1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-05 11:00:45 +00:00
rtl8812au/os_dep/linux/rtw_cfgvendor.c
2018-07-02 18:49:32 +02:00

1481 lines
43 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#include <drv_types.h>
#ifdef CONFIG_IOCTL_CFG80211
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT)
/*
#include <linux/kernel.h>
#include <linux/if_arp.h>
#include <asm/uaccess.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/netdevice.h>
#include <linux/sched.h>
#include <linux/etherdevice.h>
#include <linux/wireless.h>
#include <linux/ieee80211.h>
#include <linux/wait.h>
#include <net/cfg80211.h>
*/
#include <net/rtnetlink.h>
#ifdef DBG_MEM_ALLOC
extern bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size);
struct sk_buff *dbg_rtw_cfg80211_vendor_event_alloc(struct wiphy *wiphy, struct wireless_dev *wdev, int len, int event_id, gfp_t gfp
, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb;
unsigned int truesize = 0;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 1, 0))
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, gfp);
#else
skb = cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp);
#endif
if (skb)
truesize = skb->truesize;
if (!skb || truesize < len || match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, len, skb, truesize);
rtw_mstat_update(
flags
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb;
}
void dbg_rtw_cfg80211_vendor_event(struct sk_buff *skb, gfp_t gfp
, const enum mstat_f flags, const char *func, const int line)
{
unsigned int truesize = skb->truesize;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
cfg80211_vendor_event(skb, gfp);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
}
struct sk_buff *dbg_rtw_cfg80211_vendor_cmd_alloc_reply_skb(struct wiphy *wiphy, int len
, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb;
unsigned int truesize = 0;
skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (skb)
truesize = skb->truesize;
if (!skb || truesize < len || match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, len, skb, truesize);
rtw_mstat_update(
flags
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb;
}
int dbg_rtw_cfg80211_vendor_cmd_reply(struct sk_buff *skb
, const enum mstat_f flags, const char *func, const int line)
{
unsigned int truesize = skb->truesize;
int ret;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
ret = cfg80211_vendor_cmd_reply(skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
return ret;
}
#define rtw_cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp) \
dbg_rtw_cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_cfg80211_vendor_event(skb, gfp) \
dbg_rtw_cfg80211_vendor_event(skb, gfp, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len) \
dbg_rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#define rtw_cfg80211_vendor_cmd_reply(skb) \
dbg_rtw_cfg80211_vendor_cmd_reply(skb, MSTAT_FUNC_CFG_VENDOR | MSTAT_TYPE_SKB, __FUNCTION__, __LINE__)
#else
struct sk_buff *rtw_cfg80211_vendor_event_alloc(
struct wiphy *wiphy, struct wireless_dev *wdev, int len, int event_id, gfp_t gfp)
{
struct sk_buff *skb;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 1, 0))
skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, gfp);
#else
skb = cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp);
#endif
return skb;
}
#define rtw_cfg80211_vendor_event(skb, gfp) \
cfg80211_vendor_event(skb, gfp)
#define rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len) \
cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len)
#define rtw_cfg80211_vendor_cmd_reply(skb) \
cfg80211_vendor_cmd_reply(skb)
#endif /* DBG_MEM_ALLOC */
/*
* This API is to be used for asynchronous vendor events. This
* shouldn't be used in response to a vendor command from its
* do_it handler context (instead rtw_cfgvendor_send_cmd_reply should
* be used).
*/
int rtw_cfgvendor_send_async_event(struct wiphy *wiphy,
struct net_device *dev, int event_id, const void *data, int len)
{
u16 kflags;
struct sk_buff *skb;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), len, event_id, kflags);
if (!skb) {
RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(dev));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
rtw_cfg80211_vendor_event(skb, kflags);
return 0;
}
static int rtw_cfgvendor_send_cmd_reply(struct wiphy *wiphy,
struct net_device *dev, const void *data, int len)
{
struct sk_buff *skb;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
if (unlikely(!skb)) {
RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(dev));
return -ENOMEM;
