mirror of
https://github.com/ryujinx-mirror/ryujinx.git
synced 2024-12-31 07:04:29 +00:00
42c75dbb8f
* Add support for BC1/2/3 decompression (for 3D textures) * Optimize and clean up * Unsafe not needed here * Fix alpha value interpolation when a0 <= a1
808 lines
32 KiB
C#
808 lines
32 KiB
C#
using Ryujinx.Common;
|
|
using System;
|
|
using System.Buffers.Binary;
|
|
using System.Runtime.InteropServices;
|
|
using System.Runtime.Intrinsics;
|
|
using System.Runtime.Intrinsics.X86;
|
|
|
|
namespace Ryujinx.Graphics.Texture
|
|
{
|
|
public static class BCnDecoder
|
|
{
|
|
private const int BlockWidth = 4;
|
|
private const int BlockHeight = 4;
|
|
|
|
public static byte[] DecodeBC1(ReadOnlySpan<byte> data, int width, int height, int depth, int levels, int layers)
|
|
{
|
|
int size = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
size += Math.Max(1, width >> l) * Math.Max(1, height >> l) * Math.Max(1, depth >> l) * layers * 4;
|
|
}
|
|
|
|
byte[] output = new byte[size];
|
|
|
|
Span<byte> tile = stackalloc byte[BlockWidth * BlockHeight * 4];
|
|
|
|
Span<uint> tileAsUint = MemoryMarshal.Cast<byte, uint>(tile);
|
|
Span<uint> outputAsUint = MemoryMarshal.Cast<byte, uint>(output);
|
|
|
|
Span<Vector128<byte>> tileAsVector128 = MemoryMarshal.Cast<byte, Vector128<byte>>(tile);
|
|
|
|
Span<Vector128<byte>> outputLine0 = default;
|
|
Span<Vector128<byte>> outputLine1 = default;
|
|
Span<Vector128<byte>> outputLine2 = default;
|
|
Span<Vector128<byte>> outputLine3 = default;
|
|
|
|
int imageBaseOOffs = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
int w = BitUtils.DivRoundUp(width, BlockWidth);
|
|
int h = BitUtils.DivRoundUp(height, BlockHeight);
|
|
|
|
for (int l2 = 0; l2 < layers; l2++)
|
|
{
|
|
for (int z = 0; z < depth; z++)
|
|
{
|
|
for (int y = 0; y < h; y++)
|
|
{
|
|
int baseY = y * BlockHeight;
|
|
int copyHeight = Math.Min(BlockHeight, height - baseY);
|
|
int lineBaseOOffs = imageBaseOOffs + baseY * width;
|
|
|
|
if (copyHeight == 4)
|
|
{
|
|
outputLine0 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs));
|
|
outputLine1 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width));
|
|
outputLine2 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width * 2));
|
|
outputLine3 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width * 3));
|
|
}
|
|
|
|
for (int x = 0; x < w; x++)
|
|
{
|
|
int baseX = x * BlockWidth;
|
|
int copyWidth = Math.Min(BlockWidth, width - baseX);
|
|
|
|
BC1DecodeTileRgb(tile, data);
|
|
|
|
if ((copyWidth | copyHeight) == 4)
|
|
{
|
|
outputLine0[x] = tileAsVector128[0];
|
|
outputLine1[x] = tileAsVector128[1];
|
|
outputLine2[x] = tileAsVector128[2];
|
|
outputLine3[x] = tileAsVector128[3];
|
|
}
|
|
else
|
|
{
|
|
int pixelBaseOOffs = lineBaseOOffs + baseX;
|
|
|
|
for (int tY = 0; tY < copyHeight; tY++)
|
|
{
|
|
tileAsUint.Slice(tY * 4, copyWidth).CopyTo(outputAsUint.Slice(pixelBaseOOffs + width * tY, copyWidth));
|
|
}
|
|
}
|
|
|
|
data = data.Slice(8);
|
|
}
|
|
}
|
|
