1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2025-01-22 12:12:16 +00:00
rtl8812au/hal/rtl8812a/rtl8812a_hal_init.c

6097 lines
176 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTL8812A_HAL_INIT_C_
/* #include <drv_types.h> */
#include <rtl8812a_hal.h>
#ifdef CONFIG_RTL8812A
#include "hal8812a_fw.h"
#else
#include "hal8821a_fw.h"
#endif
/* -------------------------------------------------------------------------
*
* LLT R/W/Init function
*
* ------------------------------------------------------------------------- */
s32
_LLTWrite_8812A(
IN PADAPTER Adapter,
IN u32 address,
IN u32 data
)
{
u32 status = _SUCCESS;
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtw_write32(Adapter, REG_LLT_INIT, value);
/* polling */
do {
value = rtw_read32(Adapter, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
status = _FAIL;
break;
}
} while (++count);
return status;
}
static u8
_LLTRead_8812A(
IN PADAPTER Adapter,
IN u32 address
)
{
u32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(Adapter, LLTReg, value);
/* polling and get value */
do {
value = rtw_read32(Adapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
return (u8)value;
if (count > POLLING_LLT_THRESHOLD) {
break;
}
} while (++count);
return 0xFF;
}
s32 InitLLTTable8812A(PADAPTER padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
u32 i;
u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER_8812;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite_8812A(padapter, i, i + 1);
if (_SUCCESS != status)
return status;
}
/* end of list */
status = _LLTWrite_8812A(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status)
return status;
/* Make the other pages as ring buffer */
/* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
/* Otherwise used as local loopback buffer. */
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite_8812A(padapter, i, (i + 1));
if (_SUCCESS != status)
return status;
}
/* Let last entry point to the start entry of ring buffer */
status = _LLTWrite_8812A(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status)
return status;
return status;
}
BOOLEAN HalDetectPwrDownMode8812(PADAPTER Adapter)
{
u8 tmpvalue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter);
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_8812, (u32 *)&tmpvalue);
/* 2010/08/25 MH INF priority > PDN Efuse value. */
if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
pHalData->pwrdown = _TRUE;
else
pHalData->pwrdown = _FALSE;
RTW_INFO("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} /* HalDetectPwrDownMode */
#if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
}
#endif
/* ************************************************************************************
*
* 20100209 Joseph:
* This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
* We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
* the value of the register via atomic operation.
* This prevents from race condition when setting this register.
* The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
* */
void SetBcnCtrlReg(
PADAPTER padapter,
u8 SetBits,
u8 ClearBits)
{
PHAL_DATA_TYPE pHalData;
u8 RegBcnCtrlVal = 0;
pHalData = GET_HAL_DATA(padapter);
RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
RegBcnCtrlVal |= SetBits;
RegBcnCtrlVal &= ~ClearBits;
#if 0
/* #ifdef CONFIG_SDIO_HCI */
if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK))
RegBcnCtrlVal |= EN_TXBCN_RPT;
#endif
rtw_write8(padapter, REG_BCN_CTRL, RegBcnCtrlVal);
}
static VOID
_FWDownloadEnable_8812(
IN PADAPTER padapter,
IN BOOLEAN enable
)
{
u8 tmp;
if (enable) {
/* MCU firmware download enable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
/* 8051 reset */
tmp = rtw_read8(padapter, REG_MCUFWDL + 2);
rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7);
} else {
/* MCU firmware download disable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe);
}
}
#define MAX_REG_BOLCK_SIZE 196
static int
_BlockWrite_8812(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8 *)buffer;
u32 i = 0, offset = 0;
#ifdef CONFIG_PCI_HCI
u8 remainFW[4] = {0, 0, 0, 0};
u8 *p = NULL;
#endif
#ifdef CONFIG_USB_HCI
blockSize_p1 = MAX_REG_BOLCK_SIZE;
#endif
/* 3 Phase #1 */
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for (i = 0; i < blockCount_p1; i++) {
#ifdef CONFIG_USB_HCI
ret = rtw_writeN(padapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
#else
ret = rtw_write32(padapter, (FW_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1))));
#endif
if (ret == _FAIL)
goto exit;
}
#ifdef CONFIG_PCI_HCI
p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1));
if (remainSize_p1) {
switch (remainSize_p1) {
case 0:
break;
case 3:
remainFW[2] = *(p + 2);
case 2:
remainFW[1] = *(p + 1);
case 1:
remainFW[0] = *(p);
ret = rtw_write32(padapter, (FW_START_ADDRESS + blockCount_p1 * blockSize_p1),
le32_to_cpu(*(u32 *)remainFW));
}
return ret;
}
#endif
/* 3 Phase #2 */
if (remainSize_p1) {
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1 / blockSize_p2;
remainSize_p2 = remainSize_p1 % blockSize_p2;
#ifdef CONFIG_USB_HCI
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2));
if (ret == _FAIL)
goto exit;
}
#endif
}
/* 3 Phase #3 */
if (remainSize_p2) {
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
for (i = 0 ; i < blockCount_p3 ; i++) {
ret = rtw_write8(padapter, (FW_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if (ret == _FAIL)
goto exit;
}
}
exit:
return ret;
}
static int
_PageWrite_8812(
IN PADAPTER padapter,
IN u32 page,
IN PVOID buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8)(page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL + 2, value8);
return _BlockWrite_8812(padapter, buffer, size);
}
static VOID
_FillDummy_8812(
u8 *pFwBuf,
u32 *pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen % 4);
remain = (remain == 0) ? 0 : (4 - remain);
while (remain > 0) {
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
static int
_WriteFW_8812(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 size
)
{
/* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
int ret = _SUCCESS;
u32 pageNums, remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8 *)buffer;
#ifdef CONFIG_PCI_HCI
/* 20100120 Joseph: Add for 88CE normal chip. */
/* Fill in zero to make firmware image to dword alignment.
* _FillDummy(bufferPtr, &size); */
#endif
pageNums = size / MAX_DLFW_PAGE_SIZE ;
/* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite_8812(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE);
if (ret == _FAIL)
goto exit;
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite_8812(padapter, page, bufferPtr + offset, remainSize);
if (ret == _FAIL)
goto exit;
}
exit:
return ret;
}
void _8051Reset8812(PADAPTER padapter)
{
u8 u1bTmp, u1bTmp2;
/* Reset MCU IO Wrapper- sugggest by SD1-Gimmy */
if (IS_HARDWARE_TYPE_8812(padapter)) {
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1));
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 & (~BIT3));
} else if (IS_HARDWARE_TYPE_8821(padapter)) {
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1));
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 & (~BIT0));
}
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2));
/* Enable MCU IO Wrapper */
if (IS_HARDWARE_TYPE_8812(padapter)) {
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1));
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 | (BIT3));
} else if (IS_HARDWARE_TYPE_8821(padapter)) {
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1));
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1);
rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 | (BIT0));
}
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT2));
RTW_INFO("=====> _8051Reset8812(): 8051 reset success .\n");
}
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
systime start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt))
goto exit;
if (rtw_fwdl_test_trigger_chksum_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
static s32 _FWFreeToGo8812(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
systime start = rtw_get_current_time();
u32 cnt = 0;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8812(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & WINTINI_RDY))
goto exit;
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
#ifdef CONFIG_FILE_FWIMG
u8 FwBuffer8812[FW_SIZE_8812];
u8 FwBuffer[FW_SIZE_8812];
#endif /* CONFIG_FILE_FWIMG */
s32
FirmwareDownload8812(
IN PADAPTER Adapter,
IN BOOLEAN bUsedWoWLANFw
)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
systime fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
u8 *pFwImageFileName;
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8812 pFirmware = NULL;
u8 *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
pFirmware = (PRT_FIRMWARE_8812)rtw_zmalloc(sizeof(RT_FIRMWARE_8812));
if (!pFirmware) {
rtStatus = _FAIL;
goto exit;
}
#ifdef CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw && rtw_is_file_readable(rtw_fw_wow_file_path) == _TRUE) {
RTW_INFO("%s acquire FW from file:%s\n", __FUNCTION__, rtw_fw_wow_file_path);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
} else
#endif
if (rtw_is_file_readable(rtw_fw_file_path) == _TRUE) {
RTW_INFO("%s acquire FW from file:%s\n", __FUNCTION__, rtw_fw_file_path);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
} else
#endif /* CONFIG_FILE_FWIMG */
{
RTW_INFO("%s fw source from Header\n", __FUNCTION__);
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
}
switch (pFirmware->eFWSource) {
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw)
rtStatus = rtw_retrieve_from_file(rtw_fw_wow_file_path, FwBuffer8812, FW_SIZE_8812);
else
#endif
rtStatus = rtw_retrieve_from_file(rtw_fw_file_path, FwBuffer8812, FW_SIZE_8812);
pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0;
pFirmware->szFwBuffer = FwBuffer8812;
#endif /* CONFIG_FILE_FWIMG */
break;
case FW_SOURCE_HEADER_FILE:
if (bUsedWoWLANFw) {
#ifdef CONFIG_WOWLAN
if (pwrpriv->wowlan_mode) {
#ifdef CONFIG_RTL8812A
pFirmware->szFwBuffer = array_mp_8812a_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8812a_fw_wowlan;
#else
pFirmware->szFwBuffer = array_mp_8821a_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8821a_fw_wowlan;
#endif
RTW_INFO("%s fw:%s, size: %d\n", __func__, "WoWLAN", pFirmware->ulFwLength);
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
if (pwrpriv->wowlan_ap_mode) {
#ifdef CONFIG_RTL8812A
pFirmware->szFwBuffer = array_mp_8812a_fw_ap;
pFirmware->ulFwLength = array_length_mp_8812a_fw_ap;
#else
pFirmware->szFwBuffer = array_mp_8821a_fw_ap;
pFirmware->ulFwLength = array_length_mp_8821a_fw_ap;
#endif
RTW_INFO("%s fw: %s, size: %d\n", __func__, "AP_WoWLAN", pFirmware->ulFwLength);
}
#endif /* CONFIG_AP_WOWLAN */
} else {
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == _TRUE) {
#ifdef CONFIG_RTL8812A
pFirmware->szFwBuffer = array_mp_8812a_fw_nic_bt;
pFirmware->ulFwLength = array_length_mp_8812a_fw_nic_bt;
#else
pFirmware->szFwBuffer = array_mp_8821a_fw_nic_bt;
pFirmware->ulFwLength = array_length_mp_8821a_fw_nic_bt;
#endif
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC-BTCOEX", pFirmware->ulFwLength);
} else
#endif /* CONFIG_BT_COEXIST */
{
#ifdef CONFIG_RTL8812A
pFirmware->szFwBuffer = array_mp_8812a_fw_nic;
pFirmware->ulFwLength = array_length_mp_8812a_fw_nic;
#else
pFirmware->szFwBuffer = array_mp_8821a_fw_nic;
pFirmware->ulFwLength = array_length_mp_8821a_fw_nic;
#endif
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength);
}
}
break;
}
if ((pFirmware->ulFwLength - 32) > FW_SIZE_8812) {
rtStatus = _FAIL;
RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE_8812);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
pFwHdr = (u8 *)pFirmware->szFwBuffer;
pHalData->firmware_version = (u16)GET_FIRMWARE_HDR_VERSION_8812(pFwHdr);
pHalData->firmware_sub_version = (u16)GET_FIRMWARE_HDR_SUB_VER_8812(pFwHdr);
pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_8812(pFwHdr);
RTW_INFO("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
__FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature);
if (IS_FW_HEADER_EXIST_8812(pFwHdr) || IS_FW_HEADER_EXIST_8821(pFwHdr)) {
/* Shift 32 bytes for FW header */
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
/* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
/* or it will cause download Fw fail. 2010.02.01. by tynli. */
if (rtw_read8(Adapter, REG_MCUFWDL) & BIT7) { /* 8051 RAM code */
rtw_write8(Adapter, REG_MCUFWDL, 0x00);
_8051Reset8812(Adapter);
}
_FWDownloadEnable_8812(Adapter, _TRUE);
fwdl_start_time = rtw_get_current_time();
while (!RTW_CANNOT_IO(Adapter)
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) {
/* reset FWDL chksum */
rtw_write8(Adapter, REG_MCUFWDL, rtw_read8(Adapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
rtStatus = _WriteFW_8812(Adapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(Adapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
_FWDownloadEnable_8812(Adapter, _FALSE);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
rtStatus = _FWFreeToGo8812(Adapter, 10, 200);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
fwdl_stat:
RTW_INFO("FWDL %s. write_fw:%u, %dms\n"
, (rtStatus == _SUCCESS) ? "success" : "fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8812));
InitializeFirmwareVars8812(Adapter);
return rtStatus;
}
void InitializeFirmwareVars8812(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
/* Init Fw LPS related. */
pwrpriv->bFwCurrentInPSMode = _FALSE;
/* Init H2C cmd. */
rtw_write8(padapter, REG_HMETFR, 0x0f);
/* Init H2C counter. by tynli. 2009.12.09. */
pHalData->LastHMEBoxNum = 0;
}
/*
* Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW.