}
/* Push the data to the skb */
nla_put_nohdr(skb, len, data);
return rtw_cfg80211_vendor_cmd_reply(skb);
}
/* Feature enums */
#define WIFI_FEATURE_INFRA 0x0001 // Basic infrastructure mode
#define WIFI_FEATURE_INFRA_5G 0x0002 // Support for 5 GHz Band
#define WIFI_FEATURE_HOTSPOT 0x0004 // Support for GAS/ANQP
#define WIFI_FEATURE_P2P 0x0008 // Wifi-Direct
#define WIFI_FEATURE_SOFT_AP 0x0010 // Soft AP
#define WIFI_FEATURE_GSCAN 0x0020 // Google-Scan APIs
#define WIFI_FEATURE_NAN 0x0040 // Neighbor Awareness Networking
#define WIFI_FEATURE_D2D_RTT 0x0080 // Device-to-device RTT
#define WIFI_FEATURE_D2AP_RTT 0x0100 // Device-to-AP RTT
#define WIFI_FEATURE_BATCH_SCAN 0x0200 // Batched Scan (legacy)
#define WIFI_FEATURE_PNO 0x0400 // Preferred network offload
#define WIFI_FEATURE_ADDITIONAL_STA 0x0800 // Support for two STAs
#define WIFI_FEATURE_TDLS 0x1000 // Tunnel directed link setup
#define WIFI_FEATURE_TDLS_OFFCHANNEL 0x2000 // Support for TDLS off channel
#define WIFI_FEATURE_EPR 0x4000 // Enhanced power reporting
#define WIFI_FEATURE_AP_STA 0x8000 // Support for AP STA Concurrency
#define WIFI_FEATURE_LINK_LAYER_STATS 0x10000 // Link layer stats collection
#define WIFI_FEATURE_LOGGER 0x20000 // WiFi Logger
#define WIFI_FEATURE_HAL_EPNO 0x40000 // WiFi PNO enhanced
#define WIFI_FEATURE_RSSI_MONITOR 0x80000 // RSSI Monitor
#define WIFI_FEATURE_MKEEP_ALIVE 0x100000 // WiFi mkeep_alive
#define WIFI_FEATURE_CONFIG_NDO 0x200000 // ND offload configure
#define WIFI_FEATURE_TX_TRANSMIT_POWER 0x400000 // Capture Tx transmit power levels
#define WIFI_FEATURE_CONTROL_ROAMING 0x800000 // Enable/Disable firmware roaming
#define WIFI_FEATURE_IE_WHITELIST 0x1000000 // Support Probe IE white listing
#define WIFI_FEATURE_SCAN_RAND 0x2000000 // Support MAC & Probe Sequence Number randomization
// Add more features here
#define MAX_FEATURE_SET_CONCURRRENT_GROUPS 3
#include <hal_data.h>
int rtw_dev_get_feature_set(struct net_device *dev)
{
_adapter *adapter = (_adapter *)rtw_netdev_priv(dev);
HAL_DATA_TYPE *HalData = GET_HAL_DATA(adapter);
HAL_VERSION *hal_ver = &HalData->version_id;
int feature_set = 0;
feature_set |= WIFI_FEATURE_INFRA;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (is_supported_5g(adapter_to_regsty(adapter)->wireless_mode))
feature_set |= WIFI_FEATURE_INFRA_5G;
#endif
feature_set |= WIFI_FEATURE_P2P;
feature_set |= WIFI_FEATURE_SOFT_AP;
feature_set |= WIFI_FEATURE_ADDITIONAL_STA;
#ifdef CONFIG_RTW_CFGVEDNOR_LLSTATS
feature_set |= WIFI_FEATURE_LINK_LAYER_STATS;
#endif /* CONFIG_RTW_CFGVEDNOR_LLSTATS */
return feature_set;
}
int *rtw_dev_get_feature_set_matrix(struct net_device *dev, int *num)
{
int feature_set_full, mem_needed;
int *ret;
*num = 0;
mem_needed = sizeof(int) * MAX_FEATURE_SET_CONCURRRENT_GROUPS;
ret = (int *)rtw_malloc(mem_needed);
if (!ret) {
RTW_ERR(FUNC_NDEV_FMT" failed to allocate %d bytes\n"
, FUNC_NDEV_ARG(dev), mem_needed);
return ret;
}
feature_set_full = rtw_dev_get_feature_set(dev);
ret[0] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
(feature_set_full & WIFI_FEATURE_NAN) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_PNO) |
(feature_set_full & WIFI_FEATURE_BATCH_SCAN) |
(feature_set_full & WIFI_FEATURE_GSCAN) |
(feature_set_full & WIFI_FEATURE_HOTSPOT) |
(feature_set_full & WIFI_FEATURE_ADDITIONAL_STA) |
(feature_set_full & WIFI_FEATURE_EPR);
ret[1] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
/* Not yet verified NAN with P2P */
/* (feature_set_full & WIFI_FEATURE_NAN) | */
(feature_set_full & WIFI_FEATURE_P2P) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_EPR);
ret[2] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
(feature_set_full & WIFI_FEATURE_NAN) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_TDLS) |
(feature_set_full & WIFI_FEATURE_TDLS_OFFCHANNEL) |
(feature_set_full & WIFI_FEATURE_EPR);
*num = MAX_FEATURE_SET_CONCURRRENT_GROUPS;
return ret;
}
static int rtw_cfgvendor_get_feature_set(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
int reply;
reply = rtw_dev_get_feature_set(wdev_to_ndev(wdev));
err = rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev), &reply, sizeof(int));
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
return err;
}
static int rtw_cfgvendor_get_feature_set_matrix(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct sk_buff *skb;
int *reply;
int num, mem_needed, i;
reply = rtw_dev_get_feature_set_matrix(wdev_to_ndev(wdev), &num);
if (!reply) {
RTW_ERR(FUNC_NDEV_FMT" Could not get feature list matrix\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)));
