1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-27 07:34:04 +00:00
rtl8812au/hal/hal_com_phycfg.c
2018-10-20 21:49:49 +02:00

5503 lines
161 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _HAL_COM_PHYCFG_C_
#include <drv_types.h>
#include <hal_data.h>
#define PG_TXPWR_1PATH_BYTE_NUM_2G 18
#define PG_TXPWR_BASE_BYTE_NUM_2G 11
#define PG_TXPWR_1PATH_BYTE_NUM_5G 24
#define PG_TXPWR_BASE_BYTE_NUM_5G 14
#define PG_TXPWR_MSB_DIFF_S4BIT(_pg_v) (((_pg_v) & 0xf0) >> 4)
#define PG_TXPWR_LSB_DIFF_S4BIT(_pg_v) ((_pg_v) & 0x0f)
#define PG_TXPWR_MSB_DIFF_TO_S8BIT(_pg_v) ((PG_TXPWR_MSB_DIFF_S4BIT(_pg_v) & BIT3) ? (PG_TXPWR_MSB_DIFF_S4BIT(_pg_v) | 0xF0) : PG_TXPWR_MSB_DIFF_S4BIT(_pg_v))
#define PG_TXPWR_LSB_DIFF_TO_S8BIT(_pg_v) ((PG_TXPWR_LSB_DIFF_S4BIT(_pg_v) & BIT3) ? (PG_TXPWR_LSB_DIFF_S4BIT(_pg_v) | 0xF0) : PG_TXPWR_LSB_DIFF_S4BIT(_pg_v))
#define IS_PG_TXPWR_BASE_INVALID(_base) ((_base) > 63)
#define IS_PG_TXPWR_DIFF_INVALID(_diff) ((_diff) > 7 || (_diff) < -8)
#define PG_TXPWR_INVALID_BASE 255
#define PG_TXPWR_INVALID_DIFF 8
#if !IS_PG_TXPWR_BASE_INVALID(PG_TXPWR_INVALID_BASE)
#error "PG_TXPWR_BASE definition has problem"
#endif
#if !IS_PG_TXPWR_DIFF_INVALID(PG_TXPWR_INVALID_DIFF)
#error "PG_TXPWR_DIFF definition has problem"
#endif
#define PG_TXPWR_SRC_PG_DATA 0
#define PG_TXPWR_SRC_IC_DEF 1
#define PG_TXPWR_SRC_DEF 2
#define PG_TXPWR_SRC_NUM 3
const char *const _pg_txpwr_src_str[] = {
"PG_DATA",
"IC_DEF",
"DEF",
"UNKNOWN"
};
#define pg_txpwr_src_str(src) (((src) >= PG_TXPWR_SRC_NUM) ? _pg_txpwr_src_str[PG_TXPWR_SRC_NUM] : _pg_txpwr_src_str[(src)])
#ifndef DBG_PG_TXPWR_READ
#define DBG_PG_TXPWR_READ 0
#endif
#if DBG_PG_TXPWR_READ
static void dump_pg_txpwr_info_2g(void *sel, TxPowerInfo24G *txpwr_info, u8 rfpath_num, u8 max_tx_cnt)
{
int path, group, tx_idx;
RTW_PRINT_SEL(sel, "2.4G\n");
RTW_PRINT_SEL(sel, "CCK-1T base:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (group = 0; group < MAX_CHNL_GROUP_24G; group++)
_RTW_PRINT_SEL(sel, "G%02d ", group);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (group = 0; group < MAX_CHNL_GROUP_24G; group++)
_RTW_PRINT_SEL(sel, "%3u ", txpwr_info->IndexCCK_Base[path][group]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "CCK diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dT ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->CCK_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW40-1S base:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++)
_RTW_PRINT_SEL(sel, "G%02d ", group);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++)
_RTW_PRINT_SEL(sel, "%3u ", txpwr_info->IndexBW40_Base[path][group]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "OFDM diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dT ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->OFDM_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW20 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dS ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW20_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW40 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dS ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW40_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
}
static void dump_pg_txpwr_info_5g(void *sel, TxPowerInfo5G *txpwr_info, u8 rfpath_num, u8 max_tx_cnt)
{
int path, group, tx_idx;
RTW_PRINT_SEL(sel, "5G\n");
RTW_PRINT_SEL(sel, "BW40-1S base:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (group = 0; group < MAX_CHNL_GROUP_5G; group++)
_RTW_PRINT_SEL(sel, "G%02d ", group);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (group = 0; group < MAX_CHNL_GROUP_5G; group++)
_RTW_PRINT_SEL(sel, "%3u ", txpwr_info->IndexBW40_Base[path][group]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "OFDM diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dT ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->OFDM_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW20 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dS ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW20_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW40 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dS ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW40_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW80 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dS ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW80_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW160 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++)
_RTW_PRINT_SEL(sel, "%dS ", path + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", txpwr_info->BW160_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
}
#endif /* DBG_PG_TXPWR_READ */
const struct map_t pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 168,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE,
0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
0xEE, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24,
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x04, 0xEE,
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE)
);
#ifdef CONFIG_RTL8188E
static const struct map_t rtl8188e_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 12,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24)
);
#endif
#ifdef CONFIG_RTL8188F