* 2013.01.23 by tynli
* Porting from 8723B. 2013.04.01
* */
VOID
SetFwBTFwPatchCmd_8821(
IN PADAPTER Adapter,
IN u2Byte FwSize
)
{
u1Byte u1BTFwPatchParm[6] = {0};
RTW_INFO("SetFwBTFwPatchCmd_8821(): FwSize = %d\n", FwSize);
/* SET_8812_H2CCMD_BT_FW_PATCH_ENABLE(u1BTFwPatchParm, 1); */
SET_8812_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize);
SET_8812_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, 0);
SET_8812_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, 0xa0);
SET_8812_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, 0x10);
SET_8812_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, 0x80);
fill_h2c_cmd_8812(Adapter, H2C_8812_BT_FW_PATCH, 6 , u1BTFwPatchParm);
}
#ifdef CONFIG_MP_INCLUDED
int ReservedPage_Compare(PADAPTER Adapter, PRT_MP_FIRMWARE pFirmware, u32 BTPatchSize)
{
u8 temp, ret, lastBTsz;
u32 u1bTmp = 0, address_start = 0, count = 0, i = 0;
u8 *myBTFwBuffer = NULL;
myBTFwBuffer = rtw_zmalloc(BTPatchSize);
if (myBTFwBuffer == NULL) {
RTW_INFO("%s can't be executed due to the failed malloc.\n", __FUNCTION__);
Adapter->mppriv.bTxBufCkFail = _TRUE;
return _FALSE;
}
temp = rtw_read8(Adapter, 0x209);
address_start = (temp * 128) / 8;
rtw_write32(Adapter, 0x140, 0x00000000);
rtw_write32(Adapter, 0x144, 0x00000000);
rtw_write32(Adapter, 0x148, 0x00000000);
rtw_write8(Adapter, 0x106, 0x69);
for (i = 0; i < (BTPatchSize / 8); i++) {
rtw_write32(Adapter, 0x140, address_start + 5 + i) ;
/* polling until reg 0x140[23]=1; */
do {
u1bTmp = rtw_read32(Adapter, 0x140);
if (u1bTmp & BIT(23)) {
ret = _SUCCESS;
break;
}
count++;
RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count);
rtw_msleep_os(10); /* 10ms */
} while (!(u1bTmp & BIT(23)) && count < 50);
myBTFwBuffer[i * 8 + 0] = rtw_read8(Adapter, 0x144);
myBTFwBuffer[i * 8 + 1] = rtw_read8(Adapter, 0x145);
myBTFwBuffer[i * 8 + 2] = rtw_read8(Adapter, 0x146);
myBTFwBuffer[i * 8 + 3] = rtw_read8(Adapter, 0x147);
myBTFwBuffer[i * 8 + 4] = rtw_read8(Adapter, 0x148);
myBTFwBuffer[i * 8 + 5] = rtw_read8(Adapter, 0x149);
myBTFwBuffer[i * 8 + 6] = rtw_read8(Adapter, 0x14a);
myBTFwBuffer[i * 8 + 7] = rtw_read8(Adapter, 0x14b);
}
rtw_write32(Adapter, 0x140, address_start + 5 + BTPatchSize / 8) ;
lastBTsz = BTPatchSize % 8;
/* polling until reg 0x140[23]=1; */
u1bTmp = 0;
count = 0;
do {
u1bTmp = rtw_read32(Adapter, 0x140);
if (u1bTmp & BIT(23)) {
ret = _SUCCESS;
break;
}
count++;
RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count);
rtw_msleep_os(10); /* 10ms */
} while (!(u1bTmp & BIT(23)) && count < 50);
for (i = 0; i < lastBTsz; i++)
myBTFwBuffer[(BTPatchSize / 8) * 8 + i] = rtw_read8(Adapter, (0x144 + i));
for (i = 0; i < BTPatchSize; i++) {
if (myBTFwBuffer[i] != pFirmware->szFwBuffer[i]) {
RTW_INFO(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n", i, myBTFwBuffer[i], pFirmware->szFwBuffer[i]);
Adapter->mppriv.bTxBufCkFail = _TRUE;
break;
}
}
if (myBTFwBuffer != NULL)
rtw_mfree(myBTFwBuffer, BTPatchSize);
return _TRUE;
}
#endif
/* ***********************************************************
* Efuse related code
* *********************************************************** */
VOID
Hal_EfuseParseBTCoexistInfo8812A(
IN PADAPTER Adapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
struct registry_priv *regsty = &Adapter->registrypriv;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tmp_u8;
u32 tmp_u32;
if (IS_HARDWARE_TYPE_8812(Adapter)) {
pHalData->EEPROMBluetoothType = BT_RTL8812A;
if (!AutoLoadFail) {
tmp_u8 = hwinfo[EEPROM_RF_BOARD_OPTION_8812];
if (((tmp_u8 & 0xe0) >> 5) == 0x1) /* [7:5] */
pHalData->EEPROMBluetoothCoexist = _TRUE;
else
pHalData->EEPROMBluetoothCoexist = _FALSE;
tmp_u8 = hwinfo[EEPROM_RF_BT_SETTING_8812];
pHalData->EEPROMBluetoothAntNum = (tmp_u8 & 0x1); /* bit [0] */
} else {
pHalData->EEPROMBluetoothCoexist = _FALSE;
pHalData->EEPROMBluetoothAntNum = Ant_x1;
}
} else if (IS_HARDWARE_TYPE_8821(Adapter)) {
pHalData->EEPROMBluetoothType = BT_RTL8821;
if (!AutoLoadFail) {
tmp_u32 = rtw_read32(Adapter, REG_MULTI_FUNC_CTRL);
if (tmp_u32 & BT_FUNC_EN)
pHalData->EEPROMBluetoothCoexist = _TRUE;
else
pHalData->EEPROMBluetoothCoexist = _FALSE;
tmp_u8 = hwinfo[EEPROM_RF_BT_SETTING_8821];
pHalData->EEPROMBluetoothAntNum = (tmp_u8 & 0x1); /* bit [0] */
} else {
pHalData->EEPROMBluetoothCoexist = _FALSE;
pHalData->EEPROMBluetoothAntNum = Ant_x2;
}
#ifdef CONFIG_BTCOEX_FORCE_CSR
pHalData->EEPROMBluetoothType = BT_CSR_BC8;
pHalData->EEPROMBluetoothCoexist = _TRUE;
pHalData->EEPROMBluetoothAntNum = Ant_x2;
#endif
} else
rtw_warn_on(1);
#ifdef CONFIG_BT_COEXIST
if (_TRUE == pHalData->EEPROMBluetoothCoexist && IS_HARDWARE_TYPE_8812(Adapter)) {
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (!hal_btcoex_AntIsolationConfig_ParaFile(Adapter , PHY_FILE_WIFI_ANT_ISOLATION)) {
#endif
pHalData->EEPROMBluetoothCoexist = _TRUE;
hal_btcoex_SetAntIsolationType(Adapter, 0);
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
}
#endif
}
if (regsty->ant_num != 0) {
if (regsty->ant_num == 1)
pHalData->EEPROMBluetoothAntNum = Ant_x1;
else if (regsty->ant_num == 2)
pHalData->EEPROMBluetoothAntNum = Ant_x2;
else
RTW_WARN("%s: Discard invalid driver defined antenna number(%d)!\n"
, __func__, regsty->ant_num);
}
if (regsty->single_ant_path == 0)
pHalData->ant_path = 0;
else if (regsty->single_ant_path == 1)
pHalData->ant_path = 1;
else
RTW_WARN("%s: Discard invalid driver defined antenna path(%d)!\n"
, __func__, regsty->single_ant_path);
if (regsty->btcoex != 2)
pHalData->EEPROMBluetoothCoexist = regsty->btcoex ? _TRUE : _FALSE;
/*Add by YiWei , btcoex 1 ant module , ant band switch by btcoex , driver have to disable ant band switch feature*/
if (pHalData->EEPROMBluetoothCoexist == 1 && pHalData->EEPROMBluetoothAntNum == Ant_x1)
regsty->drv_ant_band_switch = 0;
RTW_INFO("%s: BTCoexist=%s, AntNum=%d, AntPath=%d\n", __func__, pHalData->EEPROMBluetoothCoexist == _TRUE ? "Enable" : "Disable"
, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1, pHalData->ant_path);
#endif /* CONFIG_BT_COEXIST */
}
void
Hal_EfuseParseIDCode8812A(
IN PADAPTER padapter,
IN u8 *hwinfo
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u16 EEPROMId;
/* Checl 0x8129 again for making sure autoload status!! */
EEPROMId = ReadLE2Byte(&hwinfo[0]);
if (EEPROMId != RTL_EEPROM_ID) {
RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pHalData->bautoload_fail_flag = _TRUE;
} else
pHalData->bautoload_fail_flag = _FALSE;
RTW_INFO("EEPROM ID=0x%04x\n", EEPROMId);
}
VOID
Hal_ReadPROMVersion8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (AutoloadFail)
pHalData->EEPROMVersion = EEPROM_Default_Version;
else {
if (IS_HARDWARE_TYPE_8812(Adapter))
pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8812];
else
pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8821];
if (pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
/* RTW_INFO("pHalData->EEPROMVersion is 0x%x\n", pHalData->EEPROMVersion); */
}
void
Hal_ReadTxPowerInfo8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
TxPowerInfo24G pwrInfo24G;
TxPowerInfo5G pwrInfo5G;
hal_load_txpwr_info(Adapter, &pwrInfo24G, &pwrInfo5G, PROMContent);
/* 2010/10/19 MH Add Regulator recognize for CU. */
if (!AutoLoadFail) {
struct registry_priv *registry_par = &Adapter->registrypriv;
if (PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8812] & 0x7); /* bit0~2 */
} else
pHalData->EEPROMRegulatory = 0;
RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
VOID
Hal_ReadBoardType8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (!AutoloadFail) {
pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8812] & 0xE0) >> 5;
if (PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF)
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION & 0xE0) >> 5;
} else
pHalData->InterfaceSel = 0;
RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel);
}
VOID
Hal_ReadThermalMeter_8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* u8 tempval; */
/* */
/* ThermalMeter from EEPROM */
/* */
if (!AutoloadFail)
pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8812];
else
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8812;
/* pHalData->eeprom_thermal_meter = (tempval&0x1f); */ /* [4:0] */
if (pHalData->eeprom_thermal_meter == 0xff || AutoloadFail) {
pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE;
pHalData->eeprom_thermal_meter = 0xFF;
}
/* pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter; */
RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter);
}
void Hal_ReadRemoteWakeup_8812A(
PADAPTER padapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if (AutoLoadFail) {
pwrctl->bHWPowerdown = _FALSE;
pwrctl->bSupportRemoteWakeup = _FALSE;
} else {
/* decide hw if support remote wakeup function */
/* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */
#ifdef CONFIG_USB_HCI
if (IS_HARDWARE_TYPE_8821U(padapter))
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0_8811AU] & BIT1) ? _TRUE : _FALSE;
else
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? _TRUE : _FALSE;
#endif /* CONFIG_USB_HCI */
RTW_INFO("%s...bSupportRemoteWakeup(%x)\n", __FUNCTION__, pwrctl->bSupportRemoteWakeup);
}
}
VOID
Hal_ReadChannelPlan8812A(
IN PADAPTER padapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
hal_com_config_channel_plan(
padapter
, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8812] : NULL
, hwinfo ? hwinfo[EEPROM_ChannelPlan_8812] : 0xFF
, padapter->registrypriv.alpha2
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_REALTEK_DEFINE
, AutoLoadFail
);
}
VOID
Hal_EfuseParseXtal_8812A(
IN PADAPTER pAdapter,
IN u8 *hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8812];
if (pHalData->crystal_cap == 0xFF)
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8812; /* what value should 8812 set? */
} else
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8812;
RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap);
}
/* for both 8812A and 8821A */
VOID
Hal_ReadAntennaDiversity8812A(
IN PADAPTER pAdapter,
IN u8 *PROMContent,
IN BOOLEAN AutoLoadFail
)
{
#ifdef CONFIG_ANTENNA_DIVERSITY
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
if (!AutoLoadFail) {
if (registry_par->antdiv_cfg == 2) {
if (PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF)
pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & BIT3) ? 1 : 0;
else
pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_8812] & BIT3) ? 1 : 0;
} else {
/* by registry */
pHalData->AntDivCfg = registry_par->antdiv_cfg;
}
if (registry_par->antdiv_type == 0)
pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_8812];
else
pHalData->TRxAntDivType = registry_par->antdiv_type;
} else {
/* Disable */
pHalData->AntDivCfg = 0;
}
#ifdef CONFIG_BT_COEXIST
if (hal_btcoex_1Ant(pAdapter)) {
pHalData->AntDivCfg = 0;
/*Add by YiWei , btcoex 1 ant module , ant band switch by btcoex , driver have to disable ant band switch feature*/
pAdapter->registrypriv.drv_ant_band_switch = 0;
}
#endif
RTW_INFO("[ANTDIV] AntDivCfg=%d, TRxAntDivType=0x%02x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
#endif
}
VOID
hal_ReadPAType_8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (!AutoloadFail) {
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */
pHalData->PAType_2G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]);
pHalData->LNAType_2G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_2G_8812AU]);
if (pHalData->PAType_2G == 0xFF)
pHalData->PAType_2G = 0;
if (pHalData->LNAType_2G == 0xFF)
pHalData->LNAType_2G = 0;
pHalData->ExternalPA_2G = ((pHalData->PAType_2G & BIT5) && (pHalData->PAType_2G & BIT4)) ? 1 : 0;
pHalData->ExternalLNA_2G = ((pHalData->LNAType_2G & BIT7) && (pHalData->LNAType_2G & BIT3)) ? 1 : 0;
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */
pHalData->PAType_5G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]);
pHalData->LNAType_5G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_5G_8812AU]);
if (pHalData->PAType_5G == 0xFF)
pHalData->PAType_5G = 0;
if (pHalData->LNAType_5G == 0xFF)
pHalData->LNAType_5G = 0;
pHalData->external_pa_5g = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0;
pHalData->external_lna_5g = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0;
} else {
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
} else {
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->external_pa_5g = 0xFF;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->external_lna_5g = 0xFF;
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */
pHalData->external_pa_5g = 0;
pHalData->external_lna_5g = 0;
} else {
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
RTW_INFO("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G);
RTW_INFO("pHalData->PAType_5G is 0x%x, pHalData->external_pa_5g = %d\n", pHalData->PAType_5G, pHalData->external_pa_5g);
RTW_INFO("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G);
RTW_INFO("pHalData->LNAType_5G is 0x%x, pHalData->external_lna_5g = %d\n", pHalData->LNAType_5G, pHalData->external_lna_5g);
}
VOID
Hal_ReadAmplifierType_8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 extTypePA_2G_A = (PROMContent[0xBD] & BIT2) >> 2; /* 0xBD[2] */
u8 extTypePA_2G_B = (PROMContent[0xBD] & BIT6) >> 6; /* 0xBD[6] */
u8 extTypePA_5G_A = (PROMContent[0xBF] & BIT2) >> 2; /* 0xBF[2] */
u8 extTypePA_5G_B = (PROMContent[0xBF] & BIT6) >> 6; /* 0xBF[6] */
u8 extTypeLNA_2G_A = (PROMContent[0xBD] & (BIT1 | BIT0)) >> 0; /* 0xBD[1:0] */
u8 extTypeLNA_2G_B = (PROMContent[0xBD] & (BIT5 | BIT4)) >> 4; /* 0xBD[5:4] */
u8 extTypeLNA_5G_A = (PROMContent[0xBF] & (BIT1 | BIT0)) >> 0; /* 0xBF[1:0] */
u8 extTypeLNA_5G_B = (PROMContent[0xBF] & (BIT5 | BIT4)) >> 4; /* 0xBF[5:4] */
hal_ReadPAType_8812A(Adapter, PROMContent, AutoloadFail);
if ((pHalData->PAType_2G & (BIT5 | BIT4)) == (BIT5 | BIT4)) /* [2.4G] Path A and B are both extPA */
pHalData->TypeGPA = extTypePA_2G_B << 2 | extTypePA_2G_A;
if ((pHalData->PAType_5G & (BIT1 | BIT0)) == (BIT1 | BIT0)) /* [5G] Path A and B are both extPA */
pHalData->TypeAPA = extTypePA_5G_B << 2 | extTypePA_5G_A;
if ((pHalData->LNAType_2G & (BIT7 | BIT3)) == (BIT7 | BIT3)) /* [2.4G] Path A and B are both extLNA */
pHalData->TypeGLNA = extTypeLNA_2G_B << 2 | extTypeLNA_2G_A;
if ((pHalData->LNAType_5G & (BIT7 | BIT3)) == (BIT7 | BIT3)) /* [5G] Path A and B are both extLNA */
pHalData->TypeALNA = extTypeLNA_5G_B << 2 | extTypeLNA_5G_A;
RTW_INFO("pHalData->TypeGPA = 0x%X\n", pHalData->TypeGPA);
RTW_INFO("pHalData->TypeAPA = 0x%X\n", pHalData->TypeAPA);
RTW_INFO("pHalData->TypeGLNA = 0x%X\n", pHalData->TypeGLNA);
RTW_INFO("pHalData->TypeALNA = 0x%X\n", pHalData->TypeALNA);
}
VOID
Hal_ReadPAType_8821A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (!AutoloadFail) {
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */
pHalData->PAType_2G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]);
pHalData->LNAType_2G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_2G_8812AU]);
if (pHalData->PAType_2G == 0xFF)
pHalData->PAType_2G = 0;
if (pHalData->LNAType_2G == 0xFF)
pHalData->LNAType_2G = 0;
pHalData->ExternalPA_2G = (pHalData->PAType_2G & BIT4) ? 1 : 0;
pHalData->ExternalLNA_2G = (pHalData->LNAType_2G & BIT3) ? 1 : 0;
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */
pHalData->PAType_5G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]);
pHalData->LNAType_5G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_5G_8812AU]);
if (pHalData->PAType_5G == 0xFF)
pHalData->PAType_5G = 0;
if (pHalData->LNAType_5G == 0xFF)
pHalData->LNAType_5G = 0;
pHalData->external_pa_5g = (pHalData->PAType_5G & BIT0) ? 1 : 0;
pHalData->external_lna_5g = (pHalData->LNAType_5G & BIT3) ? 1 : 0;
} else {
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
} else {
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->external_pa_5g = 0xFF;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->external_lna_5g = 0xFF;
if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
} else {
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */
pHalData->external_pa_5g = 0;
pHalData->external_lna_5g = 0;
} else {
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
RTW_INFO("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G);
RTW_INFO("pHalData->PAType_5G is 0x%x, pHalData->external_pa_5g = %d\n", pHalData->PAType_5G, pHalData->external_pa_5g);
RTW_INFO("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G);
RTW_INFO("pHalData->LNAType_5G is 0x%x, pHalData->external_lna_5g = %d\n", pHalData->LNAType_5G, pHalData->external_lna_5g);
}
VOID
Hal_ReadRFEType_8812A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (!AutoloadFail) {
if ((GetRegRFEType(Adapter) != 64) || 0xFF == PROMContent[EEPROM_RFE_OPTION_8812]) {
if (GetRegRFEType(Adapter) != 64)
pHalData->rfe_type = GetRegRFEType(Adapter);
else {
if (IS_HARDWARE_TYPE_8812AU(Adapter))
pHalData->rfe_type = 0;
else if (IS_HARDWARE_TYPE_8812E(Adapter))
pHalData->rfe_type = 2;
else
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION;
}
} else if (PROMContent[EEPROM_RFE_OPTION_8812] & BIT7) {
if (pHalData->external_lna_5g) {
if (pHalData->external_pa_5g) {
if (pHalData->ExternalLNA_2G && pHalData->ExternalPA_2G)
pHalData->rfe_type = 3;
else
pHalData->rfe_type = 0;
} else
pHalData->rfe_type = 2;
} else
pHalData->rfe_type = 4;
} else {
pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8812] & 0x3F;
/* 2013/03/19 MH Due to othe customer already use incorrect EFUSE map */
/* to for their product. We need to add workaround to prevent to modify */
/* spec and notify all customer to revise the IC 0xca content. After */
/* discussing with Willis an YN, revise driver code to prevent. */
if (pHalData->rfe_type == 4 &&
(pHalData->external_pa_5g == _TRUE || pHalData->ExternalPA_2G == _TRUE ||
pHalData->external_lna_5g == _TRUE || pHalData->ExternalLNA_2G == _TRUE)) {
if (IS_HARDWARE_TYPE_8812AU(Adapter))
pHalData->rfe_type = 0;
else if (IS_HARDWARE_TYPE_8812E(Adapter))
pHalData->rfe_type = 2;
}
}
} else {
if (GetRegRFEType(Adapter) != 64)
pHalData->rfe_type = GetRegRFEType(Adapter);
else {
if (IS_HARDWARE_TYPE_8812AU(Adapter))
pHalData->rfe_type = 0;
else if (IS_HARDWARE_TYPE_8812E(Adapter))
pHalData->rfe_type = 2;
else
pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION;
}
}
RTW_INFO("RFE Type: 0x%2x\n", pHalData->rfe_type);
}
void Hal_EfuseParseKFreeData_8821A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail)
{
#ifdef CONFIG_RF_POWER_TRIM
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
u8 pg_pwrtrim = 0xFF, pg_pwrtrim_5g_a = 0xFF, pg_pwrtrim_5g_lb1 = 0xFF,
pg_pwrtrim_5g_lb2 = 0xFF, pg_pwrtrim_5g_mb1 = 0xFF, pg_pwrtrim_5g_mb2 = 0xFF, pg_pwrtrim_5g_hb = 0xFF, pg_therm = 0xFF;
if ((Adapter->registrypriv.RegPwrTrimEnable == 1) || !AutoloadFail) {
efuse_OneByteRead(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8821A, &pg_pwrtrim, _FALSE);
efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GLB1_TXA_OFFSET_8821A, &pg_pwrtrim_5g_lb1, _FALSE);
efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GLB2_TXA_OFFSET_8821A, &pg_pwrtrim_5g_lb2, _FALSE);
efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GMB1_TXA_OFFSET_8821A, &pg_pwrtrim_5g_mb1, _FALSE);
efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GMB2_TXA_OFFSET_8821A, &pg_pwrtrim_5g_mb2, _FALSE);
efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GHB_TXA_OFFSET_8821A, &pg_pwrtrim_5g_hb, _FALSE);
efuse_OneByteRead(Adapter, PPG_THERMAL_OFFSET_8821A, &pg_therm, _FALSE);
kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]
= KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_5GLB1][RF_PATH_A]
= KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_lb1 & PPG_BB_GAIN_5G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_5GLB2][RF_PATH_A]
= KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_lb2 & PPG_BB_GAIN_5G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_5GMB1][RF_PATH_A]
= KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_mb1 & PPG_BB_GAIN_5G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_5GMB2][RF_PATH_A]
= KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_mb2) & PPG_BB_GAIN_5G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_5GHB][RF_PATH_A]
= KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_hb & PPG_BB_GAIN_5G_TX_OFFSET_MASK);
kfree_data->thermal
= KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK);
}
if (!AutoloadFail) {
if (GET_PG_KFREE_ON_8821A(PROMContent))
kfree_data->flag |= KFREE_FLAG_ON;
if (GET_PG_KFREE_THERMAL_K_ON_8821A(PROMContent))
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
} else {
if (!kfree_data_is_bb_gain_empty(kfree_data))
kfree_data->flag |= KFREE_FLAG_ON;
if (kfree_data->thermal != 0)
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (Adapter->registrypriv.RegPwrTrimEnable == 1) {
kfree_data->flag |= KFREE_FLAG_ON;
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
pHalData->eeprom_thermal_meter += kfree_data->thermal;
RTW_INFO("kfree flag:0x%02x\n", kfree_data->flag);
if (Adapter->registrypriv.RegPwrTrimEnable || kfree_data->flag & KFREE_FLAG_ON) {
int i;
RTW_PRINT_SEL(RTW_DBGDUMP, "bb_gain:");
for (i = 0; i < BB_GAIN_NUM; i++)
_RTW_PRINT_SEL(RTW_DBGDUMP, "%d ", kfree_data->bb_gain[i][RF_PATH_A]);
_RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
}
if (Adapter->registrypriv.RegPwrTrimEnable || kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
RTW_INFO("thermal:%d\n", kfree_data->thermal);
#endif /*CONFIG_RF_POWER_TRIM */
}
/*
* 2013/04/15 MH Add 8812AU- VL/VS/VN for different board type.