err = -EINVAL;
return err;
}
mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * num) +
ATTRIBUTE_U32_LEN;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(wdev_to_ndev(wdev)));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET, num);
for (i = 0; i < num; i++)
nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_FEATURE_SET, reply[i]);
err = rtw_cfg80211_vendor_cmd_reply(skb);
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
exit:
rtw_mfree((u8 *)reply, sizeof(int) * num);
return err;
}
#if defined(GSCAN_SUPPORT) && 0
int rtw_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
struct net_device *dev, void *data, int len, rtw_vendor_event_t event)
{
u16 kflags;
const void *ptr;
struct sk_buff *skb;
int malloc_len, total, iter_cnt_to_send, cnt;
gscan_results_cache_t *cache = (gscan_results_cache_t *)data;
total = len / sizeof(wifi_gscan_result_t);
while (total > 0) {
malloc_len = (total * sizeof(wifi_gscan_result_t)) + VENDOR_DATA_OVERHEAD;
if (malloc_len > NLMSG_DEFAULT_SIZE)
malloc_len = NLMSG_DEFAULT_SIZE;
iter_cnt_to_send =
(malloc_len - VENDOR_DATA_OVERHEAD) / sizeof(wifi_gscan_result_t);
total = total - iter_cnt_to_send;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), malloc_len, event, kflags);
if (!skb) {
WL_ERR(("skb alloc failed"));
return -ENOMEM;
}
while (cache && iter_cnt_to_send) {
ptr = (const void *) &cache->results[cache->tot_consumed];
if (iter_cnt_to_send < (cache->tot_count - cache->tot_consumed))
cnt = iter_cnt_to_send;
else
cnt = (cache->tot_count - cache->tot_consumed);
iter_cnt_to_send -= cnt;
cache->tot_consumed += cnt;
/* Push the data to the skb */
nla_append(skb, cnt * sizeof(wifi_gscan_result_t), ptr);
if (cache->tot_consumed == cache->tot_count)
cache = cache->next;
}
rtw_cfg80211_vendor_event(skb, kflags);
}
return 0;
}
static int rtw_cfgvendor_gscan_get_capabilities(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
dhd_pno_gscan_capabilities_t *reply = NULL;
uint32 reply_len = 0;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CAPABILITIES, NULL, &reply_len);
if (!reply) {
WL_ERR(("Could not get capabilities\n"));
err = -EINVAL;
return err;
}
err = rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
reply, reply_len);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
kfree(reply);
return err;
}
static int rtw_cfgvendor_gscan_get_channel_list(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, type, band;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
uint16 *reply = NULL;
uint32 reply_len = 0, num_channels, mem_needed;
struct sk_buff *skb;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_BAND)
band = nla_get_u32(data);
else
return -1;
reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_CHANNEL_LIST, &band, &reply_len);
if (!reply) {
WL_ERR(("Could not get channel list\n"));
err = -EINVAL;
return err;
}
num_channels = reply_len / sizeof(uint32);
mem_needed = reply_len + VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
err = -ENOMEM;
goto exit;
}
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_CHANNELS, num_channels);
nla_put(skb, GSCAN_ATTRIBUTE_CHANNEL_LIST, reply_len, reply);
err = rtw_cfg80211_vendor_cmd_reply(skb);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
exit:
kfree(reply);
return err;
}
static int rtw_cfgvendor_gscan_get_batch_results(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_results_cache_t *results, *iter;
uint32 reply_len, complete = 0, num_results_iter;
int32 mem_needed;
wifi_gscan_result_t *ptr;
uint16 num_scan_ids, num_results;
struct sk_buff *skb;
struct nlattr *scan_hdr;
dhd_dev_wait_batch_results_complete(bcmcfg_to_prmry_ndev(cfg));
dhd_dev_pno_lock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
results = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GET_BATCH_RESULTS, NULL, &reply_len);
if (!results) {
WL_ERR(("No results to send %d\n", err));
err = rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
results, 0);
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return err;
}
num_scan_ids = reply_len & 0xFFFF;
num_results = (reply_len & 0xFFFF0000) >> 16;
mem_needed = (num_results * sizeof(wifi_gscan_result_t)) +
(num_scan_ids * GSCAN_BATCH_RESULT_HDR_LEN) +
VENDOR_REPLY_OVERHEAD + SCAN_RESULTS_COMPLETE_FLAG_LEN;
if (mem_needed > (int32)NLMSG_DEFAULT_SIZE) {
mem_needed = (int32)NLMSG_DEFAULT_SIZE;
complete = 0;
} else
complete = 1;
WL_TRACE(("complete %d mem_needed %d max_mem %d\n", complete, mem_needed,
(int)NLMSG_DEFAULT_SIZE));
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