static const struct map_t rtl8188f_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 12,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x27, 0x27, 0x27, 0x27, 0x27, 0x24)
);
#endif
#ifdef CONFIG_RTL8723B
static const struct map_t rtl8723b_pg_txpwr_def_info =
MAP_ENT(0xB8, 2, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 12,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0xE0)
, MAPSEG_ARRAY_ENT(0x3A, 12,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0xE0)
);
#endif
#ifdef CONFIG_RTL8703B
static const struct map_t rtl8703b_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 12,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02)
);
#endif
#ifdef CONFIG_RTL8723D
static const struct map_t rtl8723d_pg_txpwr_def_info =
MAP_ENT(0xB8, 2, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 12,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02)
, MAPSEG_ARRAY_ENT(0x3A, 12,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x21, 0x21, 0x21, 0x21, 0x21, 0x02)
);
#endif
#ifdef CONFIG_RTL8192E
static const struct map_t rtl8192e_pg_txpwr_def_info =
MAP_ENT(0xB8, 2, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 14,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE)
, MAPSEG_ARRAY_ENT(0x3A, 14,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xEE, 0xEE)
);
#endif
#ifdef CONFIG_RTL8821A
static const struct map_t rtl8821a_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 39,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x24, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00)
);
#endif
#ifdef CONFIG_RTL8821C
static const struct map_t rtl8821c_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 54,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28,
0x02, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEC, 0xFF, 0xFF, 0xFF, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02)
);
#endif
#ifdef CONFIG_RTL8812A
static const struct map_t rtl8812a_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 82,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xFF, 0xFF,
0xFF, 0xFF, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x02, 0xEE, 0xFF, 0xFF, 0xEE, 0xFF, 0x00, 0xEE, 0xFF, 0xFF, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xFF, 0xFF, 0xFF, 0xFF, 0x2A, 0x2A, 0x2A, 0x2A,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x02, 0xEE, 0xFF, 0xFF, 0xEE, 0xFF,
0x00, 0xEE)
);
#endif
#ifdef CONFIG_RTL8822B
static const struct map_t rtl8822b_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 82,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xFF, 0xFF,
0xFF, 0xFF, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x02, 0xEE, 0xFF, 0xFF, 0xEE, 0xFF, 0xEC, 0xEC, 0xFF, 0xFF, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xFF, 0xFF, 0xFF, 0xFF, 0x2A, 0x2A, 0x2A, 0x2A,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x02, 0xEE, 0xFF, 0xFF, 0xEE, 0xFF,
0xEC, 0xEC)
);
#endif
#ifdef CONFIG_RTL8814A
static const struct map_t rtl8814a_pg_txpwr_def_info =
MAP_ENT(0xB8, 1, 0xFF
, MAPSEG_ARRAY_ENT(0x10, 168,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xEE, 0xEE,
0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x02, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x00, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x02, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
0x00, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02,
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x2A, 0x2A, 0x2A, 0x2A, 0x02, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0x00, 0xEE, 0xEE, 0xEE, 0x2D, 0x2D,
0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x2A, 0x02, 0xEE,
0xEE, 0xEE, 0xEE, 0xEE, 0x00, 0xEE, 0xEE, 0xEE)
);
#endif
const struct map_t *hal_pg_txpwr_def_info(_adapter *adapter)
{
u8 interface_type = 0;
const struct map_t *map = NULL;
interface_type = rtw_get_intf_type(adapter);
switch (rtw_get_chip_type(adapter)) {
#ifdef CONFIG_RTL8723B
case RTL8723B:
map = &rtl8723b_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8703B
case RTL8703B:
map = &rtl8703b_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8723D
case RTL8723D:
map = &rtl8723d_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8188E
case RTL8188E:
map = &rtl8188e_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8188F
case RTL8188F:
map = &rtl8188f_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8812A
case RTL8812:
map = &rtl8812a_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8821A
case RTL8821:
map = &rtl8821a_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8192E
case RTL8192E:
map = &rtl8192e_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8814A
case RTL8814A:
map = &rtl8814a_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8822B
case RTL8822B:
map = &rtl8822b_pg_txpwr_def_info;
break;
#endif
#ifdef CONFIG_RTL8821C
case RTL8821C:
map = &rtl8821c_pg_txpwr_def_info;
break;
#endif
}
if (map == NULL) {
RTW_ERR("%s: unknown chip_type:%u\n"
, __func__, rtw_get_chip_type(adapter));
rtw_warn_on(1);
}
return map;
}
static u8 hal_chk_pg_txpwr_info_2g(_adapter *adapter, TxPowerInfo24G *pwr_info)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 path, group, tx_idx;
if (pwr_info == NULL || !hal_chk_band_cap(adapter, BAND_CAP_2G))
return _SUCCESS;
for (path = 0; path < MAX_RF_PATH; path++) {
if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path))
continue;
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