|
|
imageBaseOOffs += width * height;
|
|
}
|
|
}
|
|
|
|
width = Math.Max(1, width >> 1);
|
|
height = Math.Max(1, height >> 1);
|
|
depth = Math.Max(1, depth >> 1);
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
public static byte[] DecodeBC2(ReadOnlySpan<byte> data, int width, int height, int depth, int levels, int layers)
|
|
{
|
|
int size = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
size += Math.Max(1, width >> l) * Math.Max(1, height >> l) * Math.Max(1, depth >> l) * layers * 4;
|
|
}
|
|
|
|
byte[] output = new byte[size];
|
|
|
|
Span<byte> tile = stackalloc byte[BlockWidth * BlockHeight * 4];
|
|
|
|
Span<uint> tileAsUint = MemoryMarshal.Cast<byte, uint>(tile);
|
|
Span<uint> outputAsUint = MemoryMarshal.Cast<byte, uint>(output);
|
|
|
|
Span<Vector128<byte>> tileAsVector128 = MemoryMarshal.Cast<byte, Vector128<byte>>(tile);
|
|
|
|
Span<Vector128<byte>> outputLine0 = default;
|
|
Span<Vector128<byte>> outputLine1 = default;
|
|
Span<Vector128<byte>> outputLine2 = default;
|
|
Span<Vector128<byte>> outputLine3 = default;
|
|
|
|
int imageBaseOOffs = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
int w = BitUtils.DivRoundUp(width, BlockWidth);
|
|
int h = BitUtils.DivRoundUp(height, BlockHeight);
|
|
|
|
for (int l2 = 0; l2 < layers; l2++)
|
|
{
|
|
for (int z = 0; z < depth; z++)
|
|
{
|
|
for (int y = 0; y < h; y++)
|
|
{
|
|
int baseY = y * BlockHeight;
|
|
int copyHeight = Math.Min(BlockHeight, height - baseY);
|
|
int lineBaseOOffs = imageBaseOOffs + baseY * width;
|
|
|
|
if (copyHeight == 4)
|
|
{
|
|
outputLine0 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs));
|
|
outputLine1 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width));
|
|
outputLine2 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width * 2));
|
|
outputLine3 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width * 3));
|
|
}
|
|
|
|
for (int x = 0; x < w; x++)
|
|
{
|
|
int baseX = x * BlockWidth;
|
|
int copyWidth = Math.Min(BlockWidth, width - baseX);
|
|
|
|
BC23DecodeTileRgb(tile, data.Slice(8));
|
|
|
|
ulong block = BinaryPrimitives.ReadUInt64LittleEndian(data);
|
|
|
|
for (int i = 3; i < BlockWidth * BlockHeight * 4; i += 4, block >>= 4)
|
|
{
|
|
tile[i] = (byte)((block & 0xf) | (block << 4));
|
|
}
|
|
|
|
if ((copyWidth | copyHeight) == 4)
|
|
{
|
|
outputLine0[x] = tileAsVector128[0];
|
|
outputLine1[x] = tileAsVector128[1];
|
|
outputLine2[x] = tileAsVector128[2];
|
|
outputLine3[x] = tileAsVector128[3];
|
|
}
|
|
else
|
|
{
|
|
int pixelBaseOOffs = lineBaseOOffs + baseX;
|
|
|
|
for (int tY = 0; tY < copyHeight; tY++)
|
|
{
|
|
tileAsUint.Slice(tY * 4, copyWidth).CopyTo(outputAsUint.Slice(pixelBaseOOffs + width * tY, copyWidth));
|
|
}
|
|
}
|
|
|
|
data = data.Slice(16);
|
|
}
|
|
}
|
|
|
|
imageBaseOOffs += width * height;
|
|
}
|
|
}
|
|
|
|
width = Math.Max(1, width >> 1);
|
|
height = Math.Max(1, height >> 1);
|
|
depth = Math.Max(1, depth >> 1);
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