* */
VOID
hal_ReadUsbType_8812AU(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
/* if (IS_HARDWARE_TYPE_8812AU(Adapter) && Adapter->UsbModeMechanism.RegForcedUsbMode == 5) */
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
struct hal_spec_t *hal_spc = GET_HAL_SPEC(Adapter);
u8 reg_tmp, i, j, antenna = 0, wmode = 0;
/* Read anenna type from EFUSE 1019/1018 */
for (i = 0; i < 2; i++) {
/*
Check efuse address 1019
Check efuse address 1018
*/
efuse_OneByteRead(Adapter, 1019 - i, &reg_tmp, _FALSE);
/*
CHeck bit 7-5
Check bit 3-1
*/
if (((reg_tmp >> 5) & 0x7) != 0) {
antenna = ((reg_tmp >> 5) & 0x7);
break;
} else if ((reg_tmp >> 1 & 0x07) != 0) {
antenna = ((reg_tmp >> 1) & 0x07);
break;
}
}
/* Read anenna type from EFUSE 1021/1020 */
for (i = 0; i < 2; i++) {
/*
Check efuse address 1021
Check efuse address 1020
*/
efuse_OneByteRead(Adapter, 1021 - i, &reg_tmp, _FALSE);
/* CHeck bit 3-2 */
if (((reg_tmp >> 2) & 0x3) != 0) {
wmode = ((reg_tmp >> 2) & 0x3);
break;
}
}
RTW_INFO("%s: antenna=%d, wmode=%d\n", __func__, antenna, wmode);
/* Antenna == 1 WMODE = 3 RTL8812AU-VL 11AC + USB2.0 Mode */
if (antenna == 1) {
/* Config 8812AU as 1*1 mode AC mode. */
pHalData->rf_type = RF_1T1R;
/* UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE); */
/* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VL; */
RTW_INFO("%s(): EFUSE_HIDDEN_812AU_VL\n", __FUNCTION__);
} else if (antenna == 2) {
if (wmode == 3) {
if (PROMContent[EEPROM_USB_MODE_8812] == 0x2) {
/* RTL8812AU Normal Mode. No further action. */
/* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU; */
RTW_INFO("%s(): EFUSE_HIDDEN_812AU\n", __FUNCTION__);
} else {
/* Antenna == 2 WMODE = 3 RTL8812AU-VS 11AC + USB2.0 Mode */
/* Driver will not support USB automatic switch */
/* UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE); */
/* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VS; */
RTW_INFO("%s(): EFUSE_HIDDEN_8812AU_VS\n", __func__);
}
} else if (wmode == 2) {
/* Antenna == 2 WMODE = 2 RTL8812AU-VN 11N only + USB2.0 Mode */
/* UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE); */
/* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VN; */
RTW_INFO("%s(): EFUSE_HIDDEN_8812AU_VN\n", __func__);
hal_spc->proto_cap &= ~PROTO_CAP_11AC;
}
}
}
}
enum {
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
static VOID
Hal_EfusePowerSwitch8812A(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
u8 tempval;
u16 tmpV16;
#define EFUSE_ACCESS_ON_JAGUAR 0x69
#define EFUSE_ACCESS_OFF_JAGUAR 0x00
if (PwrState == _TRUE) {
rtw_write8(pAdapter, REG_EFUSE_BURN_GNT_8812, EFUSE_ACCESS_ON_JAGUAR);
/* 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL);
if (!(tmpV16 & PWC_EV12V)) {
tmpV16 |= PWC_EV12V ;
/* rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16); */
}
/* Reset: 0x0000h[28], default valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
}
/* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M) ;
rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16);
}
if (bWrite == _TRUE) {
/* Enable LDO 2.5V before read/write action */
tempval = rtw_read8(pAdapter, EFUSE_TEST + 3);
tempval &= ~(BIT3 | BIT4 | BIT5 | BIT6);
tempval |= (VOLTAGE_V25 << 3);
tempval |= BIT7;
rtw_write8(pAdapter, EFUSE_TEST + 3, tempval);
}
} else {
rtw_write8(pAdapter, REG_EFUSE_BURN_GNT_8812, EFUSE_ACCESS_OFF_JAGUAR);
if (bWrite == _TRUE) {
/* Disable LDO 2.5V after read/write action */
tempval = rtw_read8(pAdapter, EFUSE_TEST + 3);
rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F));
}
}
}
static BOOLEAN
Hal_EfuseSwitchToBank8812A(
IN PADAPTER pAdapter,
IN u1Byte bank,
IN BOOLEAN bPseudoTest
)
{
return _FALSE;
}
static VOID
Hal_EfuseReadEFuse8812A(
PADAPTER Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
u8 *efuseTbl = NULL;
u8 rtemp8[1];
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_MAP_LEN_JAGUAR) {
/* total E-Fuse table is 512bytes */
RTW_INFO("Hal_EfuseReadEFuse8812A(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
goto exit;
}
efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_JAGUAR);
if (efuseTbl == NULL) {
RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, 2);
if (eFuseWord == NULL) {
RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
/* 0. Refresh efuse init map as all oxFF. */
for (i = 0; i < EFUSE_MAX_SECTION_JAGUAR; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
/* */
/* 1. Read the first byte to check if efuse is empty!!! */
/* */
/* */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if (*rtemp8 != 0xFF) {
efuse_utilized++;
/* RTW_INFO("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */
eFuse_Addr++;
} else {
RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
goto exit;
}
/* */
/* 2. Read real efuse content. Filter PG header and every section data. */
/* */
while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */
/* Check PG header for section num. */
if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */
u1temp = ((*rtemp8 & 0xE0) >> 5);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */
if ((*rtemp8 & 0x0F) == 0x0F) {
eFuse_Addr++;
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR))
eFuse_Addr++;
continue;
} else {
offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
wren = (*rtemp8 & 0x0F);
eFuse_Addr++;
}
} else {
offset = ((*rtemp8 >> 4) & 0x0f);
wren = (*rtemp8 & 0x0f);
}
if (offset < EFUSE_MAX_SECTION_JAGUAR) {
/* Get word enable value from PG header */
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
efuse_utilized++;
eFuseWord[offset][i] = (*rtemp8 & 0xff);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR)
break;
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
eFuse_Addr++;
efuse_utilized++;
eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00);
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR)
break;
}
wren >>= 1;
}
} else { /* deal with error offset,skip error data */
RTW_PRINT("invalid offset:0x%02x\n", offset);
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wren & 0x01)) {
eFuse_Addr++;
efuse_utilized++;
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR)
break;
eFuse_Addr++;
efuse_utilized++;
if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR)
break;
}
}
}
/* Read next PG header */
ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
/* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */
if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) {
efuse_utilized++;
eFuse_Addr++;
}
}
/* */
/* 3. Collect 16 sections and 4 word unit into Efuse map. */
/* */
for (i = 0; i < EFUSE_MAX_SECTION_JAGUAR; i++) {
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
}
}
/* */
/* 4. Copy from Efuse map to output pointer memory!!! */
/* */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* 5. Calculate Efuse utilization. */
/* */
efuse_usage = (u1Byte)((eFuse_Addr * 100) / EFUSE_REAL_CONTENT_LEN_JAGUAR);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
RTW_INFO("%s: eFuse_Addr offset(%#x) !!\n", __FUNCTION__, eFuse_Addr);
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_JAGUAR);
if (eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
/* ***********************************************************
* Efuse related code
* *********************************************************** */
static u8
hal_EfuseSwitchToBank(
PADAPTER padapter,
u8 bank,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u32 value32 = 0;
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseBank = bank;
#else
fakeEfuseBank = bank;
#endif
bRet = _TRUE;
} else {
value32 = rtw_read32(padapter, EFUSE_TEST);
bRet = _TRUE;
switch (bank) {
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = _FALSE;
break;
}
rtw_write32(padapter, EFUSE_TEST, value32);
}
return bRet;
}
static VOID
hal_ReadEFuse_BT(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest
)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl;
u8 bank;
u16 eFuse_Addr;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
return;
}
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
if (efuseTbl == NULL) {
RTW_INFO("%s: efuseTbl malloc fail!\n", __FUNCTION__);
return;
}
/* 0xff will be efuse default value instead of 0x00. */
_rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
total = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
for (bank = 1; bank < 3; bank++) { /* 8821a BT 2 bank 512 size */
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
RTW_INFO("%s: hal_EfuseSwitchToBank Fail!!\n", __FUNCTION__);
goto exit;
}
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF)
break;
RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader);
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /* extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION) {
u16 addr;
/* Get word enable value from PG header */
RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
if ((eFuse_Addr - 1) < total) {
RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1);
break;
}
}
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* Calculate Efuse utilization. */
/* */
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1;
RTW_INFO("%s: bank(%d) data end at %#x ,used =%d\n", __FUNCTION__, bank, eFuse_Addr - 1, used);
efuse_usage = (u8)((used * 100) / total);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = used;
#else
fakeBTEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
}
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
}
static VOID
rtl8812_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
if (efuseType == EFUSE_WIFI)
Hal_EfuseReadEFuse8812A(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
else
hal_ReadEFuse_BT(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}
/* Do not support BT */
VOID
Hal_EFUSEGetEfuseDefinition8812A(
IN PADAPTER pAdapter,
IN u1Byte efuseType,
IN u1Byte type,
OUT PVOID pOut
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
u8 *pMax_section;
pMax_section = (u8 *)pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_JAGUAR;
else
*pMax_section = EFUSE_BT_MAX_SECTION;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR);
else
*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR);
else
*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN - (EFUSE_PROTECT_BYTES_BANK * 3));
}
break;
case TYPE_EFUSE_MAP_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (u16)EFUSE_MAP_LEN_JAGUAR;
else
*pu2Tmp = EFUSE_BT_MAP_LEN;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_JAGUAR);
else
*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
}
break;
default: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = 0;
}
break;
}
}
VOID
Hal_EFUSEGetEfuseDefinition_Pseudo8812A(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT PVOID pOut
)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
u8 *pMax_section;
pMax_section = (pu1Byte)pOut;
*pMax_section = EFUSE_MAX_SECTION_JAGUAR;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
u16 *pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
u16 *pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
u16 *pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
u16 *pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
case TYPE_EFUSE_MAP_LEN: {
u16 *pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_JAGUAR;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
default: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = 0;
}
break;
}
}
static VOID
rtl8812_EFUSE_GetEfuseDefinition(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
if (bPseudoTest)
Hal_EFUSEGetEfuseDefinition_Pseudo8812A(pAdapter, efuseType, type, pOut);
else
Hal_EFUSEGetEfuseDefinition8812A(pAdapter, efuseType, type, pOut);
}
static u8
Hal_EfuseWordEnableDataWrite8812A(IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
_rtw_memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE);
if (!(word_en & BIT0)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1], bPseudoTest);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT0);
}
if (!(word_en & BIT1)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3], bPseudoTest);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT1);
}
if (!(word_en & BIT2)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5], bPseudoTest);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT2);
}
if (!(word_en & BIT3)) {
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7], bPseudoTest);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT3);
}
return badworden;
}
static u8
rtl8812_Efuse_WordEnableDataWrite(IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret = 0;
ret = Hal_EfuseWordEnableDataWrite8812A(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u16
hal_EfuseGetCurrentSize_8812A(IN PADAPTER pAdapter,
IN BOOLEAN bPseudoTest)
{
int bContinual = _TRUE;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
if (bPseudoTest)
efuse_addr = (u16)(fakeEfuseUsedBytes);
else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
RTW_INFO("%s(), start_efuse_addr = %d\n", __func__, efuse_addr);
while (bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) &&
(efuse_addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) {
if (efuse_data != 0xFF) {
if ((efuse_data & 0x1F) == 0x0F) { /* extended header */
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if ((efuse_data & 0x0F) == 0x0F) {
efuse_addr++;
continue;
} else {
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
/* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
} else
bContinual = _FALSE ;
}
if (bPseudoTest) {
fakeEfuseUsedBytes = efuse_addr;
RTW_INFO("%s(), return %d\n", __func__, fakeEfuseUsedBytes);
} else {
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
RTW_INFO("%s(), return %d\n", __func__, efuse_addr);
}
return efuse_addr;
}
static u16
hal_EfuseGetCurrentSize_BT(
PADAPTER padapter,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u16 btusedbytes;
u16 efuse_addr;
u8 bank, startBank;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u16 retU2 = 0;
u8 bContinual = _TRUE;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
#else
btusedbytes = fakeBTEfuseUsedBytes;
#endif
} else {
btusedbytes = 0;
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
}
efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr);
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
for (bank = startBank; bank < 3; bank++) {
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
RTW_INFO(KERN_ERR "%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank);
/* bank = EFUSE_MAX_BANK; */
break;
}
/* only when bank is switched we have to reset the efuse_addr. */
if (bank != startBank)
efuse_addr = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE) {
RTW_INFO(KERN_ERR "%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
/* bank = EFUSE_MAX_BANK; */
break;
}
RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
if (ALL_WORDS_DISABLED(efuse_data)) {
efuse_addr++;
continue;
}
/* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
FUNC_ADPT_ARG(padapter), hoffset, hworden);
word_cnts = Efuse_CalculateWordCnts(hworden);
/* read next header */
efuse_addr += (word_cnts * 2) + 1;
}
/* Check if we need to check next bank efuse */
if (efuse_addr < retU2)
break;/* don't need to check next bank. */
}
retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
if (bPseudoTest) {
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
/* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
} else {
pEfuseHal->BTEfuseUsedBytes = retU2;
/* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
}
RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2);
return retU2;
}
static u16
rtl8812_EfuseGetCurrentSize(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret = 0;
if (efuseType == EFUSE_WIFI)
ret = hal_EfuseGetCurrentSize_8812A(pAdapter, bPseudoTest);
else
ret = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
return ret;
}
static int
hal_EfusePgPacketRead_8812A(
IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ReadState = PG_STATE_HEADER;
int bContinual = _TRUE;
int bDataEmpty = _TRUE ;
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 tmpidx = 0;
u8 tmpdata[8];
u8 max_section = 0;
u8 tmp_header = 0;
if (data == NULL)
return _FALSE;
if (offset > EFUSE_MAX_SECTION_JAGUAR)
return _FALSE;
_rtw_memset((PVOID)data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
_rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
/* */
/* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* Skip dummy parts to prevent unexpected data read from Efuse. */
/* By pass right now. 2009.02.19. */
/* */
while (bContinual && (efuse_addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) {
/* ------- Header Read ------------- */
if (ReadState & PG_STATE_HEADER) {
if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
if (EXT_HEADER(efuse_data)) {
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest);
if (!ALL_WORDS_DISABLED(efuse_data)) {
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
RTW_INFO("Error, All words disabled\n");
efuse_addr++;
break;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = _TRUE ;
if (hoffset == offset) {
for (tmpidx = 0; tmpidx < word_cnts * 2 ; tmpidx++) {
if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx , &efuse_data, bPseudoTest)) {
tmpdata[tmpidx] = efuse_data;
if (efuse_data != 0xff)
bDataEmpty = _FALSE;
}
}
if (bDataEmpty == _FALSE)
ReadState = PG_STATE_DATA;
else { /* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
} else { /* read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
} else
bContinual = _FALSE ;
}
/* ------- Data section Read ------------- */
else if (ReadState & PG_STATE_DATA) {
efuse_WordEnableDataRead(hworden, tmpdata, data);
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
ReadState = PG_STATE_HEADER;
}
}
if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) &&
(data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff))
return _FALSE;
else
return _TRUE;
}
static int
rtl8812_Efuse_PgPacketRead(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret = 0;
ret = hal_EfusePgPacketRead_8812A(pAdapter, offset, data, bPseudoTest);
return ret;
}
BOOLEAN
hal_EfuseFixHeaderProcess(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN PPGPKT_STRUCT pFixPkt,
