve the results.
*/
pl_Obj *plReadCOBObj(char *fn, pl_Mat *mat);
/*
plReadJAWObj() reads a .JAW object.
Parameters:
fn: filename of object to read
m: material to assign it
Returns:
pointer to object
Notes:
For information on the .JAW format, please see the jaw3D homepage,
http://www.tc.umn.edu/nlhome/g346/kari0022/jaw3d/
*/
pl_Obj *plReadJAWObj(char *fn, pl_Mat *m);
/*
plReadPCXTex() reads a 8bpp PCX texture
Parameters:
fn: filename of texture to read
rescale: will rescale image if not whole log2 dimensions (USE THIS)
optimize: will optimize colors (USE THIS TOO)
Returns:
pointer to texture
Notes:
The PCX must be a 8bpp zSoft version 5 PCX. The texture's palette will
be optimized, and the texture might be scaled up so that it's dimensions
will be a nice power of two.
*/
pl_Texture *plReadPCXTex(char *fn, pl_Bool rescale, pl_Bool optimize);
/******************************************************************************
** Math Code (math.c)
******************************************************************************/
/*
plMatrixRotate() generates a rotation matrix
Parameters:
matrix: an array of 16 pl_Floats that is a 4x4 matrix
m: the axis to rotate around, 1=X, 2=Y, 3=Z.
Deg: the angle in degrees to rotate
Returns:
nothing
*/
void plMatrixRotate(pl_Float matrix[], pl_uChar m, pl_Float Deg);
/*
plMatrixTranslate() generates a translation matrix
Parameters:
m: the matrix (see plMatrixRotate for more info)
x,y,z: the translation coordinates
Returns:
nothing
*/
void plMatrixTranslate(pl_Float m[], pl_Float x, pl_Float y, pl_Float z);
/*
plMatrixMultiply() multiplies two matrices
Parameters:
dest: destination matrix will be multipled by src
src: source matrix
Returns:
nothing
Notes:
this is the same as dest = dest*src (since the order *does* matter);
*/
void plMatrixMultiply(pl_Float *dest, pl_Float src[]);
/*
plMatrixApply() applies a matrix.
Parameters:
m: matrix to apply
x,y,z: input coordinate
outx,outy,outz: pointers to output coords.
Returns:
nothing
Notes:
applies the matrix to the 3d point to produce the transformed 3d point
*/
void plMatrixApply(pl_Float *m, pl_Float x, pl_Float y, pl_Float z,
pl_Float *outx, pl_Float *outy, pl_Float *outz);
/*
plNormalizeVector() makes a vector a unit vector
Parameters:
x,y,z: pointers to the vector
Returns:
nothing
*/
void plNormalizeVector(pl_Float *x, pl_Float *y, pl_Float *z);
/*
plDotProduct() returns the dot product of two vectors
Parameters:
x1,y1,z1: the first vector
x2,y2,z2: the second vector
Returns:
the dot product of the two vectors
*/
pl_Float plDotProduct(pl_Float x1, pl_Float y1, pl_Float z1,
pl_Float x2, pl_Float y2, pl_Float z2);
/******************************************************************************
** Spline Interpolation (spline.c)
******************************************************************************/
/*
plSplineInit() initializes a spline
Parameters:
s: the spline
Returns:
nothing
Notes:
Intializes the spline. Do this once, or when you change any of the settings
*/
void plSplineInit(pl_Spline *s);
/*
plSplineGetPoint() gets a point on the spline
Parameters:
s: spline
frame: time into spline. 0.0 is start, 1.0 is second key point, etc.
out: a pointer to an array of s->keyWidth floats that will be filled in.
Returns:
nothing
*/
void plSplineGetPoint(pl_Spline *s, pl_Float frame, pl_Float *out);
/******************************************************************************
** 8xX Bitmapped Text
******************************************************************************/
/*
plTextSetFont() sets the font to be used by the plText*() functions.
Parameters:
font: a pointer to a 8xX bitmapped font
height: the height of the font (X)
Returns:
nothing
*/
void plTextSetFont(pl_uChar *font, pl_uChar height);
/*
plTextPutChar() puts a character to a camera
Parameters:
cam: The camera. If the camera has a zBuffer, it will be used.
x: the x screen position of the left of the text
y: the y screen position of the top of the text
z: the depth of the text (used when cam->zBuffer is set)
color: the color to make the text
c: the character to put. Special characters such as '\n' aren't handled.
Returns:
nothing
*/
void plTextPutChar(pl_Cam *cam, pl_sInt x, pl_sInt y, pl_Float z,
pl_uChar color, pl_uChar c);
/*
plTextPutString() puts an array of characters to a camera
Parameters:
cam: The camera. If the camera has a zBuffer, it will be used.
x: the x screen position of the left of the text
y: the y screen position of the top of the text
z: the depth of the text (used when cam->zBuffer is set)
color: the color to make the text
string:
the characters to put. '\n' and '\t' are handled as one would expect
Returns:
nothing
*/
void plTextPutStr(pl_Cam *cam, pl_sInt x, pl_sInt y, pl_Float z,
pl_uChar color, pl_sChar *string);
/*
plTextPrintf() is printf() for graphics
Parameters:
cam: The camera. If the camera has a zBuffer, it will be used.
x: the x screen position of the left of the text
y: the y screen position of the top of the text
z: the depth of the text (used when cam->zBuffer is set)
color: the color to make the text
format:
the characters to put, with printf() formatting codes.
'\n' and '\t' are handled as one would expect
...: any additional parameters specified by format
Returns:
nothing
*/
void plTextPrintf(pl_Cam *cam, pl_sInt x, pl_sInt y, pl_Float z,
pl_uChar color, pl_sChar *format, ...);
/******************************************************************************
** Built-in Rasterizers
******************************************************************************/
void plPF_SolidF(pl_Cam *, pl_Face *);
void plPF_SolidG(pl_Cam *, pl_Face *);
void plPF_TexF(pl_Cam *, pl_Face *);
void plPF_TexG(pl_Cam *, pl_Face *);
void plPF_TexEnv(pl_Cam *, pl_Face *);
void plPF_PTexF(pl_Cam *, pl_Face *);
void plPF_PTexG(pl_Cam *, pl_Face *);
void plPF_TransF(pl_Cam *, pl_Face *);
void plPF_TransG(pl_Cam *, pl_Face *);
#ifdef __cplusplus
}
#endif
#endif /* !_PLUSH_H_ */