public static byte[] DecodeBC3(ReadOnlySpan<byte> data, int width, int height, int depth, int levels, int layers)
|
|
{
|
|
int size = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
size += Math.Max(1, width >> l) * Math.Max(1, height >> l) * Math.Max(1, depth >> l) * layers * 4;
|
|
}
|
|
|
|
byte[] output = new byte[size];
|
|
|
|
Span<byte> tile = stackalloc byte[BlockWidth * BlockHeight * 4];
|
|
Span<byte> rPal = stackalloc byte[8];
|
|
|
|
Span<uint> tileAsUint = MemoryMarshal.Cast<byte, uint>(tile);
|
|
Span<uint> outputAsUint = MemoryMarshal.Cast<byte, uint>(output);
|
|
|
|
Span<Vector128<byte>> tileAsVector128 = MemoryMarshal.Cast<byte, Vector128<byte>>(tile);
|
|
|
|
Span<Vector128<byte>> outputLine0 = default;
|
|
Span<Vector128<byte>> outputLine1 = default;
|
|
Span<Vector128<byte>> outputLine2 = default;
|
|
Span<Vector128<byte>> outputLine3 = default;
|
|
|
|
int imageBaseOOffs = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
int w = BitUtils.DivRoundUp(width, BlockWidth);
|
|
int h = BitUtils.DivRoundUp(height, BlockHeight);
|
|
|
|
for (int l2 = 0; l2 < layers; l2++)
|
|
{
|
|
for (int z = 0; z < depth; z++)
|
|
{
|
|
for (int y = 0; y < h; y++)
|
|
{
|
|
int baseY = y * BlockHeight;
|
|
int copyHeight = Math.Min(BlockHeight, height - baseY);
|
|
int lineBaseOOffs = imageBaseOOffs + baseY * width;
|
|
|
|
if (copyHeight == 4)
|
|
{
|
|
outputLine0 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs));
|
|
outputLine1 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width));
|
|
outputLine2 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width * 2));
|
|
outputLine3 = MemoryMarshal.Cast<uint, Vector128<byte>>(outputAsUint.Slice(lineBaseOOffs + width * 3));
|
|
}
|
|
|
|
for (int x = 0; x < w; x++)
|
|
{
|
|
int baseX = x * BlockWidth;
|
|
int copyWidth = Math.Min(BlockWidth, width - baseX);
|
|
|
|
BC23DecodeTileRgb(tile, data.Slice(8));
|
|
|
|
ulong block = BinaryPrimitives.ReadUInt64LittleEndian(data);
|
|
|
|
rPal[0] = (byte)block;
|
|
rPal[1] = (byte)(block >> 8);
|
|
|
|
BCnLerpAlphaUnorm(rPal);
|
|
BCnDecodeTileAlphaRgba(tile, rPal, block >> 16);
|
|
|
|
if ((copyWidth | copyHeight) == 4)
|
|
{
|
|
outputLine0[x] = tileAsVector128[0];
|
|
outputLine1[x] = tileAsVector128[1];
|
|
outputLine2[x] = tileAsVector128[2];
|
|
outputLine3[x] = tileAsVector128[3];
|
|
}
|
|
else
|
|
{
|
|
int pixelBaseOOffs = lineBaseOOffs + baseX;
|
|
|
|
for (int tY = 0; tY < copyHeight; tY++)
|
|
{
|
|
tileAsUint.Slice(tY * 4, copyWidth).CopyTo(outputAsUint.Slice(pixelBaseOOffs + width * tY, copyWidth));
|
|
}
|
|
}
|
|
|
|
data = data.Slice(16);
|
|
}
|
|
}
|
|
|
|
imageBaseOOffs += width * height;
|
|
}
|
|
}
|
|
|
|
width = Math.Max(1, width >> 1);
|
|
height = Math.Max(1, height >> 1);
|
|
depth = Math.Max(1, depth >> 1);
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
public static byte[] DecodeBC4(ReadOnlySpan<byte> data, int width, int height, int depth, int levels, int layers, bool signed)
|
|
{
|
|