IN u16 *pAddr,
IN BOOLEAN bPseudoTest
)
{
u8 originaldata[8], badworden = 0;
u16 efuse_addr = *pAddr;
u32 PgWriteSuccess = 0;
_rtw_memset((PVOID)originaldata, 0xff, 8);
if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) {
/* check if data exist */
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata, bPseudoTest);
if (badworden != 0xf) { /* write fail */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
if (!PgWriteSuccess)
return _FALSE;
else
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
} else
efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
} else
efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWrite2ByteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len = 0;
u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len) {
RTW_INFO("%s: addr(%d) over available(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
return _FALSE;
}
while (efuse_addr < efuse_max_available_len) {
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s, Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
}
/*to write ext_header*/
if (tmp_header == pg_header) {
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s, Repeat over limit for ext_header!!\n", __FUNCTION__);
return _FALSE;
}
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
}
if ((tmp_header & 0x0F) == 0x0F) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("Repeat over limit for word_en!!\n");
return _FALSE;
} else {
efuse_addr++;
continue;
}
} else if (pg_header != tmp_header) {
PGPKT_STRUCT fixPkt;
RTW_ERR("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n");
RTW_ERR("Error condition for offset PG fail, need to cover the existed data\n");
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(padapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return _FALSE;
} else
break;
} else if ((tmp_header & 0x1F) == 0x0F) {/*wrong extended header*/
efuse_addr += 2;
continue;
}
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
RTW_INFO("%s\n", __func__);
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("retry %d times fail!!\n", repeatcnt);
return FALSE;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
RTW_INFO("===> %s: Keep %d-th retrying, tmp_header = 0x%X\n", __func__, repeatcnt, tmp_header);
}
if (tmp_header != pg_header) {
PGPKT_STRUCT fixPkt;
RTW_INFO("Error, %s(), offset PG fail, need to cover the existed data!!\n", __func__);
RTW_INFO("pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header);
RTW_INFO("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n",
efuse_addr, tmp_header);
fixPkt.offset = (tmp_header>>4) & 0x0F;
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = rtl8812_Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
RTW_INFO("%s: Fail!!\n", __FUNCTION__);
return _FALSE;
}
/* RTW_INFO("%s: ok\n", __FUNCTION__); */
return _TRUE;
}
BOOLEAN efuse_PgPacketCheck(
PADAPTER pAdapter,
u8 efuseType,
BOOLEAN bPseudoTest
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR)) {
RTW_INFO("%s()error: %x >= %x\n", __func__, Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR));
return _FALSE;
}
return _TRUE;
}
VOID
efuse_PgPacketConstruct(
IN u8 offset,
IN u8 word_en,
IN u8 *pData,
IN OUT PPGPKT_STRUCT pTargetPkt
)
{
_rtw_memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8) * 8);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
RTW_INFO("efuse_PgPacketConstruct(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts);
}
u2Byte
Hal_EfusePgPacketExceptionHandle_8812A(
PADAPTER pAdapter,
u2Byte ErrOffset
)
{
BOOLEAN bPseudoTest = FALSE;
u8 next = 0, next_next = 0, data = 0, i = 0, header = 0;
u8 s = 0;
u2Byte offset = ErrOffset;
efuse_OneByteRead(pAdapter, offset, &header, bPseudoTest);
if (EXT_HEADER(header)) {
s = ((header & 0xF0) >> 4);
/* Skip bad word enable to look two bytes ahead and determine if recoverable.*/
offset += 1;
efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest);
efuse_OneByteRead(pAdapter, offset+2, &next_next, bPseudoTest);
if (next == 0xFF && next_next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/
switch (s) {
case 0x0: case 0x2: case 0x4: case 0x6:
case 0x8: case 0xA: case 0xC:
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, offset, 0x27, bPseudoTest);
efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest);
if (data == 0x27)
break;
}
break;
case 0xE:
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, offset, 0x17, bPseudoTest);
efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest);
if (data == 0x17)
break;
break;
default:
break;
}
efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest);
efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest);
offset += 3;
ErrOffset = offset;
}
} else {/* 1-Byte header*/
if (ALL_WORDS_DISABLED(header)) {
u8 next = 0;
efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest);
if (next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/
header = (header & 0xF0) | 0x7;
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, offset, header, bPseudoTest);
efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest);
if (data == header)
break;
}
efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest);
efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest);
offset += 2;
ErrOffset = offset;
}
}
}
}
return ErrOffset;
}
BOOLEAN hal_EfuseCheckIfDatafollowed(
IN PADAPTER pAdapter,
IN u8 word_cnts,
IN u16 startAddr,
IN BOOLEAN bPseudoTest
)
{
BOOLEAN bRet = FALSE;
u8 i, efuse_data;
for (i = 0; i < (word_cnts * 2) ; i++) {
if (efuse_OneByteRead(pAdapter, (startAddr + i) , &efuse_data, bPseudoTest) && (efuse_data != 0xFF))
bRet = TRUE;
}
return bRet;
}
BOOLEAN
hal_EfuseWordEnMatched(
IN PPGPKT_STRUCT pTargetPkt,
IN PPGPKT_STRUCT pCurPkt,
IN u8 *pWden
)
{
u8 match_word_en = 0x0F; /* default all words are disabled */
/* check if the same words are enabled both target and current PG packet */
if (((pTargetPkt->word_en & BIT0) == 0) &&
((pCurPkt->word_en & BIT0) == 0)) {
match_word_en &= ~BIT0; /* enable word 0 */
}
if (((pTargetPkt->word_en & BIT1) == 0) &&
((pCurPkt->word_en & BIT1) == 0)) {
match_word_en &= ~BIT1; /* enable word 1 */
}
if (((pTargetPkt->word_en & BIT2) == 0) &&
((pCurPkt->word_en & BIT2) == 0)) {
match_word_en &= ~BIT2; /* enable word 2 */
}
if (((pTargetPkt->word_en & BIT3) == 0) &&
((pCurPkt->word_en & BIT3) == 0)) {
match_word_en &= ~BIT3; /* enable word 3 */
}
*pWden = match_word_en;
if (match_word_en != 0xf)
return TRUE;
else
return FALSE;
}
BOOLEAN
efuse_PgPacketPartialWrite(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u16 *pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
BOOLEAN bRet = _FALSE;
u8 i, efuse_data = 0, cur_header = 0;
u8 matched_wden = 0, badworden = 0;
u16 startAddr = 0;
PGPKT_STRUCT curPkt;
u16 max_sec_num = (efuseType == EFUSE_WIFI) ? pEfuseHal->MaxSecNum_WiFi : pEfuseHal->MaxSecNum_BT;
u16 efuse_max = pEfuseHal->BankSize;
u16 efuse_max_available_len =
(efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT;
RTW_INFO("efuse_PgPacketPartialWrite()\n");
if (bPseudoTest) {
pEfuseHal->fakeEfuseBank = (efuseType == EFUSE_WIFI) ? 0 : pEfuseHal->fakeEfuseBank;
Efuse_GetCurrentSize(pAdapter, efuseType, _TRUE);
}
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
} else {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
}
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
RTW_INFO("efuse_PgPacketPartialWrite(), startAddr = 0x%X\n", startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = _FALSE;
RTW_INFO("startAddr(%d) >= efuse_max_available_len(%d)\n",
startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
if (EXT_HEADER(efuse_data)) {
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
u16 recoveredAddr = startAddr;
recoveredAddr = Hal_EfusePgPacketExceptionHandle_8812A(pAdapter, startAddr - 1);
if (recoveredAddr == (startAddr - 1)) {
RTW_INFO("Error! All words disabled and the recovery failed, (Addr, Data) = (0x%X, 0x%X)\n",
startAddr, efuse_data);
pAdapter->LastError = ERR_INVALID_DATA;
break;
} else {
startAddr = recoveredAddr;
RTW_INFO("Bad extension header but recovered => Keep going.\n");
continue;
}
} else {
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
} else {
if (ALL_WORDS_DISABLED(efuse_data)) {
u16 recoveredAddr = startAddr;
recoveredAddr = Hal_EfusePgPacketExceptionHandle_8812A(pAdapter, startAddr);
if (recoveredAddr != startAddr) {
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
RTW_INFO("Bad header but recovered => Read header again.\n");
}
}
cur_header = efuse_data;
curPkt.offset = (cur_header >> 4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
if (curPkt.offset > max_sec_num) {
pAdapter->LastError = ERR_OUT_OF_RANGE;
pEfuseHal->Status = ERR_OUT_OF_RANGE;
bRet = _FALSE;
break;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
/* if same header is found but no data followed */
/* write some part of data followed by the header. */
if ((curPkt.offset == pTargetPkt->offset) &&
(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1, bPseudoTest)) &&
hal_EfuseWordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
RTW_INFO("Need to partial write data by the previous wrote header\n");
/* RT_ASSERT(_FALSE, ("Error, Need to partial write data by the previous wrote header!!\n")); */
/* Here to write partial data */
badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
u32 PgWriteSuccess = 0;
/* if write fail on some words, write these bad words again */
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess) {
bRet = _FALSE; /* write fail, return */
break;
}
}
/* partial write ok, update the target packet for later use */
for (i = 0; i < 4; i++) {
if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */
pTargetPkt->word_en |= (0x1 << i); /* disable the word */
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
/* read from next header */
startAddr = startAddr + (curPkt.word_cnts * 2) + 1;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
RTW_INFO("Started from unused header offset=%d\n", startAddr);
bRet = _TRUE;
break;
}
}
return bRet;
}
BOOLEAN efuse_PgPacketWriteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
BOOLEAN bPseudoTest)
{
BOOLEAN bRet = _FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
int
hal_EfusePgPacketWrite_8812A(IN PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
BOOLEAN bPseudoTest)
{
u8 efuseType = EFUSE_WIFI;
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
RTW_INFO("===> efuse_PgPacketWrite[%s], offset: 0x%X\n", (efuseType == EFUSE_WIFI) ? "WIFI" : "BT", offset);
/* 4 [1] Check if the remaining space is available to write. */
if (!efuse_PgPacketCheck(pAdapter, efuseType, bPseudoTest)) {
pAdapter->LastError = ERR_WRITE_PROTECT;
RTW_INFO("efuse_PgPacketCheck(), fail!!\n");
return _FALSE;
}
/* 4 [2] Construct a packet to write: (Data, Offset, and WordEnable) */
efuse_PgPacketConstruct(offset, word_en, pData, &targetPkt);
/* 4 [3] Fix headers without data or fix bad headers, and then return the address where to get started. */
if (!efuse_PgPacketPartialWrite(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) {
pAdapter->LastError = ERR_INVALID_DATA;
RTW_INFO("efuse_PgPacketPartialWrite(), fail!!\n");
return _FALSE;
}
/* 4 [4] Write the (extension) header. */
if (!efuse_PgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) {
pAdapter->LastError = ERR_IO_FAILURE;
RTW_INFO("efuse_PgPacketWriteHeader(), fail!!\n");
return _FALSE;
}
/* 4 [5] Write the data. */
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) {
pAdapter->LastError = ERR_IO_FAILURE;
RTW_INFO("efuse_PgPacketWriteData(), fail!!\n");
return _FALSE;
}
RTW_INFO("<=== efuse_PgPacketWrite\n");
return _TRUE;
}
static VOID
rtl8812_EfusePowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
Hal_EfusePowerSwitch8812A(pAdapter, bWrite, PwrState);
}
static int
rtl8812_Efuse_PgPacketWrite(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8812A(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
static u8
hal_EfusePgCheckAvailableAddr(
PADAPTER pAdapter,
u8 efuseType,
u8 bPseudoTest)
{
u16 max_available = 0;
u16 current_size;
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
/* RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available); */
current_size = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
if (current_size >= max_available) {
RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available);
return _FALSE;
}
return _TRUE;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
PPGPKT_STRUCT pTargetPkt)
{
_rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
static u8
hal_EfusePartialWriteCheck(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
u8 bRet = _FALSE;
u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
u8 efuse_data = 0;
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
} else {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
}
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = _FALSE;
RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
__FUNCTION__, startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
bRet = _FALSE;
RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
__FUNCTION__, startAddr, efuse_data);
break;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
/* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */
bRet = _TRUE;
break;
}
}
return bRet;
}
static u8
hal_EfusePgPacketWriteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static u8
Hal_EfusePgPacketWrite_BT(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return _FALSE;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
void InitRDGSetting8812A(PADAPTER padapter)
{
rtw_write8(padapter, REG_RD_CTRL, 0xFF);
rtw_write16(padapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05);
}
void ReadRFType8812A(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
/* if (pHalData->rf_type == RF_1T1R){ */
/* pHalData->bRFPathRxEnable[0] = _TRUE; */
/* } */
/* else { */ /* Default unknow type is 2T2r */
/* pHalData->bRFPathRxEnable[0] = pHalData->bRFPathRxEnable[1] = _TRUE; */
/* } */
if (IsSupported24G(padapter->registrypriv.wireless_mode) &&
is_supported_5g(padapter->registrypriv.wireless_mode))
pHalData->BandSet = BAND_ON_BOTH;
else if (is_supported_5g(padapter->registrypriv.wireless_mode))
pHalData->BandSet = BAND_ON_5G;
else
pHalData->BandSet = BAND_ON_2_4G;
/* if(padapter->bInHctTest) */
/* pHalData->BandSet = BAND_ON_2_4G; */
}
void rtl8812_start_thread(PADAPTER padapter)
{
}
void rtl8812_stop_thread(PADAPTER padapter)
{
}
void hal_notch_filter_8812(_adapter *adapter, bool enable)
{
if (enable) {
RTW_INFO("Enable notch filter\n");
/* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1); */
} else {
RTW_INFO("Disable notch filter\n");
/* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); */
}
}
u8
GetEEPROMSize8812A(
IN PADAPTER Adapter
)
{
u8 size = 0;
u32 curRCR;
curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL);
size = (curRCR & EEPROMSEL) ? 6 : 4; /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
/* return size; */
return 4; /* <20120713, Kordan> The default value of HW is 6 ?!! */
}
void CheckAutoloadState8812A(PADAPTER padapter)
{
u8 val8;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
/* check system boot selection */
val8 = rtw_read8(padapter, REG_9346CR);
pHalData->EepromOrEfuse = (val8 & BOOT_FROM_EEPROM) ? _TRUE : _FALSE;
pHalData->bautoload_fail_flag = (val8 & EEPROM_EN) ? _FALSE : _TRUE;
RTW_INFO("%s: 9346CR(%#x)=0x%02x, Boot from %s, Autoload %s!\n",
__FUNCTION__, REG_9346CR, val8,
(pHalData->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(pHalData->bautoload_fail_flag ? "Fail" : "OK"));
}
void InitPGData8812A(PADAPTER padapter)
{
u32 i;
u16 val16;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
if (_FALSE == pHalData->bautoload_fail_flag) {
/* autoload OK. */
if (is_boot_from_eeprom(padapter)) {
/* Read all Content from EEPROM or EFUSE. */
for (i = 0; i < HWSET_MAX_SIZE_JAGUAR; i += 2) {
/* val16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); */
/* *((u16*)(&PROMContent[i])) = val16; */
}
} else {
/* Read EFUSE real map to shadow. */
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
} else {
/* update to default value 0xFF */
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
static void read_chip_version_8812a(PADAPTER Adapter)
{
u32 value32;
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(Adapter);
value32 = rtw_read32(Adapter, REG_SYS_CFG);
RTW_INFO("%s SYS_CFG(0x%X)=0x%08x\n", __FUNCTION__, REG_SYS_CFG, value32);
if (IS_HARDWARE_TYPE_8812(Adapter))
pHalData->version_id.ICType = CHIP_8812;
else
pHalData->version_id.ICType = CHIP_8821;
pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
if (IS_HARDWARE_TYPE_8812(Adapter))
pHalData->version_id.RFType = RF_TYPE_2T2R; /* RF_2T2R; */
else
pHalData->version_id.RFType = RF_TYPE_1T1R; /* RF_1T1R; */
if (Adapter->registrypriv.special_rf_path == 1)
pHalData->version_id.RFType = RF_TYPE_1T1R; /* RF_1T1R; */
if (IS_HARDWARE_TYPE_8812(Adapter))
pHalData->version_id.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
else {
u32 vendor;
vendor = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
switch (vendor) {
case 0:
vendor = CHIP_VENDOR_TSMC;
break;
case 1:
vendor = CHIP_VENDOR_SMIC;
break;
case 2:
vendor = CHIP_VENDOR_UMC;
break;
}
pHalData->version_id.VendorType = vendor;
}
pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
if (IS_HARDWARE_TYPE_8812(Adapter))
pHalData->version_id.CUTVersion += 1;
/* value32 = rtw_read32(Adapter, REG_GPIO_OUTSTS); */
pHalData->version_id.ROMVer = 0; /* ROM code version. */
/* For multi-function consideration. Added by Roger, 2010.10.06. */
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
value32 = rtw_read32(Adapter, REG_MULTI_FUNC_CTRL);
pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
rtw_hal_config_rftype(Adapter);
#if 1
dump_chip_info(pHalData->version_id);
#endif
}
VOID
Hal_PatchwithJaguar_8812(
IN PADAPTER Adapter,
IN RT_MEDIA_STATUS MediaStatus
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_ext_priv *pmlmeext = &(Adapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if ((MediaStatus == RT_MEDIA_CONNECT) &&
(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP)) {
rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x1);
rtw_write8(Adapter, REG_TCR + 3, BIT2);
} else {
rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x3F);
/* rtw_write8(Adapter, REG_TCR+3, BIT0|BIT1|BIT2); */
/*
* 20150707 yiwei.sun
* set 0x604[24] = 0 , to fix 11ac vht 80Mhz mode mcs 8 , 9 udp pkt lose issue
* suggest by MAC team Jong & Scott
*/
rtw_write8(Adapter , REG_TCR + 3 , BIT1 | BIT2);
}
if ((MediaStatus == RT_MEDIA_CONNECT) &&
((pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP) ||
(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP))) {
rtw_write8(Adapter, rBWIndication_Jaguar + 3,
(rtw_read8(Adapter, rBWIndication_Jaguar + 3) | BIT2));
} else {
rtw_write8(Adapter, rBWIndication_Jaguar + 3,
(rtw_read8(Adapter, rBWIndication_Jaguar + 3) & (~BIT2)));
}
}
#ifdef CONFIG_RTL8821A
void init_hal_spec_8821a(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8821a";
hal_spec->macid_num = 128;
hal_spec->sec_cam_ent_num = 64;
hal_spec->sec_cap = 0;
hal_spec->rfpath_num_2g = 1;
hal_spec->rfpath_num_5g = 1;
hal_spec->max_tx_cnt = 1;
hal_spec->tx_nss_num = 1;
hal_spec->rx_nss_num = 1;
hal_spec->band_cap = BAND_CAP_2G | BAND_CAP_5G;
hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M | BW_CAP_80M;
hal_spec->port_num = 2;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N | PROTO_CAP_11AC;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
hal_spec->pg_txpwr_saddr = 0x10;
rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
, REG_MACID_SLEEP
, REG_MACID_SLEEP_1
, REG_MACID_SLEEP_2
, REG_MACID_SLEEP_3);
}
#endif /* CONFIG_RTL8821A */
void init_hal_spec_8812a(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8812a";
hal_spec->macid_num = 128;
hal_spec->sec_cam_ent_num = 64;
hal_spec->sec_cap = 0;
hal_spec->rfpath_num_2g = 2;
hal_spec->rfpath_num_5g = 2;
hal_spec->max_tx_cnt = 2;
hal_spec->tx_nss_num = 2;
hal_spec->rx_nss_num = 2;
hal_spec->band_cap = BAND_CAP_2G | BAND_CAP_5G;
hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M | BW_CAP_80M;
hal_spec->port_num = 2;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N | PROTO_CAP_11AC;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
hal_spec->pg_txpwr_saddr = 0x10;
rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
, REG_MACID_SLEEP
, REG_MACID_SLEEP_1
, REG_MACID_SLEEP_2
, REG_MACID_SLEEP_3);
}
void InitDefaultValue8821A(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = adapter_to_pwrctl(padapter);
/* init default value */
pHalData->fw_ractrl = _FALSE;
if (!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
/* init dm default value */
pHalData->bChnlBWInitialized = _FALSE;
pHalData->bIQKInitialized = _FALSE;
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
}
VOID
_InitBeaconParameters_8812A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8); /* port0 and port1 */
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == 1) {
/* Enable prot0 beacon function for PSTDMA */
val16 |= EN_BCN_FUNCTION;
}
#endif
rtw_write16(Adapter, REG_BCN_CTRL, val16);
/* rtw_write16(Adapter, REG_BCN_CTRL, 0x1010); */
/* TBTT setup time */
rtw_write8(Adapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME);
/* TBTT hold time: 0x540[19:8] */
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF);
rtw_write8(Adapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8));
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8812);/* 5ms */
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8812); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
}
static VOID
_BeaconFunctionEnable(
IN PADAPTER Adapter,
IN BOOLEAN Enable,
IN BOOLEAN Linked
)
{
rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
/* SetBcnCtrlReg(Adapter, (BIT4 | BIT3 | BIT1), 0x00); */
rtw_write8(Adapter, REG_RD_CTRL + 1, 0x6F);
}
void SetBeaconRelatedRegisters8812A(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
/* reset TSF, enable update TSF, correcting TSF On Beacon */
/* REG_BCN_INTERVAL */
/* REG_BCNDMATIM */
/* REG_ATIMWND */
/* REG_TBTT_PROHIBIT */
/* REG_DRVERLYINT */
/* REG_BCN_MAX_ERR */
/* REG_BCNTCFG */ /* (0x510) */
/* REG_DUAL_TSF_RST */
/* REG_BCN_CTRL */ /* (0x550) */
/* BCN interval */
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
#endif
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtw_write8(padapter, REG_ATIMWND, 0x02);/* 2ms */
_InitBeaconParameters_8812A(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 = rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
/* rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6)); */
/* rtw_write8(padapter, 0x541, 0xff); */
/* rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0)); */
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg) | BIT(1));
}
#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 0)
VOID
SetBeamformingCLK_8812(
IN PADAPTER Adapter
)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
u16 u2btmp;
u8 Count = 0, u1btmp;
RTW_INFO(" ==>%s\n", __FUNCTION__);
if (rtw_mi_check_fwstate(Adapter, _FW_UNDER_SURVEY)) {
RTW_INFO(" <==%s return by Scan\n", __FUNCTION__);
return;
}
/* Stop Usb TxDMA */
rtw_write_port_cancel(Adapter);
#ifdef CONFIG_PCI_HCI
/* Stop PCIe TxDMA */
rtw_write8(Adapter, REG_PCIE_CTRL_REG + 1, 0xFE);
#endif
/* Wait TXFF empty */
for (Count = 0; Count < 100; Count++) {
u2btmp = rtw_read16(Adapter, REG_TXPKT_EMPTY);
u2btmp = u2btmp & 0xfff;
if (u2btmp != 0xfff) {
rtw_mdelay_os(10);
continue;
} else
break;
}
RTW_INFO(" Tx Empty count %d\n", Count);
/* TX pause */
rtw_write8(Adapter, REG_TXPAUSE, 0xFF);
/* Wait TX State Machine OK */
for (Count = 0; Count < 100; Count++) {
if (rtw_read32(Adapter, REG_SCH_TXCMD_8812A) != 0)
continue;
else
break;
}
RTW_INFO(" Tx Status count %d\n", Count);
/* Stop RX DMA path */
u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp | BIT2);
for (Count = 0; Count < 100; Count++) {
u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
if (u1btmp & BIT1)
break;
else
rtw_mdelay_os(10);
}
RTW_INFO(" Rx Empty count %d\n", Count);
/* Disable clock */
rtw_write8(Adapter, REG_SYS_CLKR + 1, 0xf0);
/* Disable 320M */
rtw_write8(Adapter, REG_AFE_PLL_CTRL + 3, 0x8);
/* Enable 320M */
rtw_write8(Adapter, REG_AFE_PLL_CTRL + 3, 0xa);
/* Enable clock */
rtw_write8(Adapter, REG_SYS_CLKR + 1, 0xfc);
/* Release Tx pause */
rtw_write8(Adapter, REG_TXPAUSE, 0);
/* Enable RX DMA path */
u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp & (~BIT2));
/* Start Usb TxDMA */
RTW_ENABLE_FUNC(Adapter, DF_TX_BIT);
RTW_INFO("%s\n", __FUNCTION__);
RTW_INFO("<==%s\n", __FUNCTION__);
}
VOID
SetBeamformRfMode_8812(
IN PADAPTER Adapter,
IN struct beamforming_info *pBeamInfo
)
{
BOOLEAN bSelfBeamformer = _FALSE;
BOOLEAN bSelfBeamformee = _FALSE;
BEAMFORMING_CAP BeamformCap = BEAMFORMING_CAP_NONE;
BeamformCap = beamforming_get_beamform_cap(pBeamInfo);
if (BeamformCap == pBeamInfo->beamforming_cap)
return;
else
pBeamInfo->beamforming_cap = BeamformCap;
if (GET_RF_TYPE(Adapter) == RF_1T1R)
return;
bSelfBeamformer = BeamformCap & BEAMFORMER_CAP;
bSelfBeamformee = BeamformCap & BEAMFORMEE_CAP;
phy_set_rf_reg(Adapter, RF_PATH_A, RF_WeLut_Jaguar, 0x80000, 0x1); /* RF Mode table write enable */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_WeLut_Jaguar, 0x80000, 0x1); /* RF Mode table write enable */
if (bSelfBeamformer) {
/* Paath_A */
phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */
phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */
phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData1, 0xfffff, 0xE26BF); /* Enable TXIQGEN in RX mode */
/* Path_B */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData1, 0xfffff, 0xE26BF); /* Enable TXIQGEN in RX mode */
} else {
/* Paath_A */
phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */
phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */
phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData1, 0xfffff, 0xC26BF); /* Disable TXIQGEN in RX mode */
/* Path_B */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData1, 0xfffff, 0xC26BF); /* Disable TXIQGEN in RX mode */
}
phy_set_rf_reg(Adapter, RF_PATH_A, RF_WeLut_Jaguar, 0x80000, 0x0); /* RF Mode table write disable */
phy_set_rf_reg(Adapter, RF_PATH_B, RF_WeLut_Jaguar, 0x80000, 0x0); /* RF Mode table write disable */
if (bSelfBeamformer)
phy_set_bb_reg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x33);
else
phy_set_bb_reg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x11);
}
VOID
SetBeamformEnter_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
u8 i = 0;
u32 CSI_Param;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
struct beamforming_entry BeamformEntry = pBeamInfo->beamforming_entry[Idx];
u16 STAid = 0;
SetBeamformRfMode_8812(Adapter, pBeamInfo);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE))
STAid = BeamformEntry.mac_id;
else
STAid = BeamformEntry.p_aid;
/* Sounding protocol control */
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB);
/* MAC addresss/Partial AID of Beamformer */
if (Idx == 0) {
for (i = 0; i < 6 ; i++)
rtw_write8(Adapter, (REG_BFMER0_INFO_8812A + i), BeamformEntry.mac_addr[i]);
/* CSI report use legacy ofdm so don't need to fill P_AID.*/
/*rtw_write16(Adapter, REG_BFMER0_INFO_8812A+6, BeamformEntry.P_AID);*/
} else {
for (i = 0; i < 6 ; i++)
rtw_write8(Adapter, (REG_BFMER1_INFO_8812A + i), BeamformEntry.mac_addr[i]);
/* CSI report use legacy ofdm so don't need to fill P_AID.*/
/*rtw_write16(Adapter, REG_BFMER1_INFO_8812A+6, BeamformEntry.P_AID);*/
}
/* CSI report parameters of Beamformee */
if ((BeamformEntry.beamforming_entry_cap & BEAMFORMEE_CAP_VHT_SU) ||
(BeamformEntry.beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU)) {
if (pHalData->rf_type == RF_2T2R)
CSI_Param = 0x01090109;
else
CSI_Param = 0x01080108;
} else {
if (pHalData->rf_type == RF_2T2R)
CSI_Param = 0x03090309;
else
CSI_Param = 0x03080308;
}
if (pHalData->rf_type == RF_2T2R)
rtw_write32(Adapter, 0x9B4, 0x00000000); /* Nc =2 */
else
rtw_write32(Adapter, 0x9B4, 0x01081008); /* Nc =1 */
rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW20_8812A, CSI_Param);
rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW40_8812A, CSI_Param);
rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW80_8812A, CSI_Param);
/* P_AID of Beamformee & enable NDPA transmission & enable NDPA interrupt */
if (Idx == 0) {
rtw_write16(Adapter, REG_TXBF_CTRL_8812A, STAid);
rtw_write8(Adapter, REG_TXBF_CTRL_8812A + 3, rtw_read8(Adapter, REG_TXBF_CTRL_8812A + 3) | BIT4 | BIT6 | BIT7);
} else
rtw_write16(Adapter, REG_TXBF_CTRL_8812A + 2, STAid | BIT12 | BIT14 | BIT15);
/* CSI report parameters of Beamformee */
if (Idx == 0) {
/* Get BIT24 & BIT25*/
u8 tmp = rtw_read8(Adapter, REG_BFMEE_SEL_8812A + 3) & 0x3;
rtw_write8(Adapter, REG_BFMEE_SEL_8812A + 3, tmp | 0x60);
rtw_write16(Adapter, REG_BFMEE_SEL_8812A, STAid | BIT9);
} else {
/* Set BIT25 */
rtw_write16(Adapter, REG_BFMEE_SEL_8812A + 2, STAid | (0xE2 << 8));
}
/* Timeout value for MAC to leave NDP_RX_standby_state (60 us, Test chip) (80 us, MP chip) */
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A + 3, 0x50);
beamforming_notify(Adapter);
}
VOID
SetBeamformLeave_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
SetBeamformRfMode_8812(Adapter, pBeamInfo);
/* Clear P_AID of Beamformee
* Clear MAC addresss of Beamformer
* Clear Associated Bfmee Sel
*/
if (pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE)
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8);
if (Idx == 0) {
rtw_write16(Adapter, REG_TXBF_CTRL_8812A, 0);
rtw_write32(Adapter, REG_BFMER0_INFO_8812A, 0);
rtw_write16(Adapter, REG_BFMER0_INFO_8812A + 4, 0);
rtw_write16(Adapter, REG_BFMEE_SEL_8812A, 0);
} else {
rtw_write16(Adapter, REG_TXBF_CTRL_8812A + 2, rtw_read16(Adapter, REG_TXBF_CTRL_8812A + 2) & 0xF000);
rtw_write32(Adapter, REG_BFMER1_INFO_8812A, 0);
rtw_write16(Adapter, REG_BFMER1_INFO_8812A + 4, 0);
rtw_write16(Adapter, REG_BFMEE_SEL_8812A + 2, rtw_read16(Adapter, REG_BFMEE_SEL_8812A + 2) & 0x60);
}
}
VOID
SetBeamformStatus_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
u16 BeamCtrlVal;
u32 BeamCtrlReg;
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
struct beamforming_entry BeamformEntry = pBeamInfo->beamforming_entry[Idx];
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE))
BeamCtrlVal = BeamformEntry.mac_id;
else
BeamCtrlVal = BeamformEntry.p_aid;
if (Idx == 0)
BeamCtrlReg = REG_TXBF_CTRL_8812A;
else {
BeamCtrlReg = REG_TXBF_CTRL_8812A + 2;
BeamCtrlVal |= BIT12 | BIT14 | BIT15;
}
if (BeamformEntry.beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED) {
if (BeamformEntry.sound_bw == CHANNEL_WIDTH_20)
BeamCtrlVal |= BIT9;
else if (BeamformEntry.sound_bw == CHANNEL_WIDTH_40)
BeamCtrlVal |= BIT10;
else if (BeamformEntry.sound_bw == CHANNEL_WIDTH_80)
BeamCtrlVal |= BIT11;
} else
BeamCtrlVal &= ~(BIT9 | BIT10 | BIT11);
rtw_write16(Adapter, BeamCtrlReg, BeamCtrlVal);
RTW_INFO("%s Idx %d BeamCtrlReg %x BeamCtrlVal %x\n", __FUNCTION__, Idx, BeamCtrlReg, BeamCtrlVal);
}
VOID
SetBeamformFwTxBFCmd_8812(
IN PADAPTER Adapter
)
{
u8 Idx, Period0 = 0, Period1 = 0;
u8 PageNum0 = 0xFF, PageNum1 = 0xFF;
u8 u1TxBFParm[3] = {0};
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
for (Idx = 0; Idx < BEAMFORMING_ENTRY_NUM; Idx++) {
if (pBeamInfo->beamforming_entry[Idx].beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED) {
if (Idx == 0) {
if (pBeamInfo->beamforming_entry[Idx].bSound)
PageNum0 = 0xFE;
else
PageNum0 = 0xFF; /* stop sounding */
Period0 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period);
} else if (Idx == 1) {
if (pBeamInfo->beamforming_entry[Idx].bSound)
PageNum1 = 0xFE;
else
PageNum1 = 0xFF; /* stop sounding */
Period1 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period);
}
}
}
u1TxBFParm[0] = PageNum0;
u1TxBFParm[1] = PageNum1;
u1TxBFParm[2] = (Period1 << 4) | Period0;
fill_h2c_cmd_8812(Adapter, H2C_8812_TxBF, 3, u1TxBFParm);
RTW_INFO("%s PageNum0 = %d Period0 = %d\n", __FUNCTION__, PageNum0, Period0);
RTW_INFO("PageNum1 = %d Period1 %d\n", PageNum1, Period1);
}
VOID
SetBeamformDownloadNDPA_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
u8 u1bTmp = 0, tmpReg422 = 0, Head_Page;
u8 BcnValidReg = 0, count = 0, DLBcnCount = 0;
BOOLEAN bSendBeacon = _FALSE;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 TxPageBndy = LAST_ENTRY_OF_TX_PKT_BUFFER_8812; /* default reseved 1 page for the IC type which is undefined. */
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
struct beamforming_entry *pBeamEntry = pBeamInfo->beamforming_entry + Idx;
/* pHalData->bFwDwRsvdPageInProgress = _TRUE; */
if (Idx == 0)
Head_Page = 0xFE;
else
Head_Page = 0xFE;
rtw_hal_get_def_var(Adapter, HAL_DEF_TX_PAGE_BOUNDARY, (u8 *)&TxPageBndy);
/* Set REG_CR bit 8. DMA beacon by SW. */
u1bTmp = rtw_read8(Adapter, REG_CR + 1);
rtw_write8(Adapter, REG_CR + 1, (u1bTmp | BIT0));
rtw_write8(Adapter, REG_CR + 1,
rtw_read8(Adapter, REG_CR + 1) | BIT0);
/* Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame. */
tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL + 2);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL + 2, tmpReg422 & (~BIT6));
if (tmpReg422 & BIT6) {
RTW_INFO("SetBeamformDownloadNDPA_8812(): There is an Adapter is sending beacon.\n");
bSendBeacon = _TRUE;
}
/* TDECTRL[15:8] 0x209[7:0] = 0xF6 Beacon Head for TXDMA */
rtw_write8(Adapter, REG_TDECTRL + 1, Head_Page);
do {
/* Clear beacon valid check bit. */
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL + 2);
rtw_write8(Adapter, REG_TDECTRL + 2, (BcnValidReg | BIT0));
/* download NDPA rsvd page. */
if (pBeamEntry->beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU)
beamforming_send_vht_ndpa_packet(Adapter, pBeamEntry->mac_addr, pBeamEntry->aid, pBeamEntry->sound_bw, BCN_QUEUE_INX);
else
beamforming_send_ht_ndpa_packet(Adapter, pBeamEntry->mac_addr, pBeamEntry->sound_bw, BCN_QUEUE_INX);
/* check rsvd page download OK. */
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL + 2);
count = 0;
while (!(BcnValidReg & BIT0) && count < 20) {
count++;
rtw_udelay_os(10);
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL + 2);
}
DLBcnCount++;
} while (!(BcnValidReg & BIT0) && DLBcnCount < 5);
if (!(BcnValidReg & BIT0))
RTW_INFO("%s Download RSVD page failed!\n", __FUNCTION__);
/* TDECTRL[15:8] 0x209[7:0] = 0xF6 Beacon Head for TXDMA */
rtw_write8(Adapter, REG_TDECTRL + 1, TxPageBndy);
/* To make sure that if there exists an adapter which would like to send beacon. */
/* If exists, the origianl value of 0x422[6] will be 1, we should check this to */
/* prevent from setting 0x422[6] to 0 after download reserved page, or it will cause */
/* the beacon cannot be sent by HW. */
/* 2010.06.23. Added by tynli. */
if (bSendBeacon)
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL + 2, tmpReg422);
/* Do not enable HW DMA BCN or it will cause Pcie interface hang by timing issue. 2011.11.24. by tynli. */
/* Clear CR[8] or beacon packet will not be send to TxBuf anymore. */
u1bTmp = rtw_read8(Adapter, REG_CR + 1);
rtw_write8(Adapter, REG_CR + 1, (u1bTmp & (~BIT0)));
pBeamEntry->beamforming_entry_state = BEAMFORMING_ENTRY_STATE_PROGRESSED;
/* pHalData->bFwDwRsvdPageInProgress = _FALSE; */
}
VOID
SetBeamformFwTxBF_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
struct beamforming_entry *pBeamEntry = pBeamInfo->beamforming_entry + Idx;
if (pBeamEntry->beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSING)
SetBeamformDownloadNDPA_8812(Adapter, Idx);
SetBeamformFwTxBFCmd_8812(Adapter);
}
VOID
SetBeamformPatch_8812(
IN PADAPTER Adapter,
IN u8 Operation
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
if (pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE)
return;
/*if(Operation == SCAN_OPT_BACKUP_BAND0)
{
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8);
}
else if(Operation == SCAN_OPT_RESTORE)
{
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB);
}*/
}
#endif /*#if (BEAMFORMING_SUPPORT == 0) - for drv beamforming*/
#endif /*#ifdef CONFIG_BEAMFORMING*/
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 rcr_bits;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
#if 0
/*
CRC and ICV packet will drop in recvbuf2recvframe()
We no turn on it.