if (unlikely(!skb)) {
WL_ERR(("skb alloc failed"));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return -ENOMEM;
}
iter = results;
nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE, complete);
mem_needed = mem_needed - (SCAN_RESULTS_COMPLETE_FLAG_LEN + VENDOR_REPLY_OVERHEAD);
while (iter && ((mem_needed - GSCAN_BATCH_RESULT_HDR_LEN) > 0)) {
scan_hdr = nla_nest_start(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS);
nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_ID, iter->scan_id);
nla_put_u8(skb, GSCAN_ATTRIBUTE_SCAN_FLAGS, iter->flag);
num_results_iter =
(mem_needed - GSCAN_BATCH_RESULT_HDR_LEN) / sizeof(wifi_gscan_result_t);
if ((iter->tot_count - iter->tot_consumed) < num_results_iter)
num_results_iter = iter->tot_count - iter->tot_consumed;
nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_OF_RESULTS, num_results_iter);
if (num_results_iter) {
ptr = &iter->results[iter->tot_consumed];
iter->tot_consumed += num_results_iter;
nla_put(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS,
num_results_iter * sizeof(wifi_gscan_result_t), ptr);
}
nla_nest_end(skb, scan_hdr);
mem_needed -= GSCAN_BATCH_RESULT_HDR_LEN +
(num_results_iter * sizeof(wifi_gscan_result_t));
iter = iter->next;
}
dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
return rtw_cfg80211_vendor_cmd_reply(skb);
}
static int rtw_cfgvendor_initiate_gscan(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type, tmp = len;
int run = 0xFF;
int flush = 0;
const struct nlattr *iter;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (type == GSCAN_ATTRIBUTE_ENABLE_FEATURE)
run = nla_get_u32(iter);
else if (type == GSCAN_ATTRIBUTE_FLUSH_FEATURE)
flush = nla_get_u32(iter);
}
if (run != 0xFF) {
err = dhd_dev_pno_run_gscan(bcmcfg_to_prmry_ndev(cfg), run, flush);
if (unlikely(err))
WL_ERR(("Could not run gscan:%d\n", err));
return err;
} else
return -1;
}
static int rtw_cfgvendor_enable_full_scan_result(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
int type;
bool real_time = FALSE;
type = nla_type(data);
if (type == GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS) {
real_time = nla_get_u32(data);
err = dhd_dev_pno_enable_full_scan_result(bcmcfg_to_prmry_ndev(cfg), real_time);
if (unlikely(err))
WL_ERR(("Could not run gscan:%d\n", err));
} else
err = -1;
return err;
}
static int rtw_cfgvendor_set_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_scan_params_t *scan_param;
int j = 0;
int type, tmp, tmp1, tmp2, k = 0;
const struct nlattr *iter, *iter1, *iter2;
struct dhd_pno_gscan_channel_bucket *ch_bucket;
scan_param = kzalloc(sizeof(gscan_scan_params_t), GFP_KERNEL);
if (!scan_param) {
WL_ERR(("Could not set GSCAN scan cfg, mem alloc failure\n"));
err = -EINVAL;
return err;
}
scan_param->scan_fr = PNO_SCAN_MIN_FW_SEC;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
if (j >= GSCAN_MAX_CH_BUCKETS)
break;
switch (type) {
case GSCAN_ATTRIBUTE_BASE_PERIOD:
scan_param->scan_fr = nla_get_u32(iter) / 1000;
break;
case GSCAN_ATTRIBUTE_NUM_BUCKETS:
scan_param->nchannel_buckets = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_CH_BUCKET_1:
case GSCAN_ATTRIBUTE_CH_BUCKET_2:
case GSCAN_ATTRIBUTE_CH_BUCKET_3:
case GSCAN_ATTRIBUTE_CH_BUCKET_4:
case GSCAN_ATTRIBUTE_CH_BUCKET_5:
case GSCAN_ATTRIBUTE_CH_BUCKET_6:
case GSCAN_ATTRIBUTE_CH_BUCKET_7:
nla_for_each_nested(iter1, iter, tmp1) {
type = nla_type(iter1);
ch_bucket =
scan_param->channel_bucket;
switch (type) {
case GSCAN_ATTRIBUTE_BUCKET_ID:
break;
case GSCAN_ATTRIBUTE_BUCKET_PERIOD:
ch_bucket[j].bucket_freq_multiple =
nla_get_u32(iter1) / 1000;
break;
case GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS:
ch_bucket[j].num_channels =
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_BUCKET_CHANNELS:
nla_for_each_nested(iter2, iter1, tmp2) {
if (k >= PFN_SWC_RSSI_WINDOW_MAX)
break;
ch_bucket[j].chan_list[k] =
nla_get_u32(iter2);
k++;
}
k = 0;
break;
case GSCAN_ATTRIBUTE_BUCKETS_BAND:
ch_bucket[j].band = (uint16)
nla_get_u32(iter1);
break;
case GSCAN_ATTRIBUTE_REPORT_EVENTS:
ch_bucket[j].report_flag = (uint8)
nla_get_u32(iter1);
break;
}
}
j++;
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SCAN_CFG_ID, scan_param, 0) < 0) {
WL_ERR(("Could not set GSCAN scan cfg\n"));
err = -EINVAL;
}
kfree(scan_param);
return err;
}
static int rtw_cfgvendor_hotlist_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_hotlist_scan_params_t *hotlist_params;
int tmp, tmp1, tmp2, type, j = 0, dummy;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0;
struct bssid_t *pbssid;