int size = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
size += Math.Max(1, width >> l) * Math.Max(1, height >> l) * Math.Max(1, depth >> l) * layers;
|
|
}
|
|
|
|
byte[] output = new byte[size];
|
|
Span<byte> outputSpan = new Span<byte>(output);
|
|
|
|
ReadOnlySpan<ulong> data64 = MemoryMarshal.Cast<byte, ulong>(data);
|
|
|
|
Span<byte> tile = stackalloc byte[BlockWidth * BlockHeight];
|
|
Span<byte> rPal = stackalloc byte[8];
|
|
|
|
Span<uint> tileAsUint = MemoryMarshal.Cast<byte, uint>(tile);
|
|
|
|
Span<uint> outputLine0 = default;
|
|
Span<uint> outputLine1 = default;
|
|
Span<uint> outputLine2 = default;
|
|
Span<uint> outputLine3 = default;
|
|
|
|
int imageBaseOOffs = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
int w = BitUtils.DivRoundUp(width, BlockWidth);
|
|
int h = BitUtils.DivRoundUp(height, BlockHeight);
|
|
|
|
for (int l2 = 0; l2 < layers; l2++)
|
|
{
|
|
for (int z = 0; z < depth; z++)
|
|
{
|
|
for (int y = 0; y < h; y++)
|
|
{
|
|
int baseY = y * BlockHeight;
|
|
int copyHeight = Math.Min(BlockHeight, height - baseY);
|
|
int lineBaseOOffs = imageBaseOOffs + baseY * width;
|
|
|
|
if (copyHeight == 4)
|
|
{
|
|
outputLine0 = MemoryMarshal.Cast<byte, uint>(outputSpan.Slice(lineBaseOOffs));
|
|
outputLine1 = MemoryMarshal.Cast<byte, uint>(outputSpan.Slice(lineBaseOOffs + width));
|
|
outputLine2 = MemoryMarshal.Cast<byte, uint>(outputSpan.Slice(lineBaseOOffs + width * 2));
|
|
outputLine3 = MemoryMarshal.Cast<byte, uint>(outputSpan.Slice(lineBaseOOffs + width * 3));
|
|
}
|
|
|
|
for (int x = 0; x < w; x++)
|
|
{
|
|
int baseX = x * BlockWidth;
|
|
int copyWidth = Math.Min(BlockWidth, width - baseX);
|
|
|
|
ulong block = data64[0];
|
|
|
|
rPal[0] = (byte)block;
|
|
rPal[1] = (byte)(block >> 8);
|
|
|
|
if (signed)
|
|
{
|
|
BCnLerpAlphaSnorm(rPal);
|
|
}
|
|
else
|
|
{
|
|
BCnLerpAlphaUnorm(rPal);
|
|
}
|
|
|
|
BCnDecodeTileAlpha(tile, rPal, block >> 16);
|
|
|
|
if ((copyWidth | copyHeight) == 4)
|
|
{
|
|
outputLine0[x] = tileAsUint[0];
|
|
outputLine1[x] = tileAsUint[1];
|
|
outputLine2[x] = tileAsUint[2];
|
|
outputLine3[x] = tileAsUint[3];
|
|
}
|
|
else
|
|
{
|
|
int pixelBaseOOffs = lineBaseOOffs + baseX;
|
|
|
|
for (int tY = 0; tY < copyHeight; tY++)
|
|
{
|
|
tile.Slice(tY * 4, copyWidth).CopyTo(outputSpan.Slice(pixelBaseOOffs + width * tY, copyWidth));
|
|
}
|
|
}
|
|
|
|
data64 = data64.Slice(1);
|
|
}
|
|
}
|
|
|
|
imageBaseOOffs += width * height;
|
|
}
|
|
}
|
|
|
|
width = Math.Max(1, width >> 1);
|
|
height = Math.Max(1, height >> 1);
|
|
depth = Math.Max(1, depth >> 1);
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
public static byte[] DecodeBC5(ReadOnlySpan<byte> data, int width, int height, int depth, int levels, int layers, bool signed)
|
|
{
|
|
int size = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
size += Math.Max(1, width >> l) * Math.Max(1, height >> l) * Math.Max(1, depth >> l) * layers * 2;
|
|
}
|
|
|
|
byte[] output = new byte[size];
|
|
|
|