*/
rcr_bits |= (RCR_ACRC32 | RCR_AICV);
#endif
rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
#if 0
/* tx pause */
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
#endif
} else {
/* do nothing */
}
}
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*HW port0 - MBSS*/
#if 0
static void hw_var_set_opmode_mbid(PADAPTER Adapter, u8 mode)
{
rtw_hal_rcr_set_chk_bssid(Adapter, MLME_ACTION_NONE);
RTW_INFO("%s()-"ADPT_FMT" mode = %d\n", __func__, ADPT_ARG(Adapter), mode);
/* disable Port0 TSF update*/
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_TSF_UDT);
/* set net_type */
Set_MSR(Adapter, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) {
StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8812AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/*restore early int time to 5ms*/
UpdateInterruptMask8812AU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8812);
#endif/*CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT*/
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812));
#endif /*CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR*/
#endif /*CONFIG_INTERRUPT_BASED_TXBCN*/
#endif
}
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM);/*disable atim wnd*/
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8812AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8812AU(Adapter, _TRUE , IMR_BCNDMAINT0_8812, 0);
#endif/*CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT*/
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter, _TRUE , (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812), 0);
#endif/*CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR*/
#endif /*CONFIG_INTERRUPT_BASED_TXBCN*/
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB);
/*enable to rx data frame*/
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/*Beacon Control related register for first time*/
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
/*rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);*/
rtw_write8(Adapter, REG_ATIMWND, 0x0a); /* 10ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/*reset TSF*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/*enable BCN0 Function for if1*/
/*don't enable update TSF0 for if1 (due to TSF update when beacon,probe rsp are received)*/
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
if (IS_HARDWARE_TYPE_8821(Adapter))/* select BCN on port 0*/
rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812) & (~BIT_BCN_PORT_SEL));
}
}
#endif
#endif
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
static u8 isMonitor = _FALSE;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (isMonitor == _TRUE) {
/* reset RCR from backup */
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_rcr_set_chk_bssid(Adapter, MLME_ACTION_NONE);
isMonitor = _FALSE;
}
if (mode == _HW_STATE_MONITOR_) {
isMonitor = _TRUE;
/* set net_type */
Set_MSR(Adapter, _HW_STATE_NOLINK_);
hw_var_set_monitor(Adapter, variable, val);
return;
}
rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(Adapter)); /* set mac addr to mac register */
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1) {
/* disable Port1 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | DIS_TSF_UDT);
/* set net_type */
Set_MSR(Adapter, mode);
RTW_INFO("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) {
StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8812AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */
UpdateInterruptMask8812AU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8812);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812));
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif
}
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x11); /* disable atim wnd and disable beacon function */
/* rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18); */
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x1a);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8812AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8812AU(Adapter, _TRUE , IMR_BCNDMAINT0_8812, 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter, _TRUE , (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812), 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
#ifdef CONFIG_PCI_HCI
/*Beacon is polled to TXBUF SWBCN*/
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8));
RTW_INFO("CR:SWBCN %x\n", rtw_read32(Adapter, 0x100));
#endif
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); /* 10ms for port1 */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF2 */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
/* enable BCN1 Function for if2 */
/* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
if (IS_HARDWARE_TYPE_8821(Adapter)) {
/* select BCN on port 1 */
rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812) | BIT(5));
}
if (!rtw_mi_buddy_check_fwstate(Adapter, WIFI_FW_ASSOC_SUCCESS))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
/* BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */
/* rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5)); */
/* rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3)); */
/* dis BCN0 ATIM WND if if1 is station */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (rtw_mi_buddy_check_fwstate(Adapter, (WIFI_STATION_STATE | WIFI_ASOC_STATE))) {
if (rtw_hal_reset_tsf(Adapter, HW_PORT1) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
} else /* else for port0 */
#endif /* CONFIG_CONCURRENT_MODE */
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*For 2 hw ports - 88E/92E/8812/8821/8723B*/
hw_var_set_opmode_mbid(Adapter, mode);
#else
/* disable Port0 TSF update */
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_TSF_UDT);
/* set net_type */
Set_MSR(Adapter, mode);
RTW_INFO("%s()-%d mode = %d\n", __func__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter))
#endif /* CONFIG_CONCURRENT_MODE */
{
StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8812AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */
UpdateInterruptMask8812AU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8812);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812));
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif
}
rtw_write8(Adapter, REG_BCN_CTRL, 0x19); /* disable atim wnd */
/* rtw_write8(Adapter,REG_BCN_CTRL, 0x18); */
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x1a);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8812AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8812AU(Adapter, _TRUE , IMR_BCNDMAINT0_8812, 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter, _TRUE , (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812), 0);
#endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
#ifdef CONFIG_PCI_HCI
/*Beacon is polled to TXBUF SWBCN*/
rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8));
RTW_INFO("CR:SWBCN %x\n", rtw_read32(Adapter, 0x100));
#endif
/* enable to rx data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
/* Beacon Control related register for first time */
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(Adapter, REG_ATIMWND, 0x0c); /* 12ms */
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
if (IS_HARDWARE_TYPE_8821(Adapter)) {
/* select BCN on port 0 */
rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812) & (~BIT(5)));
}
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_buddy_check_fwstate(Adapter, WIFI_FW_ASSOC_SUCCESS))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
/* dis BCN1 ATIM WND if if2 is station */
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (rtw_mi_buddy_check_fwstate(Adapter, (WIFI_STATION_STATE | WIFI_ASOC_STATE))) {
if (rtw_hal_reset_tsf(Adapter, HW_PORT0) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
#endif /*#ifdef CONFIG_MI_WITH_MBSSID_CAM*/
}
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 bcn_ctrl_reg;
u8 val8;
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
else
#endif
bcn_ctrl_reg = REG_BCN_CTRL;
if (*((u8 *)val))
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
else {
u8 val8;
val8 = rtw_read8(Adapter, bcn_ctrl_reg);
val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
#ifdef CONFIG_BT_COEXIST
if (GET_HAL_DATA(Adapter)->EEPROMBluetoothCoexist == 1) {
/* Always enable port0 beacon function for PSTDMA */
if (REG_BCN_CTRL == bcn_ctrl_reg)
val8 |= EN_BCN_FUNCTION;
}
#endif
rtw_write8(Adapter, bcn_ctrl_reg, val8);
/* rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT))); */
}
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8 *val)
{
#ifdef DBG_IFACE_STATUS
DBG_IFACE_STATUS_DUMP(Adapter);
#endif
/* reject all data frames */
#ifdef CONFIG_CONCURRENT_MODE
if (rtw_mi_check_status(Adapter, MI_LINKED) == _FALSE)
#endif
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
#ifdef CONFIG_CONCURRENT_MODE
if (Adapter->hw_port == HW_PORT1) {
/*reset TSF1*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
/*disable update TSF1*/
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | DIS_TSF_UDT);
/* disable Port1's beacon function*/
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & (~BIT(3)));
} else
#endif
{
/*reset TSF*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
/*disable update TSF*/
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_TSF_UDT);
}
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8 *val)
{
#ifdef CONFIG_CONCURRENT_MODE
u8 RetryLimit = RL_VAL_STA;
u8 type = *((u8 *)val);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
#ifdef DBG_IFACE_STATUS
DBG_IFACE_STATUS_DUMP(Adapter);
#endif
if (type == 0) {/* prepare to join */
if (rtw_mi_get_ap_num(Adapter) || rtw_mi_get_mesh_num(Adapter))
StopTxBeacon(Adapter);
/* enable to rx data frame.Accept all data frame */
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? RL_VAL_AP : RL_VAL_STA;
else /* Ad-hoc Mode */
RetryLimit = RL_VAL_AP;
} else if (type == 1) { /*joinbss_event call back when joi res < 0 */
if (rtw_mi_check_status(Adapter, MI_LINKED) == _FALSE)
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
if (rtw_mi_get_ap_num(Adapter) || rtw_mi_get_mesh_num(Adapter)) {
ResumeTxBeacon(Adapter);
/*reset TSF 1/2 after ResumeTxBeacon*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1) | BIT(0));
}
} else if (type == 2) { /*sta add event call back*/
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) && (rtw_mi_get_assoced_sta_num(Adapter) == 1))
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~DIS_TSF_UDT));*/
#else
/*enable update TSF*/
if (Adapter->hw_port == HW_PORT0)
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & (~DIS_TSF_UDT));
else
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & (~DIS_TSF_UDT));
#endif
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
/*fixed beacon issue for 8191su...........*/
rtw_write8(Adapter, 0x542 , 0x02);
RetryLimit = RL_VAL_AP;
}
if (rtw_mi_get_ap_num(Adapter) || rtw_mi_get_mesh_num(Adapter)) {
ResumeTxBeacon(Adapter);
/*reset TSF 1/2 after ResumeTxBeacon*/
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1) | BIT(0));
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
#endif
}
static void hw_var_backup_IQK_val(PADAPTER padapter, struct hal_iqk_reg_backup *pRecPosForBkp)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
pRecPosForBkp->central_chnl = pHalData->current_channel;
pRecPosForBkp->bw_mode = pHalData->current_channel_bw;
if (1)
RTW_INFO(FUNC_ADPT_FMT": central_chnl:%d, bw_mode:%d\n"
, FUNC_ADPT_ARG(padapter)
, pRecPosForBkp->central_chnl
, pRecPosForBkp->bw_mode
);
/* According to phydm code (phy_IQCalibrate_8821A) & (phy_IQCalibrate_8812A) */
if (IS_HARDWARE_TYPE_8821(padapter)) {
/* for RF_PATH_A Tx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1);
pRecPosForBkp->reg_backup[RF_PATH_A][0] = rtw_read32(padapter, 0xCCC);
pRecPosForBkp->reg_backup[RF_PATH_A][1] = rtw_read32(padapter, 0xCD4);
/* for RF_PATH_A Rx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0);
pRecPosForBkp->reg_backup[RF_PATH_A][2] = rtw_read32(padapter, 0xC10);
} else if (IS_HARDWARE_TYPE_8812(padapter)) {
/* for RF_PATH_A Tx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1);
pRecPosForBkp->reg_backup[RF_PATH_A][0] = rtw_read32(padapter, 0xCCC);
pRecPosForBkp->reg_backup[RF_PATH_A][1] = rtw_read32(padapter, 0xCD4);
/* for RF_PATH_A Rx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0);
pRecPosForBkp->reg_backup[RF_PATH_A][2] = rtw_read32(padapter, 0xC10);
/* for RF_PATH_B Tx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1);
pRecPosForBkp->reg_backup[RF_PATH_B][0] = rtw_read32(padapter, 0xECC);
pRecPosForBkp->reg_backup[RF_PATH_B][1] = rtw_read32(padapter, 0xED4);
/* for RF_PATH_B Rx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0);
pRecPosForBkp->reg_backup[RF_PATH_B][2] = rtw_read32(padapter, 0xE10);
}
}
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
static void hw_var_restore_IQK_val_TDLS(PADAPTER padapter)
{
u8 i;
u8 central_chnl_now = 0;
u8 bw_mode_now = 0;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 RecPosForRetore;
u8 MatchedRec = _FALSE;
central_chnl_now = rtw_get_center_ch(dvobj->oper_channel, dvobj->oper_bwmode, dvobj->oper_ch_offset);
bw_mode_now = dvobj->oper_bwmode;
/* To search for the matched record */
for (i = 0; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++) {
if ((pHalData->iqk_reg_backup[i].central_chnl == central_chnl_now) &&
(pHalData->iqk_reg_backup[i].bw_mode == bw_mode_now)) {
MatchedRec = _TRUE;
RecPosForRetore = i;
break;
}
}
if (MatchedRec == _FALSE)
return;
if (IS_HARDWARE_TYPE_8821(padapter)) {
/* for RF_PATH_A Tx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1);
phy_set_bb_reg(padapter, 0xCCC, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][0]);
phy_set_bb_reg(padapter, 0xCD4, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][1]);
/* for RF_PATH_A Rx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0);
phy_set_bb_reg(padapter, 0xC10, 0x03FF03FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2]);
} else if (IS_HARDWARE_TYPE_8812(padapter)) {
/* for RF_PATH_A Tx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1);
phy_set_bb_reg(padapter, 0xCCC, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][0]);
phy_set_bb_reg(padapter, 0xCD4, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][1]);
/* for RF_PATH_A Rx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0);
phy_set_bb_reg(padapter, 0xC10, 0x03FF03FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2]);
/* for RF_PATH_B Tx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1);
phy_set_bb_reg(padapter, 0xECC, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[1][0]);
phy_set_bb_reg(padapter, 0xED4, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[1][1]);
/* for RF_PATH_B Rx */
phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0);
phy_set_bb_reg(padapter, 0xE10, 0x03FF03FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[1][2]);
}
}
#endif
#endif
#ifdef CONFIG_MCC_MODE
static void hw_var_restore_IQK_val_MCC(PADAPTER padapter)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mcc_adapter_priv *pmccadapriv = &padapter->mcc_adapterpriv;
u8 i = 0;
u8 central_chnl_now = 0, bw_mode_now = 0;
u8 chidx = pmlmeext->cur_channel;
u8 bw = pmlmeext->cur_bwmode;
u8 bw_offset = pmlmeext->cur_ch_offset;
u8 RecPosForRetore = 0;
u8 MatchedRec = _FALSE;
central_chnl_now = rtw_get_center_ch(chidx, bw, bw_offset);
bw_mode_now = bw;
/* To search for the matched record */
for (i = 0; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++) {
if ((pHalData->iqk_reg_backup[i].central_chnl == central_chnl_now) &&
(pHalData->iqk_reg_backup[i].bw_mode == bw_mode_now)) {
MatchedRec = _TRUE;
RecPosForRetore = i;
break;
}
}
if (MatchedRec == _FALSE) {