hotlist_params = (gscan_hotlist_scan_params_t *)kzalloc(len, GFP_KERNEL);
if (!hotlist_params) {
WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes\n", len));
return -1;
}
hotlist_params->lost_ap_window = GSCAN_LOST_AP_WINDOW_DEFAULT;
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_HOTLIST_BSSIDS:
pbssid = hotlist_params->bssid;
nla_for_each_nested(outer, iter, tmp) {
nla_for_each_nested(inner, outer, tmp1) {
type = nla_type(inner);
switch (type) {
case GSCAN_ATTRIBUTE_BSSID:
memcpy(&(pbssid[j].macaddr),
nla_data(inner), ETHER_ADDR_LEN);
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
pbssid[j].rssi_reporting_threshold =
(int8) nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
dummy = (int8) nla_get_u8(inner);
break;
}
}
j++;
}
hotlist_params->nbssid = j;
break;
case GSCAN_ATTRIBUTE_HOTLIST_FLUSH:
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
hotlist_params->lost_ap_window = nla_get_u32(iter);
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_GEOFENCE_SCAN_CFG_ID, hotlist_params, flush) < 0) {
WL_ERR(("Could not set GSCAN HOTLIST cfg\n"));
err = -EINVAL;
goto exit;
}
exit:
kfree(hotlist_params);
return err;
}
static int rtw_cfgvendor_set_batch_scan_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0, tmp, type;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_batch_params_t batch_param;
const struct nlattr *iter;
batch_param.mscan = batch_param.bestn = 0;
batch_param.buffer_threshold = GSCAN_BATCH_NO_THR_SET;
nla_for_each_attr(iter, data, len, tmp) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN:
batch_param.bestn = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE:
batch_param.mscan = nla_get_u32(iter);
break;
case GSCAN_ATTRIBUTE_REPORT_THRESHOLD:
batch_param.buffer_threshold = nla_get_u32(iter);
break;
}
}
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_BATCH_SCAN_CFG_ID, &batch_param, 0) < 0) {
WL_ERR(("Could not set batch cfg\n"));
err = -EINVAL;
return err;
}
return err;
}
static int rtw_cfgvendor_significant_change_cfg(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
gscan_swc_params_t *significant_params;
int tmp, tmp1, tmp2, type, j = 0;
const struct nlattr *outer, *inner, *iter;
uint8 flush = 0;
wl_pfn_significant_bssid_t *pbssid;
significant_params = (gscan_swc_params_t *) kzalloc(len, GFP_KERNEL);
if (!significant_params) {
WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes\n", len));
return -1;
}
nla_for_each_attr(iter, data, len, tmp2) {
type = nla_type(iter);
switch (type) {
case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_FLUSH:
flush = nla_get_u8(iter);
break;
case GSCAN_ATTRIBUTE_RSSI_SAMPLE_SIZE:
significant_params->rssi_window = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
significant_params->lost_ap_window = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_MIN_BREACHING:
significant_params->swc_threshold = nla_get_u16(iter);
break;
case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_BSSIDS:
pbssid = significant_params->bssid_elem_list;
nla_for_each_nested(outer, iter, tmp) {
nla_for_each_nested(inner, outer, tmp1) {
switch (nla_type(inner)) {
case GSCAN_ATTRIBUTE_BSSID:
memcpy(&(pbssid[j].macaddr),
nla_data(inner),
ETHER_ADDR_LEN);
break;
case GSCAN_ATTRIBUTE_RSSI_HIGH:
pbssid[j].rssi_high_threshold =
(int8) nla_get_u8(inner);
break;
case GSCAN_ATTRIBUTE_RSSI_LOW:
pbssid[j].rssi_low_threshold =
(int8) nla_get_u8(inner);
break;
}
}
j++;
}
break;
}
}
significant_params->nbssid = j;
if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
DHD_PNO_SIGNIFICANT_SCAN_CFG_ID, significant_params, flush) < 0) {
WL_ERR(("Could not set GSCAN significant cfg\n"));
err = -EINVAL;
goto exit;
}
exit:
kfree(significant_params);
return err;
}
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
void rtw_cfgvendor_rtt_evt(void *ctx, void *rtt_data)
{
struct wireless_dev *wdev = (struct wireless_dev *)ctx;
struct wiphy *wiphy;
struct sk_buff *skb;
uint32 tot_len = NLMSG_DEFAULT_SIZE, entry_len = 0;
gfp_t kflags;
rtt_report_t *rtt_report = NULL;
rtt_result_t *rtt_result = NULL;
struct list_head *rtt_list;
wiphy = wdev->wiphy;
WL_DBG(("In\n"));
/* Push the data to the skb */
if (!rtt_data) {
WL_ERR(("rtt_data is NULL\n"));
goto exit;
}
rtt_list = (struct list_head *)rtt_data;
kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
/* Alloc the SKB for vendor_event */
skb = rtw_cfg80211_vendor_event_alloc(wiphy, wdev, tot_len, GOOGLE_RTT_COMPLETE_EVENT, kflags);
if (!skb) {
WL_ERR(("skb alloc failed"));
goto exit;
}
/* fill in the rtt results on each entry */