if (IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexCCK_Base[path][group])
|| IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexBW40_Base[path][group]))
return _FAIL;
}
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (!HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx))
continue;
if (IS_PG_TXPWR_DIFF_INVALID(pwr_info->CCK_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW40_Diff[path][tx_idx]))
return _FAIL;
}
}
return _SUCCESS;
}
static u8 hal_chk_pg_txpwr_info_5g(_adapter *adapter, TxPowerInfo5G *pwr_info)
{
#ifdef CONFIG_IEEE80211_BAND_5GHZ
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 path, group, tx_idx;
if (pwr_info == NULL || !hal_chk_band_cap(adapter, BAND_CAP_5G))
return _SUCCESS;
for (path = 0; path < MAX_RF_PATH; path++) {
if (!HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path))
continue;
for (group = 0; group < MAX_CHNL_GROUP_5G; group++)
if (IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexBW40_Base[path][group]))
return _FAIL;
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (!HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx))
continue;
if (IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW40_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW80_Diff[path][tx_idx])
|| IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW160_Diff[path][tx_idx]))
return _FAIL;
}
}
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
return _SUCCESS;
}
static inline void hal_init_pg_txpwr_info_2g(_adapter *adapter, TxPowerInfo24G *pwr_info)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 path, group, tx_idx;
if (pwr_info == NULL)
return;
_rtw_memset(pwr_info, 0, sizeof(TxPowerInfo24G));
/* init with invalid value */
for (path = 0; path < MAX_RF_PATH; path++) {
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pwr_info->IndexCCK_Base[path][group] = PG_TXPWR_INVALID_BASE;
pwr_info->IndexBW40_Base[path][group] = PG_TXPWR_INVALID_BASE;
}
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
pwr_info->CCK_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->OFDM_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->BW20_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->BW40_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
}
}
/* init for dummy base and diff */
for (path = 0; path < MAX_RF_PATH; path++) {
if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path))
break;
/* 2.4G BW40 base has 1 less group than CCK base*/
pwr_info->IndexBW40_Base[path][MAX_CHNL_GROUP_24G - 1] = 0;
/* dummy diff */
pwr_info->CCK_Diff[path][0] = 0; /* 2.4G CCK-1TX */
pwr_info->BW40_Diff[path][0] = 0; /* 2.4G BW40-1S */
}
}
static inline void hal_init_pg_txpwr_info_5g(_adapter *adapter, TxPowerInfo5G *pwr_info)
{
#ifdef CONFIG_IEEE80211_BAND_5GHZ
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 path, group, tx_idx;
if (pwr_info == NULL)
return;
_rtw_memset(pwr_info, 0, sizeof(TxPowerInfo5G));
/* init with invalid value */
for (path = 0; path < MAX_RF_PATH; path++) {
for (group = 0; group < MAX_CHNL_GROUP_5G; group++)
pwr_info->IndexBW40_Base[path][group] = PG_TXPWR_INVALID_BASE;
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
pwr_info->OFDM_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->BW20_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->BW40_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->BW80_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
pwr_info->BW160_Diff[path][tx_idx] = PG_TXPWR_INVALID_DIFF;
}
}
for (path = 0; path < MAX_RF_PATH; path++) {
if (!HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path))
break;
/* dummy diff */
pwr_info->BW40_Diff[path][0] = 0; /* 5G BW40-1S */
}
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
}
#if DBG_PG_TXPWR_READ
#define LOAD_PG_TXPWR_WARN_COND(_txpwr_src) 1
#else
#define LOAD_PG_TXPWR_WARN_COND(_txpwr_src) (_txpwr_src > PG_TXPWR_SRC_PG_DATA)
#endif
u16 hal_load_pg_txpwr_info_path_2g(
_adapter *adapter,
TxPowerInfo24G *pwr_info,
u32 path,
u8 txpwr_src,
const struct map_t *txpwr_map,
u16 pg_offset)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u16 offset = pg_offset;
u8 group, tx_idx;
u8 val;
u8 tmp_base;
s8 tmp_diff;
if (pwr_info == NULL || !hal_chk_band_cap(adapter, BAND_CAP_2G)) {
offset += PG_TXPWR_1PATH_BYTE_NUM_2G;
goto exit;
}
if (DBG_PG_TXPWR_READ)
RTW_INFO("%s [%c] offset:0x%03x\n", __func__, rf_path_char(path), offset);
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) {
tmp_base = map_read8(txpwr_map, offset);
if (!IS_PG_TXPWR_BASE_INVALID(tmp_base)
&& IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexCCK_Base[path][group])
) {
pwr_info->IndexCCK_Base[path][group] = tmp_base;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G G%02d CCK-1T base:%u from %s\n", rf_path_char(path), group, tmp_base, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
}
for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) {
if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) {
tmp_base = map_read8(txpwr_map, offset);
if (!IS_PG_TXPWR_BASE_INVALID(tmp_base)
&& IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexBW40_Base[path][group])
) {
pwr_info->IndexBW40_Base[path][group] = tmp_base;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G G%02d BW40-1S base:%u from %s\n", rf_path_char(path), group, tmp_base, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
}