rtw_warn_on(1);
RTW_INFO("[MCC] "FUNC_ADPT_FMT" not found fit IQK value from IQK table(%d,%d)\n"
, FUNC_ADPT_ARG(padapter), central_chnl_now, bw_mode_now);
return;
}
/* According to phydm code(phy_IQCalibrate_8821A) & document */
if (IS_HARDWARE_TYPE_8821(padapter)) {
/* 8821A only one RF PATH */
/* transform register value to TX_X & TX_Y */
pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_X =
(u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[RF_PATH_A][1] & 0x000007ff);
pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_Y =
(u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[RF_PATH_A][0] & 0x000007ff);
if (0)
RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, TX_X = 0x%02x, TX_Y = 0x%02x\n"
, FUNC_ADPT_ARG(padapter)
, central_chnl_now
, bw_mode_now
, RF_PATH_A
, pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_X
, pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_Y
);
/* transform register value to RX_X & RX_Y */
pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_X =
(u16) ((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2] & 0x000003ff) << 1);
pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_Y =
(u16) (((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2] & 0x03ff0000)>>16) << 1);
if (0)
RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, TX_X = 0x%02x, TX_Y = 0x%02x\n"
, FUNC_ADPT_ARG(padapter)
, central_chnl_now
, bw_mode_now
, RF_PATH_A
, pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_X
, pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_Y
);
}else if (IS_HARDWARE_TYPE_8812(padapter)) {
/* 8812A has two RF PATH at most */
u8 total_rf_path = pHalData->NumTotalRFPath;
u8 rf_path = 0;
for (rf_path = 0; rf_path < total_rf_path; rf_path++) {
/* transform register value to TX_X & TX_Y */
pmccadapriv->mcc_iqk_arr[rf_path].TX_X =
(u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][1] & 0x000007ff);
pmccadapriv->mcc_iqk_arr[rf_path].TX_Y =
(u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][0] & 0x000007ff);
if (1)
RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, TX_X = 0x%02x, TX_Y = 0x%02x\n"
, FUNC_ADPT_ARG(padapter)
, central_chnl_now
, bw_mode_now
, rf_path
, pmccadapriv->mcc_iqk_arr[rf_path].TX_X
, pmccadapriv->mcc_iqk_arr[rf_path].TX_Y
);
/* transform register value to RX_X & RX_Y */
pmccadapriv->mcc_iqk_arr[rf_path].RX_X =
(u16) ((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][2] & 0x000003ff) << 1);
pmccadapriv->mcc_iqk_arr[rf_path].RX_Y =
(u16) (((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][2] & 0x03ff0000)>>16) << 1);
if (1)
RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, RX_X = 0x%02x, RX_Y = 0x%02x\n"
, FUNC_ADPT_ARG(padapter)
, central_chnl_now
, bw_mode_now
, rf_path
, pmccadapriv->mcc_iqk_arr[rf_path].RX_X
, pmccadapriv->mcc_iqk_arr[rf_path].RX_Y
);
}
}
}
#endif /* CONFIG_MCC_MODE */
u8 SetHwReg8812A(PADAPTER padapter, u8 variable, u8 *pval)
{
PHAL_DATA_TYPE pHalData;
u8 ret = _SUCCESS;
u8 val8;
u16 val16;
u32 val32;
pHalData = GET_HAL_DATA(padapter);
switch (variable) {
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(padapter, variable, pval);
break;
case HW_VAR_BASIC_RATE: {
struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES);
u16 rrsr_5g_force_mask = (RRSR_6M);
u16 rrsr_5g_allow_mask = (RRSR_OFDM_RATES);
HalSetBrateCfg(padapter, pval, &BrateCfg);
input_b = BrateCfg;
/* apply force and allow mask */
if (pHalData->current_band_type == BAND_ON_2_4G) {
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
} else { /* 5G */
BrateCfg |= rrsr_5g_force_mask;
BrateCfg &= rrsr_5g_allow_mask;
}
masked = BrateCfg;
/* IOT consideration */
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
ioted = BrateCfg;
pHalData->BasicRateSet = BrateCfg;
RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted);
/* Set RRSR rate table. */
rtw_write16(padapter, REG_RRSR, BrateCfg);
rtw_write8(padapter, REG_RRSR + 2, rtw_read8(padapter, REG_RRSR + 2) & 0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(padapter, REG_TXPAUSE, *pval);
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(padapter, variable, pval);
break;
case HW_VAR_MLME_DISCONNECT:
hw_var_set_mlme_disconnect(padapter, variable, pval);
break;
case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_join(padapter, variable, pval);
#else /* !CONFIG_CONCURRENT_MODE */
{
u8 RetryLimit = RL_VAL_STA;
u8 type = *(u8 *)pval;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
if (type == 0) { /* prepare to join */
/* enable to rx data frame.Accept all data frame */
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? RL_VAL_AP : RL_VAL_STA;
else /* Ad-hoc Mode */
RetryLimit = RL_VAL_AP;
} else if (type == 1) /* joinbss_event call back when join res < 0 */
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
else if (type == 2) { /* sta add event call back */
/* enable update TSF */
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
RetryLimit = RL_VAL_AP;
}
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
}
#endif /* !CONFIG_CONCURRENT_MODE */
#ifdef CONFIG_BT_COEXIST
if (_TRUE == pHalData->EEPROMBluetoothCoexist) {
switch (*pval) {
case 0:
/* Notify coex. mechanism before join */
rtw_btcoex_ConnectNotify(padapter, _TRUE);
break;
case 1:
case 2:
/* Notify coex. mechanism after join, whether successful or failed */
rtw_btcoex_ConnectNotify(padapter, _FALSE);
break;
}
}
#endif
break;
case HW_VAR_BEACON_INTERVAL:
{
u16 bcn_interval = *((u16 *)pval);
#ifdef CONFIG_SWTIMER_BASED_TXBCN
bcn_interval = rtw_hal_bcn_interval_adjust(padapter, bcn_interval);
#endif
rtw_write16(padapter, REG_BCN_INTERVAL, bcn_interval);
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
{
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
if ((pmlmeinfo->state & 0x03) == WIFI_FW_AP_STATE) {
RTW_INFO("%s==> bcn_interval:%d, eraly_int:%d\n", __func__, bcn_interval, bcn_interval >> 1);
rtw_write8(padapter, REG_DRVERLYINT, bcn_interval >> 1);
}
}
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
}
break;
case HW_VAR_SLOT_TIME:
rtw_write8(padapter, REG_SLOT, *pval);
break;
case HW_VAR_RESP_SIFS:
/* SIFS_Timer = 0x0a0a0808; */
/* RESP_SIFS for CCK */
rtw_write8(padapter, REG_RESP_SIFS_CCK, pval[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(padapter, REG_RESP_SIFS_CCK + 1, pval[1]); /* SIFS_R2T_CCK(0x08) */
/* RESP_SIFS for OFDM */
rtw_write8(padapter, REG_RESP_SIFS_OFDM, pval[2]); /* SIFS_T2T_OFDM (0x0a) */
rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, pval[3]); /* SIFS_R2T_OFDM(0x0a) */
break;
case HW_VAR_ACK_PREAMBLE: {
u8 bShortPreamble = *pval;
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
val8 = (pHalData->nCur40MhzPrimeSC) << 5;
if (bShortPreamble)
val8 |= 0x80;
rtw_write8(padapter, REG_RRSR + 2, val8);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY: {
u8 ucIndex = *pval;
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i = 0; i < CAM_CONTENT_COUNT; i++) {
/* filled id in CAM config 2 byte */
if (i == 0) {
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2);
/* ulContent |= CAM_VALID; */
} else
ulContent = 0;
/* polling bit, and No Write enable, and address */
ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
/* write content 0 is equall to mark invalid */
rtw_write32(padapter, WCAMI, ulContent); /* delay_ms(40); */
rtw_write32(padapter, RWCAM, ulCommand); /* delay_ms(40); */
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
val32 = BIT(31) | BIT(30);
rtw_write32(padapter, RWCAM, val32);
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(padapter, REG_EDCA_VO_PARAM, *(u32 *)pval);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(padapter, REG_EDCA_VI_PARAM, *(u32 *)pval);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->ac_param_be = *(u32 *)pval;
rtw_write32(padapter, REG_EDCA_BE_PARAM, *(u32 *)pval);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(padapter, REG_EDCA_BK_PARAM, *(u32 *)pval);
break;
case HW_VAR_ACM_CTRL: {
u8 acm_ctrl;
u8 AcmCtrl;
acm_ctrl = *(u8 *)pval;
AcmCtrl = rtw_read8(padapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
rtw_write8(padapter, REG_ACMHWCTRL, AcmCtrl);
}
break;
case HW_VAR_AMPDU_FACTOR: {
u32 AMPDULen = *(u8 *)pval;
if (IS_HARDWARE_TYPE_8812(padapter)) {
if (AMPDULen < VHT_AGG_SIZE_128K)
AMPDULen = (0x2000 << *(u8 *)pval) - 1;
else
AMPDULen = 0x1ffff;
} else if (IS_HARDWARE_TYPE_8821(padapter)) {
if (AMPDULen < HT_AGG_SIZE_64K)
AMPDULen = (0x2000 << *(u8 *)pval) - 1;
else
AMPDULen = 0xffff;
}
AMPDULen |= BIT(31);
rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8812, AMPDULen);
}
break;
#if 0
case HW_VAR_RXDMA_AGG_PG_TH:
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH, *pval);
break;
#endif
case HW_VAR_H2C_FW_PWRMODE: {
u8 psmode = *pval;
rtl8812_set_FwPwrMode_cmd(padapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8812_set_FwJoinBssReport_cmd(padapter, *pval);
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8812_set_p2p_ps_offload_cmd(padapter, *pval);
break;
#endif /* CONFIG_P2P_PS */
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *pval;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *(u16 *)pval;
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *pval;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *(u16 *)pval;
#else
BTEfuseUsedBytes = *(u16 *)pval;
#endif
break;
case HW_VAR_FIFO_CLEARN_UP: {
struct pwrctrl_priv *pwrpriv;
u8 trycnt = 100;
pwrpriv = adapter_to_pwrctl(padapter);
/* pause tx */
rtw_write8(padapter, REG_TXPAUSE, 0xff);
/* keep sn */
padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
if (pwrpriv->bkeepfwalive != _TRUE) {
/* RX DMA stop */
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(padapter, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (val32)
break;
} while (--trycnt);
if (trycnt == 0)
RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(padapter, REG_RQPN_NPQ, 0x0);
rtw_write32(padapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(10);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
/* restore Sequence No. */
rtw_write8(padapter, 0x4dc, padapter->xmitpriv.nqos_ssn);
break;
case HW_VAR_CHECK_TXBUF: {
u8 retry_limit;
u32 reg_200 = 0, reg_204 = 0;
u32 init_reg_200 = 0, init_reg_204 = 0;
systime start = rtw_get_current_time();
u32 pass_ms;
int i = 0;
retry_limit = 0x01;
val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
while (rtw_get_passing_time_ms(start) < 2000
&& !RTW_CANNOT_RUN(padapter)
) {
reg_200 = rtw_read32(padapter, 0x200);
reg_204 = rtw_read32(padapter, 0x204);
if (i == 0) {
init_reg_200 = reg_200;
init_reg_204 = reg_204;
}
i++;
if ((reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
/* RTW_INFO("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x204=0x%x, 0x200=0x%x (%d)\n", __FUNCTION__, reg_204, reg_200, i); */
rtw_msleep_os(10);
} else
break;
}
pass_ms = rtw_get_passing_time_ms(start);
if (RTW_CANNOT_RUN(padapter))
;
else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) {
RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x (0x%08x, 0x%08x)\n",
__FUNCTION__, reg_200, reg_204, init_reg_200, init_reg_204);
/* rtw_warn_on(1); */
} else
RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
retry_limit = RL_VAL_STA;
val16 = retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
}
break;
case HW_VAR_NAV_UPPER: {
u32 usNavUpper = *((u32 *)pval);
if (usNavUpper > HAL_NAV_UPPER_UNIT * 0xFF) {
RTW_INFO("%s: [HW_VAR_NAV_UPPER] set value(0x%08X us) is larger than (%d * 0xFF)!\n",
__FUNCTION__, usNavUpper, HAL_NAV_UPPER_UNIT);
break;
}
/* The value of ((usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT) */
/* is getting the upper integer. */
usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT;
rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->hw_port == HW_PORT1) {
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2);
val8 |= BIT(0);
rtw_write8(padapter, REG_DWBCN1_CTRL_8812 + 2, val8);
} else
#endif
{
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
val8 = rtw_read8(padapter, REG_TDECTRL + 2);
val8 |= BIT(0);
rtw_write8(padapter, REG_TDECTRL + 2, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->hw_port == HW_PORT1) {
/* SW_BCN_SEL - Port1 */
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2);
val8 |= BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8812 + 2, val8);
} else
#endif
{
/* SW_BCN_SEL - Port0 */
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8812 + 2, val8);
}
break;
case HW_VAR_WIRELESS_MODE: {
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u8 R2T_SIFS = 0, SIFS_Timer = 0;
u8 wireless_mode = *pval;
if ((wireless_mode == WIRELESS_11BG) || (wireless_mode == WIRELESS_11G))
SIFS_Timer = 0xa;
else
SIFS_Timer = 0xe;
/* SIFS for OFDM Data ACK */
rtw_write8(padapter, REG_SIFS_CTX + 1, SIFS_Timer);
/* SIFS for OFDM consecutive tx like CTS data! */
rtw_write8(padapter, REG_SIFS_TRX + 1, SIFS_Timer);
rtw_write8(padapter, REG_SPEC_SIFS + 1, SIFS_Timer);
rtw_write8(padapter, REG_MAC_SPEC_SIFS + 1, SIFS_Timer);
/* 20100719 Joseph: Revise SIFS setting due to Hardware register definition change. */
rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, SIFS_Timer);
rtw_write8(padapter, REG_RESP_SIFS_OFDM, SIFS_Timer);
/* */
/* Adjust R2T SIFS for IOT issue. Add by hpfan 2013.01.25 */
/* Set R2T SIFS to 0x0a for Atheros IOT. Add by hpfan 2013.02.22 */
/* */
/* Mac has 10 us delay so use 0xa value is enough. */
R2T_SIFS = 0xa;
#ifdef CONFIG_80211AC_VHT
if (wireless_mode & WIRELESS_11_5AC &&
/* MgntLinkStatusQuery(Adapter) && */
TEST_FLAG(pmlmepriv->vhtpriv.ldpc_cap, LDPC_VHT_ENABLE_RX) &&
TEST_FLAG(pmlmepriv->vhtpriv.stbc_cap, STBC_VHT_ENABLE_RX)) {
if (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_ATHEROS)
R2T_SIFS = 0x8;
else
R2T_SIFS = 0xa;
}
#endif /* CONFIG_80211AC_VHT */
rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, R2T_SIFS);
}
break;
case HW_VAR_DO_IQK:
#ifdef CONFIG_MCC_MODE
if (MCC_EN(padapter)) {
if (rtw_hal_check_mcc_status(padapter, MCC_STATUS_NEED_MCC)) {
RTW_INFO("Under MCC mode, doesn't IQK\n");
*pval = _FALSE;
}
}
#endif
if (*pval)
pHalData->bNeedIQK = _TRUE;
else
pHalData->bNeedIQK = _FALSE;
break;
case HW_VAR_DL_RSVD_PAGE:
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == 1) {
if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE)
rtl8812a_download_BTCoex_AP_mode_rsvd_page(padapter);
}
#endif /* CONFIG_BT_COEXIST */
break;
#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 1) /*add by YuChen for PHYDM -TxBF AutoTest HW Timer 8812A*/
case HW_VAR_HW_REG_TIMER_INIT: {
HAL_HW_TIMER_TYPE TimerType = (*(PHAL_HW_TIMER_TYPE)pval) >> 16;
rtw_write8(padapter, 0x164, 1);
if (TimerType == HAL_TIMER_TXBF)
rtw_write16(padapter, 0x15C, (*(pu2Byte)pval));
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write32(padapter, 0x160, 0x05000190);
break;
}
case HW_VAR_HW_REG_TIMER_START: {
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
if (TimerType == HAL_TIMER_TXBF)
rtw_write8(padapter, 0x15F, 0x5);
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write8(padapter, 0x163, 0x5);
break;
}
case HW_VAR_HW_REG_TIMER_RESTART: {
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval & 0xffff;
if (TimerType == HAL_TIMER_TXBF) {
u4Byte Reg15C = (*(pu4Byte)pval) >> 16 | BIT24 | BIT26;
rtw_write8(padapter, 0x15F, 0x0);
rtw_write32(padapter, 0x15F, Reg15C);
} else if (TimerType == HAL_TIMER_EARLYMODE) {
rtw_write8(padapter, 0x163, 0x0);
rtw_write8(padapter, 0x163, 0x5);
}
break;
}
case HW_VAR_HW_REG_TIMER_STOP: {
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
if (TimerType == HAL_TIMER_TXBF)
rtw_write8(padapter, 0x15F, 0);
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write8(padapter, 0x163, 0x0);
break;
}
#else /*(BEAMFORMING_SUPPORT == 0) - for drv beamforming*/