list_for_each_entry(rtt_result, rtt_list, list) {
entry_len = 0;
if (rtt_result->TOF_type == TOF_TYPE_ONE_WAY) {
entry_len = sizeof(rtt_report_t);
rtt_report = kzalloc(entry_len, kflags);
if (!rtt_report) {
WL_ERR(("rtt_report alloc failed"));
goto exit;
}
rtt_report->addr = rtt_result->peer_mac;
rtt_report->num_measurement = 1; /* ONE SHOT */
rtt_report->status = rtt_result->err_code;
rtt_report->type = (rtt_result->TOF_type == TOF_TYPE_ONE_WAY) ? RTT_ONE_WAY : RTT_TWO_WAY;
rtt_report->peer = rtt_result->target_info->peer;
rtt_report->channel = rtt_result->target_info->channel;
rtt_report->rssi = rtt_result->avg_rssi;
/* tx_rate */
rtt_report->tx_rate = rtt_result->tx_rate;
/* RTT */
rtt_report->rtt = rtt_result->meanrtt;
rtt_report->rtt_sd = rtt_result->sdrtt;
/* convert to centi meter */
if (rtt_result->distance != 0xffffffff)
rtt_report->distance = (rtt_result->distance >> 2) * 25;
else /* invalid distance */
rtt_report->distance = -1;
rtt_report->ts = rtt_result->ts;
nla_append(skb, entry_len, rtt_report);
kfree(rtt_report);
}
}
rtw_cfg80211_vendor_event(skb, kflags);
exit:
return;
}
static int rtw_cfgvendor_rtt_set_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, rem1, rem2, type;
rtt_config_params_t rtt_param;
rtt_target_info_t *rtt_target = NULL;
const struct nlattr *iter, *iter1, *iter2;
int8 eabuf[ETHER_ADDR_STR_LEN];
int8 chanbuf[CHANSPEC_STR_LEN];
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
WL_DBG(("In\n"));
err = dhd_dev_rtt_register_noti_callback(wdev->netdev, wdev, wl_cfgvendor_rtt_evt);
if (err < 0) {
WL_ERR(("failed to register rtt_noti_callback\n"));
goto exit;
}
memset(&rtt_param, 0, sizeof(rtt_param));
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
rtt_param.rtt_target_cnt = nla_get_u8(iter);
if (rtt_param.rtt_target_cnt > RTT_MAX_TARGET_CNT) {
WL_ERR(("exceed max target count : %d\n",
rtt_param.rtt_target_cnt));
err = BCME_RANGE;
}
break;
case RTT_ATTRIBUTE_TARGET_INFO:
rtt_target = rtt_param.target_info;
nla_for_each_nested(iter1, iter, rem1) {
nla_for_each_nested(iter2, iter1, rem2) {
type = nla_type(iter2);
switch (type) {
case RTT_ATTRIBUTE_TARGET_MAC:
memcpy(&rtt_target->addr, nla_data(iter2), ETHER_ADDR_LEN);
break;
case RTT_ATTRIBUTE_TARGET_TYPE:
rtt_target->type = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_PEER:
rtt_target->peer = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_CHAN:
memcpy(&rtt_target->channel, nla_data(iter2),
sizeof(rtt_target->channel));
break;
case RTT_ATTRIBUTE_TARGET_MODE:
rtt_target->continuous = nla_get_u8(iter2);
break;
case RTT_ATTRIBUTE_TARGET_INTERVAL:
rtt_target->interval = nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_MEASUREMENT:
rtt_target->measure_cnt = nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_PKT:
rtt_target->ftm_cnt = nla_get_u32(iter2);
break;
case RTT_ATTRIBUTE_TARGET_NUM_RETRY:
rtt_target->retry_cnt = nla_get_u32(iter2);
}
}
/* convert to chanspec value */
rtt_target->chanspec = dhd_rtt_convert_to_chspec(rtt_target->channel);
if (rtt_target->chanspec == 0) {
WL_ERR(("Channel is not valid\n"));
goto exit;
}
WL_INFORM(("Target addr %s, Channel : %s for RTT\n",
bcm_ether_ntoa((const struct ether_addr *)&rtt_target->addr, eabuf),
wf_chspec_ntoa(rtt_target->chanspec, chanbuf)));
rtt_target++;
}
break;
}
}
WL_DBG(("leave :target_cnt : %d\n", rtt_param.rtt_target_cnt));
if (dhd_dev_rtt_set_cfg(bcmcfg_to_prmry_ndev(cfg), &rtt_param) < 0) {
WL_ERR(("Could not set RTT configuration\n"));
err = -EINVAL;
}
exit:
return err;
}
static int rtw_cfgvendor_rtt_cancel_config(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0, rem, type, target_cnt = 0;
const struct nlattr *iter;
struct ether_addr *mac_list = NULL, *mac_addr = NULL;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
nla_for_each_attr(iter, data, len, rem) {
type = nla_type(iter);
switch (type) {
case RTT_ATTRIBUTE_TARGET_CNT:
target_cnt = nla_get_u8(iter);
mac_list = (struct ether_addr *)kzalloc(target_cnt * ETHER_ADDR_LEN , GFP_KERNEL);
if (mac_list == NULL) {
WL_ERR(("failed to allocate mem for mac list\n"));
goto exit;
}
mac_addr = &mac_list[0];
break;
case RTT_ATTRIBUTE_TARGET_MAC:
if (mac_addr)
memcpy(mac_addr++, nla_data(iter), ETHER_ADDR_LEN);
else {
WL_ERR(("mac_list is NULL\n"));
goto exit;
}
break;
}
if (dhd_dev_rtt_cancel_cfg(bcmcfg_to_prmry_ndev(cfg), mac_list, target_cnt) < 0) {
WL_ERR(("Could not cancel RTT configuration\n"));
err = -EINVAL;
goto exit;
}
}
exit:
if (mac_list)
kfree(mac_list);
return err;
}
static int rtw_cfgvendor_rtt_get_capability(struct wiphy *wiphy, struct wireless_dev *wdev,