ReadOnlySpan<ulong> data64 = MemoryMarshal.Cast<byte, ulong>(data);
|
|
|
|
Span<byte> rTile = stackalloc byte[BlockWidth * BlockHeight * 2];
|
|
Span<byte> gTile = stackalloc byte[BlockWidth * BlockHeight * 2];
|
|
Span<byte> rPal = stackalloc byte[8];
|
|
Span<byte> gPal = stackalloc byte[8];
|
|
|
|
Span<ushort> outputAsUshort = MemoryMarshal.Cast<byte, ushort>(output);
|
|
|
|
Span<uint> rTileAsUint = MemoryMarshal.Cast<byte, uint>(rTile);
|
|
Span<uint> gTileAsUint = MemoryMarshal.Cast<byte, uint>(gTile);
|
|
|
|
Span<ulong> outputLine0 = default;
|
|
Span<ulong> outputLine1 = default;
|
|
Span<ulong> outputLine2 = default;
|
|
Span<ulong> outputLine3 = default;
|
|
|
|
int imageBaseOOffs = 0;
|
|
|
|
for (int l = 0; l < levels; l++)
|
|
{
|
|
int w = BitUtils.DivRoundUp(width, BlockWidth);
|
|
int h = BitUtils.DivRoundUp(height, BlockHeight);
|
|
|
|
for (int l2 = 0; l2 < layers; l2++)
|
|
{
|
|
for (int z = 0; z < depth; z++)
|
|
{
|
|
for (int y = 0; y < h; y++)
|
|
{
|
|
int baseY = y * BlockHeight;
|
|
int copyHeight = Math.Min(BlockHeight, height - baseY);
|
|
int lineBaseOOffs = imageBaseOOffs + baseY * width;
|
|
|
|
if (copyHeight == 4)
|
|
{
|
|
outputLine0 = MemoryMarshal.Cast<ushort, ulong>(outputAsUshort.Slice(lineBaseOOffs));
|
|
outputLine1 = MemoryMarshal.Cast<ushort, ulong>(outputAsUshort.Slice(lineBaseOOffs + width));
|
|
outputLine2 = MemoryMarshal.Cast<ushort, ulong>(outputAsUshort.Slice(lineBaseOOffs + width * 2));
|
|
outputLine3 = MemoryMarshal.Cast<ushort, ulong>(outputAsUshort.Slice(lineBaseOOffs + width * 3));
|
|
}
|
|
|
|
for (int x = 0; x < w; x++)
|
|
{
|
|
int baseX = x * BlockWidth;
|
|
int copyWidth = Math.Min(BlockWidth, width - baseX);
|
|
|
|
ulong blockL = data64[0];
|
|
ulong blockH = data64[1];
|
|
|
|
rPal[0] = (byte)blockL;
|
|
rPal[1] = (byte)(blockL >> 8);
|
|
gPal[0] = (byte)blockH;
|
|
gPal[1] = (byte)(blockH >> 8);
|
|
|
|
if (signed)
|
|
{
|
|
BCnLerpAlphaSnorm(rPal);
|
|
BCnLerpAlphaSnorm(gPal);
|
|
}
|
|
else
|
|
{
|
|
BCnLerpAlphaUnorm(rPal);
|
|
BCnLerpAlphaUnorm(gPal);
|
|
}
|
|
|
|
BCnDecodeTileAlpha(rTile, rPal, blockL >> 16);
|
|
BCnDecodeTileAlpha(gTile, gPal, blockH >> 16);
|
|
|
|
if ((copyWidth | copyHeight) == 4)
|
|
{
|
|
outputLine0[x] = InterleaveBytes(rTileAsUint[0], gTileAsUint[0]);
|
|
outputLine1[x] = InterleaveBytes(rTileAsUint[1], gTileAsUint[1]);
|
|
outputLine2[x] = InterleaveBytes(rTileAsUint[2], gTileAsUint[2]);
|
|
outputLine3[x] = InterleaveBytes(rTileAsUint[3], gTileAsUint[3]);
|
|
}
|
|
else
|
|
{
|
|
int pixelBaseOOffs = lineBaseOOffs + baseX;
|
|
|
|
for (int tY = 0; tY < copyHeight; tY++)
|
|
{
|
|
int line = pixelBaseOOffs + width * tY;
|
|
|
|
for (int tX = 0; tX < copyWidth; tX++)
|
|
{
|
|
int texel = tY * BlockWidth + tX;
|
|
|
|
outputAsUshort[line + tX] = (ushort)(rTile[texel] | (gTile[texel] << 8));
|
|
}
|
|
}
|
|
}
|
|
|
|
data64 = data64.Slice(2);
|
|
}
|
|
}
|
|
|
|
imageBaseOOffs += width * height;
|
|
}
|
|
}
|
|
|
|
width = Math.Max(1, width >> 1);
|
|