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (tx_idx == 0) {
if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx])
) {
pwr_info->BW20_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G BW20-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx])
) {
pwr_info->OFDM_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G OFDM-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
} else {
if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW40_Diff[path][tx_idx])
) {
pwr_info->BW40_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G BW40-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx])
) {
pwr_info->BW20_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G BW20-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx])
) {
pwr_info->OFDM_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G OFDM-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->CCK_Diff[path][tx_idx])
) {
pwr_info->CCK_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 2G CCK-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
}
}
if (offset != pg_offset + PG_TXPWR_1PATH_BYTE_NUM_2G) {
RTW_ERR("%s parse %d bytes != %d\n", __func__, offset - pg_offset, PG_TXPWR_1PATH_BYTE_NUM_2G);
rtw_warn_on(1);
}
exit:
return offset;
}
u16 hal_load_pg_txpwr_info_path_5g(
_adapter *adapter,
TxPowerInfo5G *pwr_info,
u32 path,
u8 txpwr_src,
const struct map_t *txpwr_map,
u16 pg_offset)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u16 offset = pg_offset;
u8 group, tx_idx;
u8 val;
u8 tmp_base;
s8 tmp_diff;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (pwr_info == NULL || !hal_chk_band_cap(adapter, BAND_CAP_5G))
#endif
{
offset += PG_TXPWR_1PATH_BYTE_NUM_5G;
goto exit;
}
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (DBG_PG_TXPWR_READ)
RTW_INFO("%s[%c] eaddr:0x%03x\n", __func__, rf_path_char(path), offset);
for (group = 0; group < MAX_CHNL_GROUP_5G; group++) {
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path)) {
tmp_base = map_read8(txpwr_map, offset);
if (!IS_PG_TXPWR_BASE_INVALID(tmp_base)
&& IS_PG_TXPWR_BASE_INVALID(pwr_info->IndexBW40_Base[path][group])
) {
pwr_info->IndexBW40_Base[path][group] = tmp_base;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G G%02d BW40-1S base:%u from %s\n", rf_path_char(path), group, tmp_base, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
}
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (tx_idx == 0) {
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx])
) {
pwr_info->BW20_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G BW20-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][tx_idx])
) {
pwr_info->OFDM_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G OFDM-%dT diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
} else {
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW40_Diff[path][tx_idx])
) {
pwr_info->BW40_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G BW40-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW20_Diff[path][tx_idx])
) {
pwr_info->BW20_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G BW20-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
}
}
/* OFDM diff 2T ~ 3T */
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, 1)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][1])
) {
pwr_info->OFDM_Diff[path][1] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G OFDM-%dT diff:%d from %s\n", rf_path_char(path), 2, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
if (HAL_SPEC_CHK_TX_CNT(hal_spec, 2)) {
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][2])
) {
pwr_info->OFDM_Diff[path][2] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G OFDM-%dT diff:%d from %s\n", rf_path_char(path), 3, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
}
offset++;
/* OFDM diff 4T */
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, 3)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->OFDM_Diff[path][3])
) {
pwr_info->OFDM_Diff[path][3] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G OFDM-%dT diff:%d from %s\n", rf_path_char(path), 4, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path) && HAL_SPEC_CHK_TX_CNT(hal_spec, tx_idx)) {
val = map_read8(txpwr_map, offset);
tmp_diff = PG_TXPWR_MSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW80_Diff[path][tx_idx])
) {
pwr_info->BW80_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G BW80-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
tmp_diff = PG_TXPWR_LSB_DIFF_TO_S8BIT(val);
if (!IS_PG_TXPWR_DIFF_INVALID(tmp_diff)
&& IS_PG_TXPWR_DIFF_INVALID(pwr_info->BW160_Diff[path][tx_idx])
) {
pwr_info->BW160_Diff[path][tx_idx] = tmp_diff;
if (LOAD_PG_TXPWR_WARN_COND(txpwr_src))
RTW_INFO("[%c] 5G BW160-%dS diff:%d from %s\n", rf_path_char(path), tx_idx + 1, tmp_diff, pg_txpwr_src_str(txpwr_src));
}
}
offset++;
}
if (offset != pg_offset + PG_TXPWR_1PATH_BYTE_NUM_5G) {
RTW_ERR("%s parse %d bytes != %d\n", __func__, offset - pg_offset, PG_TXPWR_1PATH_BYTE_NUM_5G);
rtw_warn_on(1);
}
#endif /* #ifdef CONFIG_IEEE80211_BAND_5GHZ */
exit:
return offset;
}
void hal_load_pg_txpwr_info(
_adapter *adapter,
TxPowerInfo24G *pwr_info_2g,
TxPowerInfo5G *pwr_info_5g,
u8 *pg_data,
BOOLEAN AutoLoadFail
)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 path;
u16 pg_offset;
u8 txpwr_src = PG_TXPWR_SRC_PG_DATA;
struct map_t pg_data_map = MAP_ENT(184, 1, 0xFF, MAPSEG_PTR_ENT(0x00, 184, pg_data));