const void *data, int len)
{
int err = 0;
struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
rtt_capabilities_t capability;
err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
if (unlikely(err)) {
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
goto exit;
}
err = rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
&capability, sizeof(capability));
if (unlikely(err))
WL_ERR(("Vendor Command reply failed ret:%d\n", err));
exit:
return err;
}
#endif /* RTT_SUPPORT */
#ifdef CONFIG_RTW_CFGVEDNOR_LLSTATS
enum {
LSTATS_SUBCMD_GET_INFO = ANDROID_NL80211_SUBCMD_LSTATS_RANGE_START,
LSTATS_SUBCMD_SET_INFO,
LSTATS_SUBCMD_CLEAR_INFO,
};
static void LinkLayerStats(_adapter *padapter)
{
struct xmit_priv *pxmitpriv = &(padapter->xmitpriv);
struct recv_priv *precvpriv = &(padapter->recvpriv);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
u32 ps_time, trx_total_time;
u64 tx_bytes, rx_bytes, trx_total_bytes = 0;
u64 tmp = 0;
RTW_DBG("%s adapter type : %u\n", __func__, padapter->adapter_type);
tx_bytes = 0;
rx_bytes = 0;
ps_time = 0;
trx_total_time = 0;
if ( padapter->netif_up == _TRUE ) {
pwrpriv->on_time = rtw_get_passing_time_ms(pwrpriv->radio_on_start_time);
if (rtw_mi_check_fwstate(padapter, _FW_LINKED)) {
if ( pwrpriv->bpower_saving == _TRUE ) {
pwrpriv->pwr_saving_time += rtw_get_passing_time_ms(pwrpriv->pwr_saving_start_time);
pwrpriv->pwr_saving_start_time = rtw_get_current_time();
}
} else {
#ifdef CONFIG_IPS
if ( pwrpriv->bpower_saving == _TRUE ) {
pwrpriv->pwr_saving_time += rtw_get_passing_time_ms(pwrpriv->pwr_saving_start_time);
pwrpriv->pwr_saving_start_time = rtw_get_current_time();
}
#else
pwrpriv->pwr_saving_time = pwrpriv->on_time;
#endif
}
ps_time = pwrpriv->pwr_saving_time;
/* Deviation caused by caculation start time */
if ( ps_time > pwrpriv->on_time )
ps_time = pwrpriv->on_time;
tx_bytes = pdvobjpriv->traffic_stat.last_tx_bytes;
rx_bytes = pdvobjpriv->traffic_stat.last_rx_bytes;
trx_total_bytes = tx_bytes + rx_bytes;
trx_total_time = pwrpriv->on_time - ps_time;
if ( trx_total_bytes == 0) {
pwrpriv->tx_time = 0;
pwrpriv->rx_time = 0;
} else {
/* tx_time = (trx_total_time * tx_total_bytes) / trx_total_bytes; */
/* rx_time = (trx_total_time * rx_total_bytes) / trx_total_bytes; */
tmp = (tx_bytes * trx_total_time);
tmp = rtw_division64(tmp, trx_total_bytes);
pwrpriv->tx_time = tmp;
tmp = (rx_bytes * trx_total_time);
tmp = rtw_division64(tmp, trx_total_bytes);
pwrpriv->rx_time = tmp;
}
}
else {
pwrpriv->on_time = 0;
pwrpriv->tx_time = 0;
pwrpriv->rx_time = 0;
}
#ifdef CONFIG_RTW_WIFI_HAL_DEBUG
RTW_INFO("- tx_bytes : %llu rx_bytes : %llu total bytes : %llu\n", tx_bytes, rx_bytes, trx_total_bytes);
RTW_INFO("- netif_up=%s, on_time : %u ms\n", padapter->netif_up ? "1":"0", pwrpriv->on_time);
RTW_INFO("- pwr_saving_time : %u (%u) ms\n", pwrpriv->pwr_saving_time, ps_time);
RTW_INFO("- trx_total_time : %u ms\n", trx_total_time);
RTW_INFO("- tx_time : %u ms\n", pwrpriv->tx_time);
RTW_INFO("- rx_time : %u ms\n", pwrpriv->rx_time);
#endif /* CONFIG_RTW_WIFI_HAL_DEBUG */
}
#define DUMMY_TIME_STATICS 99
static int rtw_cfgvendor_lstats_get_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
_adapter *padapter = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
wifi_radio_stat *radio;
wifi_iface_stat *iface;
char *output;
output = rtw_malloc(sizeof(wifi_radio_stat) + sizeof(wifi_iface_stat)+1);
if (output == NULL) {
RTW_DBG("Allocate lstats info buffer fail!\n");
}
radio = (wifi_radio_stat *)output;
radio->num_channels = 0;
radio->radio = 1;
/* to get on_time, tx_time, rx_time */
LinkLayerStats(padapter);
radio->on_time = pwrpriv->on_time;
radio->tx_time = pwrpriv->tx_time;
radio->rx_time = pwrpriv->rx_time;
radio->num_tx_levels = 1;
radio->tx_time_per_levels = NULL;
radio->tx_time_per_levels = (u32*)(output+sizeof(wifi_radio_stat) + sizeof(wifi_iface_stat));
*(radio->tx_time_per_levels) = DUMMY_TIME_STATICS;
radio->on_time_scan = 0;
radio->on_time_nbd = 0;
radio->on_time_gscan = 0;
radio->on_time_pno_scan = 0;
radio->on_time_hs20 = 0;
#ifdef CONFIG_RTW_WIFI_HAL_DEBUG
RTW_INFO("==== %s ====\n", __func__);
RTW_INFO("radio->radio : %d\n", (radio->radio));
RTW_INFO("pwrpriv->on_time : %u ms\n", (pwrpriv->on_time));
RTW_INFO("pwrpriv->tx_time : %u ms\n", (pwrpriv->tx_time));
RTW_INFO("pwrpriv->rx_time : %u ms\n", (pwrpriv->rx_time));
RTW_INFO("radio->on_time : %u ms\n", (radio->on_time));
RTW_INFO("radio->tx_time : %u ms\n", (radio->tx_time));
RTW_INFO("radio->rx_time : %u ms\n", (radio->rx_time));