height = Math.Max(1, height >> 1);
|
|
depth = Math.Max(1, depth >> 1);
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
private static ulong InterleaveBytes(uint left, uint right)
|
|
{
|
|
return InterleaveBytesWithZeros(left) | (InterleaveBytesWithZeros(right) << 8);
|
|
}
|
|
|
|
private static ulong InterleaveBytesWithZeros(uint value)
|
|
{
|
|
ulong output = value;
|
|
output = (output ^ (output << 16)) & 0xffff0000ffffUL;
|
|
output = (output ^ (output << 8)) & 0xff00ff00ff00ffUL;
|
|
return output;
|
|
}
|
|
|
|
private static void BCnLerpAlphaUnorm(Span<byte> alpha)
|
|
{
|
|
byte a0 = alpha[0];
|
|
byte a1 = alpha[1];
|
|
|
|
if (a0 > a1)
|
|
{
|
|
alpha[2] = (byte)((6 * a0 + 1 * a1) / 7);
|
|
alpha[3] = (byte)((5 * a0 + 2 * a1) / 7);
|
|
alpha[4] = (byte)((4 * a0 + 3 * a1) / 7);
|
|
alpha[5] = (byte)((3 * a0 + 4 * a1) / 7);
|
|
alpha[6] = (byte)((2 * a0 + 5 * a1) / 7);
|
|
alpha[7] = (byte)((1 * a0 + 6 * a1) / 7);
|
|
}
|
|
else
|
|
{
|
|
alpha[2] = (byte)((4 * a0 + 1 * a1) / 5);
|
|
alpha[3] = (byte)((3 * a0 + 2 * a1) / 5);
|
|
alpha[4] = (byte)((2 * a0 + 3 * a1) / 5);
|
|
alpha[5] = (byte)((1 * a0 + 4 * a1) / 5);
|
|
alpha[6] = 0;
|
|
alpha[7] = 0xff;
|
|
}
|
|
}
|
|
|
|
private static void BCnLerpAlphaSnorm(Span<byte> alpha)
|
|
{
|
|
sbyte a0 = (sbyte)alpha[0];
|
|
sbyte a1 = (sbyte)alpha[1];
|
|
|
|
if (a0 > a1)
|
|
{
|
|
alpha[2] = (byte)((6 * a0 + 1 * a1) / 7);
|
|
alpha[3] = (byte)((5 * a0 + 2 * a1) / 7);
|
|
alpha[4] = (byte)((4 * a0 + 3 * a1) / 7);
|
|
alpha[5] = (byte)((3 * a0 + 4 * a1) / 7);
|
|
alpha[6] = (byte)((2 * a0 + 5 * a1) / 7);
|
|
alpha[7] = (byte)((1 * a0 + 6 * a1) / 7);
|
|
}
|
|
else
|
|
{
|
|
alpha[2] = (byte)((4 * a0 + 1 * a1) / 5);
|
|
alpha[3] = (byte)((3 * a0 + 2 * a1) / 5);
|
|
alpha[4] = (byte)((2 * a0 + 3 * a1) / 5);
|
|
alpha[5] = (byte)((1 * a0 + 4 * a1) / 5);
|
|
alpha[6] = 0x80;
|
|
alpha[7] = 0x7f;
|
|
}
|
|
}
|
|
|
|
private unsafe static void BCnDecodeTileAlpha(Span<byte> output, Span<byte> rPal, ulong rI)
|
|
{
|
|
if (Avx2.IsSupported)
|
|
{
|
|
Span<Vector128<byte>> outputAsVector128 = MemoryMarshal.Cast<byte, Vector128<byte>>(output);
|
|
|
|
Vector128<uint> shifts = Vector128.Create(0u, 3u, 6u, 9u);
|
|
Vector128<uint> masks = Vector128.Create(7u);
|
|
|
|
Vector128<byte> vClut;
|
|
|
|
fixed (byte* pRPal = rPal)
|
|
{
|
|
vClut = Sse2.LoadScalarVector128((ulong*)pRPal).AsByte();
|
|
}
|
|
|
|
Vector128<uint> indices0 = Vector128.Create((uint)rI);
|
|
Vector128<uint> indices1 = Vector128.Create((uint)(rI >> 24));
|
|
Vector128<uint> indices00 = Avx2.ShiftRightLogicalVariable(indices0, shifts);
|
|
Vector128<uint> indices10 = Avx2.ShiftRightLogicalVariable(indices1, shifts);
|
|
Vector128<uint> indices01 = Sse2.ShiftRightLogical(indices00, 12);
|
|
Vector128<uint> indices11 = Sse2.ShiftRightLogical(indices10, 12);
|
|
indices00 = Sse2.And(indices00, masks);
|
|
indices10 = Sse2.And(indices10, masks);
|
|
indices01 = Sse2.And(indices01, masks);
|
|
indices11 = Sse2.And(indices11, masks);
|
|