const struct map_t *txpwr_map = NULL;
/* init with invalid value and some dummy base and diff */
hal_init_pg_txpwr_info_2g(adapter, pwr_info_2g);
hal_init_pg_txpwr_info_5g(adapter, pwr_info_5g);
select_src:
pg_offset = hal_spec->pg_txpwr_saddr;
switch (txpwr_src) {
case PG_TXPWR_SRC_PG_DATA:
txpwr_map = &pg_data_map;
break;
case PG_TXPWR_SRC_IC_DEF:
txpwr_map = hal_pg_txpwr_def_info(adapter);
break;
case PG_TXPWR_SRC_DEF:
default:
txpwr_map = &pg_txpwr_def_info;
break;
};
if (txpwr_map == NULL)
goto end_parse;
for (path = 0; path < MAX_RF_PATH ; path++) {
if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && !HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path))
break;
pg_offset = hal_load_pg_txpwr_info_path_2g(adapter, pwr_info_2g, path, txpwr_src, txpwr_map, pg_offset);
pg_offset = hal_load_pg_txpwr_info_path_5g(adapter, pwr_info_5g, path, txpwr_src, txpwr_map, pg_offset);
}
if (hal_chk_pg_txpwr_info_2g(adapter, pwr_info_2g) == _SUCCESS
&& hal_chk_pg_txpwr_info_5g(adapter, pwr_info_5g) == _SUCCESS)
goto exit;
end_parse:
txpwr_src++;
if (txpwr_src < PG_TXPWR_SRC_NUM)
goto select_src;
if (hal_chk_pg_txpwr_info_2g(adapter, pwr_info_2g) != _SUCCESS
|| hal_chk_pg_txpwr_info_5g(adapter, pwr_info_5g) != _SUCCESS)
rtw_warn_on(1);
exit:
#if DBG_PG_TXPWR_READ
if (pwr_info_2g)
dump_pg_txpwr_info_2g(RTW_DBGDUMP, pwr_info_2g, 4, 4);
if (pwr_info_5g)
dump_pg_txpwr_info_5g(RTW_DBGDUMP, pwr_info_5g, 4, 4);
#endif
return;
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
#define EFUSE_POWER_INDEX_INVALID 0xFF
static u8 _check_phy_efuse_tx_power_info_valid(u8 *pg_data, int base_len, u16 pg_offset)
{
int ff_cnt = 0;
int i;
for (i = 0; i < base_len; i++) {
if (*(pg_data + pg_offset + i) == 0xFF)
ff_cnt++;
}
if (ff_cnt == 0)
return _TRUE;
else if (ff_cnt == base_len)
return _FALSE;
else
return EFUSE_POWER_INDEX_INVALID;
}
int check_phy_efuse_tx_power_info_valid(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 *pg_data = hal_data->efuse_eeprom_data;
u16 pg_offset = hal_spec->pg_txpwr_saddr;
u8 path;
u8 valid_2g_path_bmp = 0;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
u8 valid_5g_path_bmp = 0;
#endif
int result = _FALSE;
for (path = 0; path < MAX_RF_PATH; path++) {
u8 ret = _FALSE;
if (!HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path) && !HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path))
break;
if (HAL_SPEC_CHK_RF_PATH_2G(hal_spec, path)) {
ret = _check_phy_efuse_tx_power_info_valid(pg_data, PG_TXPWR_BASE_BYTE_NUM_2G, pg_offset);
if (ret == _TRUE)
valid_2g_path_bmp |= BIT(path);
else if (ret == EFUSE_POWER_INDEX_INVALID)
return _FALSE;
}
pg_offset += PG_TXPWR_1PATH_BYTE_NUM_2G;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (HAL_SPEC_CHK_RF_PATH_5G(hal_spec, path)) {
ret = _check_phy_efuse_tx_power_info_valid(pg_data, PG_TXPWR_BASE_BYTE_NUM_5G, pg_offset);
if (ret == _TRUE)
valid_5g_path_bmp |= BIT(path);
else if (ret == EFUSE_POWER_INDEX_INVALID)
return _FALSE;
}
#endif
pg_offset += PG_TXPWR_1PATH_BYTE_NUM_5G;
}
if ((hal_chk_band_cap(adapter, BAND_CAP_2G) && valid_2g_path_bmp)
#ifdef CONFIG_IEEE80211_BAND_5GHZ
|| (hal_chk_band_cap(adapter, BAND_CAP_5G) && valid_5g_path_bmp)
#endif
)
return _TRUE;
return _FALSE;
}
#endif /* CONFIG_EFUSE_CONFIG_FILE */
void hal_load_txpwr_info(
_adapter *adapter,
TxPowerInfo24G *pwr_info_2g,
TxPowerInfo5G *pwr_info_5g,
u8 *pg_data
)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 max_tx_cnt = hal_spec->max_tx_cnt;
u8 rfpath, ch_idx, group, tx_idx;
/* load from pg data (or default value) */
hal_load_pg_txpwr_info(adapter, pwr_info_2g, pwr_info_5g, pg_data, _FALSE);
/* transform to hal_data */
for (rfpath = 0; rfpath < MAX_RF_PATH; rfpath++) {
if (!pwr_info_2g || !HAL_SPEC_CHK_RF_PATH_2G(hal_spec, rfpath))
goto bypass_2g;
/* 2.4G base */
for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++) {
u8 cck_group;
if (rtw_get_ch_group(ch_idx + 1, &group, &cck_group) != BAND_ON_2_4G)
continue;
hal_data->Index24G_CCK_Base[rfpath][ch_idx] = pwr_info_2g->IndexCCK_Base[rfpath][cck_group];
hal_data->Index24G_BW40_Base[rfpath][ch_idx] = pwr_info_2g->IndexBW40_Base[rfpath][group];
}
/* 2.4G diff */
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (tx_idx >= max_tx_cnt)
break;
hal_data->CCK_24G_Diff[rfpath][tx_idx] = pwr_info_2g->CCK_Diff[rfpath][tx_idx];
hal_data->OFDM_24G_Diff[rfpath][tx_idx] = pwr_info_2g->OFDM_Diff[rfpath][tx_idx];
hal_data->BW20_24G_Diff[rfpath][tx_idx] = pwr_info_2g->BW20_Diff[rfpath][tx_idx];
hal_data->BW40_24G_Diff[rfpath][tx_idx] = pwr_info_2g->BW40_Diff[rfpath][tx_idx];
}
bypass_2g:
;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (!pwr_info_5g || !HAL_SPEC_CHK_RF_PATH_5G(hal_spec, rfpath))
goto bypass_5g;
/* 5G base */
for (ch_idx = 0; ch_idx < CENTER_CH_5G_ALL_NUM; ch_idx++) {
if (rtw_get_ch_group(center_ch_5g_all[ch_idx], &group, NULL) != BAND_ON_5G)
continue;
hal_data->Index5G_BW40_Base[rfpath][ch_idx] = pwr_info_5g->IndexBW40_Base[rfpath][group];
}
for (ch_idx = 0 ; ch_idx < CENTER_CH_5G_80M_NUM; ch_idx++) {
u8 upper, lower;
if (rtw_get_ch_group(center_ch_5g_80m[ch_idx], &group, NULL) != BAND_ON_5G)
continue;
upper = pwr_info_5g->IndexBW40_Base[rfpath][group];
lower = pwr_info_5g->IndexBW40_Base[rfpath][group + 1];
hal_data->Index5G_BW80_Base[rfpath][ch_idx] = (upper + lower) / 2;
}
/* 5G diff */