RTW_INFO("radio->tx_time_per_levels value : %u ms\n", *(radio->tx_time_per_levels));
#endif /* CONFIG_RTW_WIFI_HAL_DEBUG */
RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
err = rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev),
output, sizeof(wifi_iface_stat) + sizeof(wifi_radio_stat)+1);
if (unlikely(err))
RTW_ERR(FUNC_NDEV_FMT"Vendor Command reply failed ret:%d \n"
, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
rtw_mfree(output, sizeof(wifi_iface_stat) + sizeof(wifi_radio_stat)+1);
return err;
}
static int rtw_cfgvendor_lstats_set_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
RTW_INFO("%s\n", __func__);
return err;
}
static int rtw_cfgvendor_lstats_clear_info(struct wiphy *wiphy,
struct wireless_dev *wdev, const void *data, int len)
{
int err = 0;
RTW_INFO("%s\n", __func__);
return err;
}
#endif /* CONFIG_RTW_CFGVEDNOR_LLSTATS */
static const struct wiphy_vendor_command rtw_vendor_cmds[] = {
#if defined(GSCAN_SUPPORT) && 0
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CAPABILITIES
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_gscan_get_capabilities
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SCAN_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_set_batch_scan_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_GSCAN
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_initiate_gscan
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_enable_full_scan_result
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_HOTLIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_hotlist_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_SET_SIGNIFICANT_CHANGE_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_significant_change_cfg
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_SCAN_RESULTS
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_gscan_get_batch_results
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = GSCAN_SUBCMD_GET_CHANNEL_LIST
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_gscan_get_channel_list
},
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_SET_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_rtt_set_config
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_CANCEL_CONFIG
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_rtt_cancel_config
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = RTT_SUBCMD_GETCAPABILITY
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_rtt_get_capability
},
#endif /* RTT_SUPPORT */
#ifdef CONFIG_RTW_CFGVEDNOR_LLSTATS
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_GET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_lstats_get_info
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_SET_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_lstats_set_info
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = LSTATS_SUBCMD_CLEAR_INFO
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_lstats_clear_info
},
#endif /* CONFIG_RTW_CFGVEDNOR_LLSTATS */
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_GET_FEATURE_SET
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_get_feature_set
},
{
{
.vendor_id = OUI_GOOGLE,
.subcmd = WIFI_SUBCMD_GET_FEATURE_SET_MATRIX
},
.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
.doit = rtw_cfgvendor_get_feature_set_matrix
}
};
static const struct nl80211_vendor_cmd_info rtw_vendor_events[] = {
#if defined(GSCAN_SUPPORT) && 0
{ OUI_GOOGLE, GSCAN_EVENT_SIGNIFICANT_CHANGE_RESULTS },
{ OUI_GOOGLE, GSCAN_EVENT_HOTLIST_RESULTS_FOUND },
{ OUI_GOOGLE, GSCAN_EVENT_SCAN_RESULTS_AVAILABLE },
{ OUI_GOOGLE, GSCAN_EVENT_FULL_SCAN_RESULTS },
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
{ OUI_GOOGLE, RTT_EVENT_COMPLETE },
#endif /* RTT_SUPPORT */
#if defined(GSCAN_SUPPORT) && 0
{ OUI_GOOGLE, GSCAN_EVENT_COMPLETE_SCAN },
{ OUI_GOOGLE, GSCAN_EVENT_HOTLIST_RESULTS_LOST }
#endif /* GSCAN_SUPPORT */
};
int rtw_cfgvendor_attach(struct wiphy *wiphy)
{
RTW_INFO("Register RTW cfg80211 vendor cmd(0x%x) interface\n", NL80211_CMD_VENDOR);
wiphy->vendor_commands = rtw_vendor_cmds;
wiphy->n_vendor_commands = ARRAY_SIZE(rtw_vendor_cmds);
wiphy->vendor_events = rtw_vendor_events;
wiphy->n_vendor_events = ARRAY_SIZE(rtw_vendor_events);
return 0;
}
int rtw_cfgvendor_detach(struct wiphy *wiphy)
{
RTW_INFO("Vendor: Unregister RTW cfg80211 vendor interface\n");
wiphy->vendor_commands = NULL;
wiphy->vendor_events = NULL;
wiphy->n_vendor_commands = 0;
wiphy->n_vendor_events = 0;
return 0;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT) */
#endif /* CONFIG_IOCTL_CFG80211 */