|
|
Vector128<ushort> indicesW0 = Sse41.PackUnsignedSaturate(indices00.AsInt32(), indices01.AsInt32());
|
|
Vector128<ushort> indicesW1 = Sse41.PackUnsignedSaturate(indices10.AsInt32(), indices11.AsInt32());
|
|
|
|
Vector128<byte> indices = Sse2.PackUnsignedSaturate(indicesW0.AsInt16(), indicesW1.AsInt16());
|
|
|
|
outputAsVector128[0] = Ssse3.Shuffle(vClut, indices);
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < BlockWidth * BlockHeight; i++, rI >>= 3)
|
|
{
|
|
output[i] = rPal[(int)(rI & 7)];
|
|
}
|
|
}
|
|
}
|
|
|
|
private unsafe static void BCnDecodeTileAlphaRgba(Span<byte> output, Span<byte> rPal, ulong rI)
|
|
{
|
|
if (Avx2.IsSupported)
|
|
{
|
|
Span<Vector256<uint>> outputAsVector256 = MemoryMarshal.Cast<byte, Vector256<uint>>(output);
|
|
|
|
Vector256<uint> shifts = Vector256.Create(0u, 3u, 6u, 9u, 12u, 15u, 18u, 21u);
|
|
|
|
Vector128<uint> vClut128;
|
|
|
|
fixed (byte* pRPal = rPal)
|
|
{
|
|
vClut128 = Sse2.LoadScalarVector128((ulong*)pRPal).AsUInt32();
|
|
}
|
|
|
|
Vector256<uint> vClut = Avx2.ConvertToVector256Int32(vClut128.AsByte()).AsUInt32();
|
|
vClut = Avx2.ShiftLeftLogical(vClut, 24);
|
|
|
|
Vector256<uint> indices0 = Vector256.Create((uint)rI);
|
|
Vector256<uint> indices1 = Vector256.Create((uint)(rI >> 24));
|
|
|
|
indices0 = Avx2.ShiftRightLogicalVariable(indices0, shifts);
|
|
indices1 = Avx2.ShiftRightLogicalVariable(indices1, shifts);
|
|
|
|
outputAsVector256[0] = Avx2.Or(outputAsVector256[0], Avx2.PermuteVar8x32(vClut, indices0));
|
|
outputAsVector256[1] = Avx2.Or(outputAsVector256[1], Avx2.PermuteVar8x32(vClut, indices1));
|
|
}
|
|
else
|
|
{
|
|
for (int i = 3; i < BlockWidth * BlockHeight * 4; i += 4, rI >>= 3)
|
|
{
|
|
output[i] = rPal[(int)(rI & 7)];
|
|
}
|
|
}
|
|
}
|
|
|
|
private unsafe static void BC1DecodeTileRgb(Span<byte> output, ReadOnlySpan<byte> input)
|
|
{
|
|
Span<uint> clut = stackalloc uint[4];
|
|
|
|
uint c0c1 = BinaryPrimitives.ReadUInt32LittleEndian(input);
|
|
uint c0 = (ushort)c0c1;
|
|
uint c1 = (ushort)(c0c1 >> 16);
|
|
|
|
clut[0] = ConvertRgb565ToRgb888(c0) | 0xff000000;
|
|
clut[1] = ConvertRgb565ToRgb888(c1) | 0xff000000;
|
|
clut[2] = BC1LerpRgb2(clut[0], clut[1], c0, c1);
|
|
clut[3] = BC1LerpRgb3(clut[0], clut[1], c0, c1);
|
|
|
|
BCnDecodeTileRgb(clut, output, input);
|
|
}
|
|
|
|
private unsafe static void BC23DecodeTileRgb(Span<byte> output, ReadOnlySpan<byte> input)
|
|
{
|
|
Span<uint> clut = stackalloc uint[4];
|
|
|
|
uint c0c1 = BinaryPrimitives.ReadUInt32LittleEndian(input);
|
|
uint c0 = (ushort)c0c1;
|
|
uint c1 = (ushort)(c0c1 >> 16);
|
|
|
|
clut[0] = ConvertRgb565ToRgb888(c0);
|
|
clut[1] = ConvertRgb565ToRgb888(c1);
|
|
clut[2] = BC23LerpRgb2(clut[0], clut[1]);
|
|
clut[3] = BC23LerpRgb3(clut[0], clut[1]);
|
|
|
|
BCnDecodeTileRgb(clut, output, input);
|
|
}
|
|
|
|
private unsafe static void BCnDecodeTileRgb(Span<uint> clut, Span<byte> output, ReadOnlySpan<byte> input)
|
|
{
|
|
if (Avx2.IsSupported)
|
|
{
|
|