case HW_VAR_SOUNDING_ENTER:
SetBeamformEnter_8812(padapter, *pval);
break;
case HW_VAR_SOUNDING_LEAVE:
SetBeamformLeave_8812(padapter, *pval);
break;
case HW_VAR_SOUNDING_RATE:
rtw_write8(padapter, REG_NDPA_OPT_CTRL_8812A, (MRateToHwRate(pval[1]) << 2 | pval[0]));
break;
case HW_VAR_SOUNDING_STATUS:
SetBeamformStatus_8812(padapter, *pval);
break;
case HW_VAR_SOUNDING_FW_NDPA:
SetBeamformFwTxBF_8812(padapter, *pval);
break;
case HW_VAR_SOUNDING_CLK:
SetBeamformingCLK_8812(padapter);
break;
#endif
#endif/*#ifdef CONFIG_BEAMFORMING*/
#ifdef CONFIG_GPIO_WAKEUP
case HW_SET_GPIO_WL_CTRL: {
u8 enable = *pval;
u8 value = rtw_read8(padapter, 0x4e);
if (enable && (value & BIT(6))) {
value &= ~BIT(6);
rtw_write8(padapter, 0x4e, value);
} else if (enable == _FALSE) {
value |= BIT(6);
rtw_write8(padapter, 0x4e, value);
}
RTW_INFO("%s: set WL control, 0x4E=0x%02X\n",
__func__, rtw_read8(padapter, 0x4e));
}
break;
#endif
case HW_VAR_CH_SW_IQK_INFO_BACKUP:
hw_var_backup_IQK_val(padapter, (struct hal_iqk_reg_backup *)pval);
break;
case HW_VAR_CH_SW_IQK_INFO_RESTORE:
switch (*pval) {
case CH_SW_USE_CASE_TDLS:
#ifdef CONFIG_TDLS
#ifdef CONFIG_TDLS_CH_SW
hw_var_restore_IQK_val_TDLS(padapter);
#endif
#endif
break;
case CH_SW_USE_CASE_MCC:
#ifdef CONFIG_MCC_MODE
hw_var_restore_IQK_val_MCC(padapter);
#endif /* CONFIG_MCC_MODE */
break;
}
break;
#if defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW)
case HW_VAR_TDLS_BCN_EARLY_C2H_RPT:
rtl8812_set_BcnEarly_C2H_Rpt_cmd(padapter, *pval);
break;
#endif
default:
ret = SetHwReg(padapter, variable, pval);
break;
}
return ret;
}
struct qinfo_8812a {
u32 head:8;
u32 pkt_num:7;
u32 tail:8;
u32 ac:2;
u32 macid:7;
};
struct bcn_qinfo_8812a {
u16 head:8;
u16 pkt_num:8;
};
void dump_qinfo_8812a(void *sel, struct qinfo_8812a *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
);
}
void dump_bcn_qinfo_8812a(void *sel, struct bcn_qinfo_8812a *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num
);
}
void dump_mac_qinfo_8812a(void *sel, _adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q0_info, "Q0 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q1_info, "Q1 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q2_info, "Q2 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q3_info, "Q3 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q4_info, "Q4 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q5_info, "Q5 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q6_info, "Q6 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q7_info, "Q7 ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&mg_q_info, "MG ");
dump_qinfo_8812a(sel, (struct qinfo_8812a *)&hi_q_info, "HI ");
dump_bcn_qinfo_8812a(sel, (struct bcn_qinfo_8812a *)&bcn_q_info, "BCN ");
}
static void dump_mac_txfifo_8812a(void *sel, _adapter *adapter)
{
u32 rqpn, rqpn_npq;
u32 hpq, lpq, npq, epq, pubq;
rqpn = rtw_read32(adapter, REG_FIFOPAGE);
rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ);
hpq = (rqpn & 0xFF);
lpq = ((rqpn & 0xFF00)>>8);
pubq = ((rqpn & 0xFF0000)>>16);
npq = ((rqpn_npq & 0xFF00)>>8);
epq = ((rqpn_npq & 0xFF000000)>>24);
RTW_PRINT_SEL(sel, "Tx: available page num: ");
if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq))
RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n");
else {
/* 8821A have EPQ, 8812A have no EPQ. */
if (IS_HARDWARE_TYPE_8821(adapter))
RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n"
, hpq, lpq, npq, epq, pubq);
else
RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, PUBQ: %d\n"
, hpq, lpq, npq, pubq);
}
}
void rtl8812a_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params)
{
u8 vo_reg_params[4];
u8 vi_reg_params[4];
u8 be_reg_params[4];
u8 bk_reg_params[4];
GetHwReg8812A(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params);
GetHwReg8812A(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params);
GetHwReg8812A(adapter, HW_VAR_AC_PARAM_BE, be_reg_params);
GetHwReg8812A(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params);
vo_params[0] = vo_reg_params[0];
vo_params[1] = vo_reg_params[1] & 0x0F;
vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4;
vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32;
vi_params[0] = vi_reg_params[0];
vi_params[1] = vi_reg_params[1] & 0x0F;
vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4;
vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32;
be_params[0] = be_reg_params[0];
be_params[1] = be_reg_params[1] & 0x0F;
be_params[2] = (be_reg_params[1] & 0xF0) >> 4;
be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32;
bk_params[0] = bk_reg_params[0];
bk_params[1] = bk_reg_params[1] & 0x0F;
bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4;
bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32;
vo_params[1] = (1 << vo_params[1]) - 1;
vo_params[2] = (1 << vo_params[2]) - 1;
vi_params[1] = (1 << vi_params[1]) - 1;
vi_params[2] = (1 << vi_params[2]) - 1;
be_params[1] = (1 << be_params[1]) - 1;
be_params[2] = (1 << be_params[2]) - 1;
bk_params[1] = (1 << bk_params[1]) - 1;
bk_params[2] = (1 << bk_params[2]) - 1;
}
void GetHwReg8812A(PADAPTER padapter, u8 variable, u8 *pval)
{
PHAL_DATA_TYPE pHalData;
u8 val8;
u16 val16;
u32 val32;
pHalData = GET_HAL_DATA(padapter);
switch (variable) {
case HW_VAR_TXPAUSE:
*pval = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->hw_port == HW_PORT1) {
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2);
*pval = (BIT(0) & val8) ? _TRUE : _FALSE;
} else
#endif
{
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
val8 = rtw_read8(padapter, REG_TDECTRL + 2);
*pval = (BIT(0) & val8) ? _TRUE : _FALSE;
}
break;
case HW_VAR_AC_PARAM_VO:
val32 = rtw_read32(padapter, REG_EDCA_VO_PARAM);
pval[0] = val32 & 0xFF;
pval[1] = (val32 >> 8) & 0xFF;
pval[2] = (val32 >> 16) & 0xFF;
pval[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_VI:
val32 = rtw_read32(padapter, REG_EDCA_VI_PARAM);
pval[0] = val32 & 0xFF;
pval[1] = (val32 >> 8) & 0xFF;
pval[2] = (val32 >> 16) & 0xFF;
pval[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_BE:
val32 = rtw_read32(padapter, REG_EDCA_BE_PARAM);
pval[0] = val32 & 0xFF;
pval[1] = (val32 >> 8) & 0xFF;
pval[2] = (val32 >> 16) & 0xFF;
pval[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_BK:
val32 = rtw_read32(padapter, REG_EDCA_BK_PARAM);
pval[0] = val32 & 0xFF;
pval[1] = (val32 >> 8) & 0xFF;
pval[2] = (val32 >> 16) & 0xFF;
pval[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */
*(u16 *)pval = pHalData->EfuseUsedBytes;
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
*pval = pHalData->EfuseHal.BTEfuseUsedPercentage;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
*((u16 *)pval) = pHalData->EfuseHal.BTEfuseUsedBytes;
#else
*((u16 *)pval) = BTEfuseUsedBytes;
#endif
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*pval = (val16 & BIT(10)) ? _TRUE : _FALSE;
break;
case HW_VAR_CHK_MGQ_CPU_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*pval = (val16 & BIT(8)) ? _TRUE : _FALSE;
break;
#ifdef CONFIG_WOWLAN
case HW_VAR_SYS_CLKR:
*pval = rtw_read8(padapter, REG_SYS_CLKR);
break;
#endif
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_8812a(pval, padapter);
break;
case HW_VAR_DUMP_MAC_TXFIFO:
dump_mac_txfifo_8812a(pval, padapter);
break;
default:
GetHwReg(padapter, variable, pval);
break;
}
}
/*
* Description:
* Change default setting of specified variable.
*/
u8 SetHalDefVar8812A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable) {
default:
bResult = SetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
void hal_ra_info_dump(_adapter *padapter , void *sel)
{
int i;
u8 mac_id;
u32 cmd;
u32 ra_info1, ra_info2, bw_set;
u32 rate_mask1, rate_mask2;
u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
HAL_DATA_TYPE *HalData = GET_HAL_DATA(padapter);
for (i = 0; i < macid_ctl->num; i++) {
if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) {
mac_id = (u8) i;
_RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id);
cmd = 0x40000100 | mac_id;
rtw_write32(padapter, REG_HMEBOX_E2_E3_8812, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, REG_RSVD5_8812);
curr_tx_rate = ra_info1 & 0x7F;
curr_tx_sgi = (ra_info1 >> 7) & 0x01;
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d\n",
ra_info1,
HDATA_RATE(curr_tx_rate),
curr_tx_sgi);
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07);
cmd = 0x40000400 | mac_id;
rtw_write32(padapter, REG_HMEBOX_E2_E3_8812, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, REG_RSVD5_8812);
ra_info2 = rtw_read32(padapter, REG_RSVD6_8812);
rate_mask1 = rtw_read32(padapter, REG_RSVD7_8812);
rate_mask2 = rtw_read32(padapter, REG_RSVD8_8812);
hight_rate = ra_info2 & 0xFF;
lowest_rate = (ra_info2 >> 8) & 0xFF;
bw_set = (ra_info1 >> 8) & 0xFF;
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF);
switch (bw_set) {
case CHANNEL_WIDTH_20:
_RTW_PRINT_SEL(sel , "BW_setting=20M\n");
break;
case CHANNEL_WIDTH_40:
_RTW_PRINT_SEL(sel , "BW_setting=40M\n");
break;
case CHANNEL_WIDTH_80:
_RTW_PRINT_SEL(sel , "BW_setting=80M\n");
break;
case CHANNEL_WIDTH_160:
_RTW_PRINT_SEL(sel , "BW_setting=160M\n");
break;
default:
_RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set);
break;
}
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI=%d, DISRA=0x%02x\n", ra_info1, ra_info1 & 0xFF, (ra_info1 >> 16) & 0xFF);
_RTW_PRINT_SEL(sel , "[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2 >> 16) & 0xFF,
(ra_info2 >> 24) & 0xFF);
_RTW_PRINT_SEL(sel , "rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);
}
}
}
/*
* Description:
* Query setting of specified variable.
*/
u8 GetHalDefVar8812A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable) {
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_DEF_IS_SUPPORT_ANT_DIV:
*((u8 *)pval) = (pHalData->AntDivCfg == 0) ? _FALSE : _TRUE;
break;
#endif
case HAL_DEF_DRVINFO_SZ:
*((u32 *)pval) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ * 8;
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*((u32 *)pval) = MAX_AMPDU_FACTOR_64K;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pval) = AMPDU_DENSITY_VALUE_7;
break;
case HAL_DEF_TX_LDPC:
if (IS_VENDOR_8812A_C_CUT(padapter))
/* IOT issue, default disable */
*(u8 *)pval = _FALSE;
else if (IS_HARDWARE_TYPE_8821(padapter))
*(u8 *)pval = _TRUE;
else
*(u8 *)pval = _FALSE;
break;
case HAL_DEF_RX_LDPC:
if (IS_VENDOR_8812A_C_CUT(padapter))
/* IOT issue, default disable */
*(u8 *)pval = _FALSE;
else if (IS_HARDWARE_TYPE_8821(padapter))
*(u8 *)pval = _FALSE;
else
*(u8 *)pval = _FALSE;
break;
case HAL_DEF_TX_STBC:
if (pHalData->rf_type == RF_1T2R || pHalData->rf_type == RF_1T1R)
*(u8 *)pval = 0;
else
*(u8 *)pval = 1;
break;
case HAL_DEF_RX_STBC:
*(u8 *)pval = 2;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
if (pHalData->rf_type == RF_2T2R)
*((PBOOLEAN)pval) = _TRUE;
else
*((PBOOLEAN)pval) = _FALSE;
break;
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((PBOOLEAN)pval) = _TRUE;
break;
case HW_DEF_RA_INFO_DUMP:
hal_ra_info_dump(padapter, pval);
break;
case HAL_DEF_TX_PAGE_SIZE:
if (IS_HARDWARE_TYPE_8812(padapter))
*(u32 *)pval = PAGE_SIZE_512;
else
*(u32 *)pval = PAGE_SIZE_256;
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!padapter->registrypriv.wifi_spec) {
if (IS_HARDWARE_TYPE_8812(padapter))
*(u8 *)pval = TX_PAGE_BOUNDARY_8812;
else
*(u8 *)pval = TX_PAGE_BOUNDARY_8821;
} else {
if (IS_HARDWARE_TYPE_8812(padapter))
*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8812;
else
*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8821;
}
break;
case HAL_DEF_TX_PAGE_BOUNDARY_WOWLAN:
*(u8 *)pval = TX_PAGE_BOUNDARY_WOWLAN_8812;
break;
case HAL_DEF_RX_DMA_SZ_WOW:
if (IS_HARDWARE_TYPE_8821(padapter))
*(u32 *)pval = MAX_RX_DMA_BUFFER_SIZE_8821 - RESV_FMWF;
else
*(u32 *)pval = MAX_RX_DMA_BUFFER_SIZE_8812 - RESV_FMWF;
break;
case HAL_DEF_RX_DMA_SZ:
if (IS_HARDWARE_TYPE_8821(padapter))
*(u32 *)pval = RX_DMA_BOUNDARY_8821 + 1;
else
*(u32 *)pval = RX_DMA_BOUNDARY_8812 + 1;
break;
case HAL_DEF_RX_PAGE_SIZE:
*((u32 *)pval) = 8;
break;
default:
bResult = GetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
#ifdef CONFIG_BT_COEXIST
void rtl8812a_combo_card_WifiOnlyHwInit(PADAPTER pdapter)
{
u8 u1Tmp;
RTW_INFO("%s !\n", __FUNCTION__);
if (IS_HARDWARE_TYPE_8812(pdapter)) {
/* 0x790[5:0]=0x5 */
u1Tmp = rtw_read8(pdapter, 0x790);
u1Tmp = (u1Tmp & 0xb0) | 0x05 ;
rtw_write8(pdapter, 0x790, u1Tmp);
/* PTA parameter */
/* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x6cc, 0x0); */
/* pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c8, 0xffffff); */
/* pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c4, 0x55555555); */
/* pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c0, 0x55555555); */
rtw_write8(pdapter, 0x6cc, 0x0);
rtw_write32(pdapter, 0x6c8, 0xffffff);
rtw_write32(pdapter, 0x6c4, 0x55555555);
rtw_write32(pdapter, 0x6c0, 0x55555555);
/* coex parameters */
/* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x778, 0x3); */
rtw_write8(pdapter, 0x778, 0x3);
/* enable counter statistics */
/* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x76e, 0xc); */
rtw_write8(pdapter, 0x76e, 0xc);
/* enable PTA */
/* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x40, 0x20); */
rtw_write8(pdapter, 0x40, 0x20);
/* bt clock related */
/* u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x4); */
/* u1Tmp |= BIT7; */
/* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x4, u1Tmp); */
u1Tmp = rtw_read8(pdapter, 0x4);
u1Tmp |= BIT7;
rtw_write8(pdapter, 0x4, u1Tmp);
/* bt clock related */
/* u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x7); */
/* u1Tmp |= BIT1; */
/* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x7, u1Tmp); */
u1Tmp = rtw_read8(pdapter, 0x7);
u1Tmp |= BIT1;
rtw_write8(pdapter, 0x7, u1Tmp);
}
}
#endif /* CONFIG_BT_COEXIST */
void rtl8812_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8812_init_dm_priv;
pHalFunc->dm_deinit = &rtl8812_deinit_dm_priv;
pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8812A;
pHalFunc->read_chip_version = read_chip_version_8812a;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8812;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8812;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8812;
pHalFunc->get_tx_power_index_handler = PHY_GetTxPowerIndex_8812A;
pHalFunc->hal_dm_watchdog = &rtl8812_HalDmWatchDog;
pHalFunc->run_thread = &rtl8812_start_thread;
pHalFunc->cancel_thread = &rtl8812_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg8812;
pHalFunc->write_bbreg = &PHY_SetBBReg8812;
pHalFunc->read_rfreg = &PHY_QueryRFReg8812;
pHalFunc->write_rfreg = &PHY_SetRFReg8812;
pHalFunc->read_wmmedca_reg = &rtl8812a_read_wmmedca_reg;
/* Efuse related function */
pHalFunc->EfusePowerSwitch = &rtl8812_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8812_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8812_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8812_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8812_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8812_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8812_Efuse_WordEnableDataWrite;
pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8812_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8812_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress = &sreset_inprogress;
#endif /* DBG_CONFIG_ERROR_DETECT */
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
pHalFunc->hal_notch_filter = &hal_notch_filter_8812;
pHalFunc->c2h_handler = c2h_handler_8812a;
pHalFunc->fill_h2c_cmd = &fill_h2c_cmd_8812;
pHalFunc->fill_fake_txdesc = &rtl8812a_fill_fake_txdesc;
pHalFunc->fw_dl = &FirmwareDownload8812;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8812;
}