for (tx_idx = 0; tx_idx < MAX_TX_COUNT; tx_idx++) {
if (tx_idx >= max_tx_cnt)
break;
hal_data->OFDM_5G_Diff[rfpath][tx_idx] = pwr_info_5g->OFDM_Diff[rfpath][tx_idx];
hal_data->BW20_5G_Diff[rfpath][tx_idx] = pwr_info_5g->BW20_Diff[rfpath][tx_idx];
hal_data->BW40_5G_Diff[rfpath][tx_idx] = pwr_info_5g->BW40_Diff[rfpath][tx_idx];
hal_data->BW80_5G_Diff[rfpath][tx_idx] = pwr_info_5g->BW80_Diff[rfpath][tx_idx];
}
bypass_5g:
;
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
}
}
void dump_hal_txpwr_info_2g(void *sel, _adapter *adapter, u8 rfpath_num, u8 max_tx_cnt)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
int path, ch_idx, tx_idx;
RTW_PRINT_SEL(sel, "2.4G\n");
RTW_PRINT_SEL(sel, "CCK-1T base:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++)
_RTW_PRINT_SEL(sel, "%2d ", center_ch_2g[ch_idx]);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++)
_RTW_PRINT_SEL(sel, "%2u ", hal_data->Index24G_CCK_Base[path][ch_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "CCK diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dT ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->CCK_24G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW40-1S base:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++)
_RTW_PRINT_SEL(sel, "%2d ", center_ch_2g[ch_idx]);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (ch_idx = 0; ch_idx < CENTER_CH_2G_NUM; ch_idx++)
_RTW_PRINT_SEL(sel, "%2u ", hal_data->Index24G_BW40_Base[path][ch_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "OFDM diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dT ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->OFDM_24G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW20 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->BW20_24G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW40 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->BW40_24G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
}
void dump_hal_txpwr_info_5g(void *sel, _adapter *adapter, u8 rfpath_num, u8 max_tx_cnt)
{
#ifdef CONFIG_IEEE80211_BAND_5GHZ
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
int path, ch_idx, tx_idx;
u8 dump_section = 0;
u8 ch_idx_s = 0;
RTW_PRINT_SEL(sel, "5G\n");
RTW_PRINT_SEL(sel, "BW40-1S base:\n");
do {
#define DUMP_5G_BW40_BASE_SECTION_NUM 3
u8 end[DUMP_5G_BW40_BASE_SECTION_NUM] = {64, 144, 177};
RTW_PRINT_SEL(sel, "%4s ", "");
for (ch_idx = ch_idx_s; ch_idx < CENTER_CH_5G_ALL_NUM; ch_idx++) {
_RTW_PRINT_SEL(sel, "%3d ", center_ch_5g_all[ch_idx]);
if (end[dump_section] == center_ch_5g_all[ch_idx])
break;
}
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (ch_idx = ch_idx_s; ch_idx < CENTER_CH_5G_ALL_NUM; ch_idx++) {
_RTW_PRINT_SEL(sel, "%3u ", hal_data->Index5G_BW40_Base[path][ch_idx]);
if (end[dump_section] == center_ch_5g_all[ch_idx])
break;
}
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
ch_idx_s = ch_idx + 1;
dump_section++;
if (dump_section >= DUMP_5G_BW40_BASE_SECTION_NUM)
break;
} while (1);
RTW_PRINT_SEL(sel, "BW80-1S base:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (ch_idx = 0; ch_idx < CENTER_CH_5G_80M_NUM; ch_idx++)
_RTW_PRINT_SEL(sel, "%3d ", center_ch_5g_80m[ch_idx]);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (ch_idx = 0; ch_idx < CENTER_CH_5G_80M_NUM; ch_idx++)
_RTW_PRINT_SEL(sel, "%3u ", hal_data->Index5G_BW80_Base[path][ch_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "OFDM diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dT ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->OFDM_5G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW20 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->BW20_5G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW40 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->BW40_5G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
RTW_PRINT_SEL(sel, "BW80 diff:\n");
RTW_PRINT_SEL(sel, "%4s ", "");
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%dS ", tx_idx + 1);
_RTW_PRINT_SEL(sel, "\n");
for (path = 0; path < MAX_RF_PATH && path < rfpath_num; path++) {
RTW_PRINT_SEL(sel, "[%c]: ", rf_path_char(path));
for (tx_idx = RF_1TX; tx_idx < MAX_TX_COUNT && tx_idx < max_tx_cnt; tx_idx++)
_RTW_PRINT_SEL(sel, "%2d ", hal_data->BW80_5G_Diff[path][tx_idx]);
_RTW_PRINT_SEL(sel, "\n");
}
RTW_PRINT_SEL(sel, "\n");
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
}
/*
* rtw_regsty_get_target_tx_power -
*
* Return dBm or -1 for undefined
*/
s8 rtw_regsty_get_target_tx_power(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN RATE_SECTION RateSection
)
{
struct registry_priv *regsty = adapter_to_regsty(Adapter);
s8 value = 0;
if (RfPath > RF_PATH_D) {
RTW_PRINT("%s invalid RfPath:%d\n", __func__, RfPath);
return -1;
}
if (Band != BAND_ON_2_4G
#ifdef CONFIG_IEEE80211_BAND_5GHZ
&& Band != BAND_ON_5G
#endif
) {
RTW_PRINT("%s invalid Band:%d\n", __func__, Band);
return -1;
}
if (RateSection >= RATE_SECTION_NUM
#ifdef CONFIG_IEEE80211_BAND_5GHZ
|| (Band == BAND_ON_5G && RateSection == CCK)
#endif
) {
RTW_PRINT("%s invalid RateSection:%d in Band:%d, RfPath:%d\n", __func__
, RateSection, Band, RfPath);
return -1;
}
if (Band == BAND_ON_2_4G)
value = regsty->target_tx_pwr_2g[RfPath][RateSection];
#ifdef CONFIG_IEEE80211_BAND_5GHZ
else /* BAND_ON_5G */
value = regsty->target_tx_pwr_5g[RfPath][RateSection - 1];
#endif
return value;
}