Span<Vector256<uint>> outputAsVector256 = MemoryMarshal.Cast<byte, Vector256<uint>>(output);
|
|
|
|
Vector256<uint> shifts0 = Vector256.Create(0u, 2u, 4u, 6u, 8u, 10u, 12u, 14u);
|
|
Vector256<uint> shifts1 = Vector256.Create(16u, 18u, 20u, 22u, 24u, 26u, 28u, 30u);
|
|
Vector256<uint> masks = Vector256.Create(3u);
|
|
|
|
Vector256<uint> vClut;
|
|
|
|
fixed (uint* pClut = &clut[0])
|
|
{
|
|
vClut = Sse2.LoadVector128(pClut).ToVector256Unsafe();
|
|
}
|
|
|
|
Vector256<uint> indices0;
|
|
|
|
fixed (byte* pInput = input)
|
|
{
|
|
indices0 = Avx2.BroadcastScalarToVector256((uint*)(pInput + 4));
|
|
}
|
|
|
|
Vector256<uint> indices1 = indices0;
|
|
|
|
indices0 = Avx2.ShiftRightLogicalVariable(indices0, shifts0);
|
|
indices1 = Avx2.ShiftRightLogicalVariable(indices1, shifts1);
|
|
indices0 = Avx2.And(indices0, masks);
|
|
indices1 = Avx2.And(indices1, masks);
|
|
|
|
outputAsVector256[0] = Avx2.PermuteVar8x32(vClut, indices0);
|
|
outputAsVector256[1] = Avx2.PermuteVar8x32(vClut, indices1);
|
|
}
|
|
else
|
|
{
|
|
Span<uint> outputAsUint = MemoryMarshal.Cast<byte, uint>(output);
|
|
|
|
uint indices = BinaryPrimitives.ReadUInt32LittleEndian(input.Slice(4));
|
|
|
|
for (int i = 0; i < BlockWidth * BlockHeight; i++, indices >>= 2)
|
|
{
|
|
outputAsUint[i] = clut[(int)(indices & 3)];
|
|
}
|
|
}
|
|
}
|
|
|
|
private static uint BC1LerpRgb2(uint color0, uint color1, uint c0, uint c1)
|
|
{
|
|
if (c0 > c1)
|
|
{
|
|
return BC23LerpRgb2(color0, color1) | 0xff000000;
|
|
}
|
|
|
|
uint carry = color0 & color1;
|
|
uint addHalve = ((color0 ^ color1) >> 1) & 0x7f7f7f;
|
|
return (addHalve + carry) | 0xff000000;
|
|
}
|
|
|
|
private static uint BC23LerpRgb2(uint color0, uint color1)
|
|
{
|
|
uint r0 = (byte)color0;
|
|
uint g0 = color0 & 0xff00;
|
|
uint b0 = color0 & 0xff0000;
|
|
|
|
uint r1 = (byte)color1;
|
|
uint g1 = color1 & 0xff00;
|
|
uint b1 = color1 & 0xff0000;
|
|
|
|
uint mixR = (2 * r0 + r1) / 3;
|
|
uint mixG = (2 * g0 + g1) / 3;
|
|
uint mixB = (2 * b0 + b1) / 3;
|
|
|
|
return mixR | (mixG & 0xff00) | (mixB & 0xff0000);
|
|
}
|
|
|
|
private static uint BC1LerpRgb3(uint color0, uint color1, uint c0, uint c1)
|
|
{
|
|
if (c0 > c1)
|
|
{
|
|
return BC23LerpRgb3(color0, color1) | 0xff000000;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
private static uint BC23LerpRgb3(uint color0, uint color1)
|
|
{
|
|
uint r0 = (byte)color0;
|
|
uint g0 = color0 & 0xff00;
|
|
uint b0 = color0 & 0xff0000;
|
|
|
|
uint r1 = (byte)color1;
|
|
uint g1 = color1 & 0xff00;
|
|
uint b1 = color1 & 0xff0000;
|
|
|
|
uint mixR = (2 * r1 + r0) / 3;
|
|
uint mixG = (2 * g1 + g0) / 3;
|
|
uint mixB = (2 * b1 + b0) / 3;
|
|
|
|
return mixR | (mixG & 0xff00) | (mixB & 0xff0000);
|
|
}
|
|
|
|
private static uint ConvertRgb565ToRgb888(uint value)
|
|
{
|
|
uint b = (value & 0x1f) << 19;
|
|
uint g = (value << 5) & 0xfc00;
|
|
uint r = (value >> 8) & 0xf8;
|
|
|
|
b |= b >> 5;
|
|
g |= g >> 6;
|
|
r |= r >> 5;
|
|
|
|
return r | (g & 0xff00) | (b & 0xff0000);
|
|
}
|
|
}
|
|
} |