bool rtw_regsty_chk_target_tx_power_valid(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
int path, tx_num, band, rs;
s8 target;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = 0; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
break;
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->tx_nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
target = rtw_regsty_get_target_tx_power(adapter, band, path, rs);
if (target == -1) {
RTW_PRINT("%s return _FALSE for band:%d, path:%d, rs:%d, t:%d\n", __func__, band, path, rs, target);
return _FALSE;
}
}
}
}
return _TRUE;
}
/*
* PHY_GetTxPowerByRateBase -
*
* Return 2 times of dBm
*/
u8
PHY_GetTxPowerByRateBase(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN RATE_SECTION RateSection
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 value = 0;
if (RfPath > RF_PATH_D) {
RTW_PRINT("%s invalid RfPath:%d\n", __func__, RfPath);
return 0;
}
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
RTW_PRINT("%s invalid Band:%d\n", __func__, Band);
return 0;
}
if (RateSection >= RATE_SECTION_NUM
|| (Band == BAND_ON_5G && RateSection == CCK)
) {
RTW_PRINT("%s invalid RateSection:%d in Band:%d, RfPath:%d\n", __func__
, RateSection, Band, RfPath);
return 0;
}
if (Band == BAND_ON_2_4G)
value = pHalData->TxPwrByRateBase2_4G[RfPath][RateSection];
else /* BAND_ON_5G */
value = pHalData->TxPwrByRateBase5G[RfPath][RateSection - 1];
return value;
}
VOID
phy_SetTxPowerByRateBase(
IN PADAPTER Adapter,
IN u8 Band,
IN u8 RfPath,
IN RATE_SECTION RateSection,
IN u8 Value
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (RfPath > RF_PATH_D) {
RTW_PRINT("%s invalid RfPath:%d\n", __func__, RfPath);
return;
}
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
RTW_PRINT("%s invalid Band:%d\n", __func__, Band);
return;
}
if (RateSection >= RATE_SECTION_NUM
|| (Band == BAND_ON_5G && RateSection == CCK)
) {
RTW_PRINT("%s invalid RateSection:%d in %sG, RfPath:%d\n", __func__
, RateSection, (Band == BAND_ON_2_4G) ? "2.4" : "5", RfPath);
return;
}
if (Band == BAND_ON_2_4G)
pHalData->TxPwrByRateBase2_4G[RfPath][RateSection] = Value;
else /* BAND_ON_5G */
pHalData->TxPwrByRateBase5G[RfPath][RateSection - 1] = Value;
}
static inline BOOLEAN phy_is_txpwr_by_rate_undefined_of_band_path(_adapter *adapter, u8 band, u8 path)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 rate_idx = 0;
for (rate_idx = 0; rate_idx < TX_PWR_BY_RATE_NUM_RATE; rate_idx++) {
if (hal_data->TxPwrByRateOffset[band][path][rate_idx] != 0)
goto exit;
}
exit:
return rate_idx >= TX_PWR_BY_RATE_NUM_RATE ? _TRUE : _FALSE;
}
static inline void phy_txpwr_by_rate_duplicate_band_path(_adapter *adapter, u8 band, u8 s_path, u8 t_path)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 rate_idx = 0;
for (rate_idx = 0; rate_idx < TX_PWR_BY_RATE_NUM_RATE; rate_idx++)
hal_data->TxPwrByRateOffset[band][t_path][rate_idx] = hal_data->TxPwrByRateOffset[band][s_path][rate_idx];
}
static void phy_txpwr_by_rate_chk_for_path_dup(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 band, path;
s8 src_path;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++)
for (path = RF_PATH_A; path < RF_PATH_MAX; path++)
hal_data->txpwr_by_rate_undefined_band_path[band][path] = 0;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
continue;
if (phy_is_txpwr_by_rate_undefined_of_band_path(adapter, band, path))
hal_data->txpwr_by_rate_undefined_band_path[band][path] = 1;
}
}
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
src_path = -1;
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
continue;
/* find src */
if (src_path == -1 && hal_data->txpwr_by_rate_undefined_band_path[band][path] == 0)
src_path = path;
}
if (src_path == -1) {
RTW_ERR("%s all power by rate undefined\n", __func__);
continue;
}
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
continue;
/* duplicate src to undefined one */
if (hal_data->txpwr_by_rate_undefined_band_path[band][path] == 1) {
RTW_INFO("%s duplicate %s [%c] to [%c]\n", __func__
, band_str(band), rf_path_char(src_path), rf_path_char(path));
phy_txpwr_by_rate_duplicate_band_path(adapter, band, src_path, path);
}
}
}
}
VOID
phy_StoreTxPowerByRateBase(
IN PADAPTER pAdapter
)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(pAdapter);
struct registry_priv *regsty = adapter_to_regsty(pAdapter);
u8 rate_sec_base[RATE_SECTION_NUM] = {
MGN_11M,
MGN_54M,
MGN_MCS7,
MGN_MCS15,
MGN_MCS23,
MGN_MCS31,
MGN_VHT1SS_MCS7,
MGN_VHT2SS_MCS7,
MGN_VHT3SS_MCS7,
MGN_VHT4SS_MCS7,
};
u8 band, path, rs, tx_num, base, index;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(pAdapter, band))
continue;
for (path = RF_PATH_A; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
break;
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->tx_nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(pAdapter))
continue;
if (regsty->target_tx_pwr_valid == _TRUE)
base = 2 * rtw_regsty_get_target_tx_power(pAdapter, band, path, rs);
else
base = _PHY_GetTxPowerByRate(pAdapter, band, path, rate_sec_base[rs]);
phy_SetTxPowerByRateBase(pAdapter, band, path, rs, base);
}
}
}
}
VOID
PHY_GetRateValuesOfTxPowerByRate(
IN PADAPTER pAdapter,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Value,
OUT u8 *Rate,
OUT s8 *PwrByRateVal,
OUT u8 *RateNum
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
u8 index = 0, i = 0;
switch (RegAddr) {
case rTxAGC_A_Rate18_06:
case rTxAGC_B_Rate18_06:
Rate[0] = MGN_6M;
Rate[1] = MGN_9M;
Rate[2] = MGN_12M;
Rate[3] = MGN_18M;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Rate54_24:
case rTxAGC_B_Rate54_24:
Rate[0] = MGN_24M;
Rate[1] = MGN_36M;
Rate[2] = MGN_48M;
Rate[3] = MGN_54M;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_CCK1_Mcs32:
Rate[0] = MGN_1M;
PwrByRateVal[0] = (s8)((((Value >> (8 + 4)) & 0xF)) * 10 +
((Value >> 8) & 0xF));
*RateNum = 1;
break;
case rTxAGC_B_CCK11_A_CCK2_11:
if (BitMask == 0xffffff00) {
Rate[0] = MGN_2M;
Rate[1] = MGN_5_5M;
Rate[2] = MGN_11M;
for (i = 1; i < 4; ++i) {
PwrByRateVal[i - 1] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 3;
} else if (BitMask == 0x000000ff) {
Rate[0] = MGN_11M;
PwrByRateVal[0] = (s8)((((Value >> 4) & 0xF)) * 10 +
(Value & 0xF));
*RateNum = 1;
}
break;
case rTxAGC_A_Mcs03_Mcs00:
case rTxAGC_B_Mcs03_Mcs00:
Rate[0] = MGN_MCS0;
Rate[1] = MGN_MCS1;
Rate[2] = MGN_MCS2;
Rate[3] = MGN_MCS3;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs07_Mcs04:
case rTxAGC_B_Mcs07_Mcs04:
Rate[0] = MGN_MCS4;
Rate[1] = MGN_MCS5;
Rate[2] = MGN_MCS6;
Rate[3] = MGN_MCS7;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs11_Mcs08:
case rTxAGC_B_Mcs11_Mcs08:
Rate[0] = MGN_MCS8;
Rate[1] = MGN_MCS9;
Rate[2] = MGN_MCS10;
Rate[3] = MGN_MCS11;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs15_Mcs12:
case rTxAGC_B_Mcs15_Mcs12:
Rate[0] = MGN_MCS12;
Rate[1] = MGN_MCS13;
Rate[2] = MGN_MCS14;
Rate[3] = MGN_MCS15;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_B_CCK1_55_Mcs32:
Rate[0] = MGN_1M;
Rate[1] = MGN_2M;
Rate[2] = MGN_5_5M;
for (i = 1; i < 4; ++i) {
PwrByRateVal[i - 1] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 3;
break;
case 0xC20:
case 0xE20:
case 0x1820:
case 0x1a20:
Rate[0] = MGN_1M;
Rate[1] = MGN_2M;
Rate[2] = MGN_5_5M;
Rate[3] = MGN_11M;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC24:
case 0xE24:
case 0x1824:
case 0x1a24:
Rate[0] = MGN_6M;
Rate[1] = MGN_9M;
Rate[2] = MGN_12M;
Rate[3] = MGN_18M;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC28:
case 0xE28:
case 0x1828:
case 0x1a28:
Rate[0] = MGN_24M;
Rate[1] = MGN_36M;
Rate[2] = MGN_48M;
Rate[3] = MGN_54M;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC2C:
case 0xE2C:
case 0x182C:
case 0x1a2C:
Rate[0] = MGN_MCS0;
Rate[1] = MGN_MCS1;
Rate[2] = MGN_MCS2;
Rate[3] = MGN_MCS3;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC30:
case 0xE30:
case 0x1830:
case 0x1a30:
Rate[0] = MGN_MCS4;
Rate[1] = MGN_MCS5;
Rate[2] = MGN_MCS6;
Rate[3] = MGN_MCS7;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC34:
case 0xE34:
case 0x1834:
case 0x1a34:
Rate[0] = MGN_MCS8;
Rate[1] = MGN_MCS9;
Rate[2] = MGN_MCS10;
Rate[3] = MGN_MCS11;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC38:
case 0xE38:
case 0x1838:
case 0x1a38:
Rate[0] = MGN_MCS12;
Rate[1] = MGN_MCS13;
Rate[2] = MGN_MCS14;
Rate[3] = MGN_MCS15;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC3C:
case 0xE3C:
case 0x183C:
case 0x1a3C:
Rate[0] = MGN_VHT1SS_MCS0;
Rate[1] = MGN_VHT1SS_MCS1;
Rate[2] = MGN_VHT1SS_MCS2;
Rate[3] = MGN_VHT1SS_MCS3;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC40:
case 0xE40:
case 0x1840:
case 0x1a40:
Rate[0] = MGN_VHT1SS_MCS4;
Rate[1] = MGN_VHT1SS_MCS5;
Rate[2] = MGN_VHT1SS_MCS6;
Rate[3] = MGN_VHT1SS_MCS7;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC44:
case 0xE44:
case 0x1844:
case 0x1a44:
Rate[0] = MGN_VHT1SS_MCS8;
Rate[1] = MGN_VHT1SS_MCS9;
Rate[2] = MGN_VHT2SS_MCS0;
Rate[3] = MGN_VHT2SS_MCS1;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC48:
case 0xE48:
case 0x1848:
case 0x1a48:
Rate[0] = MGN_VHT2SS_MCS2;
Rate[1] = MGN_VHT2SS_MCS3;
Rate[2] = MGN_VHT2SS_MCS4;
Rate[3] = MGN_VHT2SS_MCS5;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC4C:
case 0xE4C:
case 0x184C:
case 0x1a4C:
Rate[0] = MGN_VHT2SS_MCS6;
Rate[1] = MGN_VHT2SS_MCS7;
Rate[2] = MGN_VHT2SS_MCS8;
Rate[3] = MGN_VHT2SS_MCS9;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCD8:
case 0xED8:
case 0x18D8:
case 0x1aD8:
Rate[0] = MGN_MCS16;
Rate[1] = MGN_MCS17;
Rate[2] = MGN_MCS18;
Rate[3] = MGN_MCS19;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCDC:
case 0xEDC:
case 0x18DC:
case 0x1aDC:
Rate[0] = MGN_MCS20;
Rate[1] = MGN_MCS21;
Rate[2] = MGN_MCS22;
Rate[3] = MGN_MCS23;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCE0:
case 0xEE0:
case 0x18E0:
case 0x1aE0:
Rate[0] = MGN_VHT3SS_MCS0;
Rate[1] = MGN_VHT3SS_MCS1;
Rate[2] = MGN_VHT3SS_MCS2;
Rate[3] = MGN_VHT3SS_MCS3;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCE4:
case 0xEE4:
case 0x18E4:
case 0x1aE4:
Rate[0] = MGN_VHT3SS_MCS4;
Rate[1] = MGN_VHT3SS_MCS5;
Rate[2] = MGN_VHT3SS_MCS6;
Rate[3] = MGN_VHT3SS_MCS7;
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xCE8:
case 0xEE8:
case 0x18E8:
case 0x1aE8:
Rate[0] = MGN_VHT3SS_MCS8;
Rate[1] = MGN_VHT3SS_MCS9;
for (i = 0; i < 2; ++i) {
PwrByRateVal[i] = (s8)((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 2;
break;
default:
RTW_PRINT("Invalid RegAddr 0x%x in %s()\n", RegAddr, __func__);
break;
};
}
void
PHY_StoreTxPowerByRateNew(
IN PADAPTER pAdapter,
IN u32 Band,
IN u32 RfPath,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 i = 0, rates[4] = {0}, rateNum = 0;
s8 PwrByRateVal[4] = {0};
PHY_GetRateValuesOfTxPowerByRate(pAdapter, RegAddr, BitMask, Data, rates, PwrByRateVal, &rateNum);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
RTW_PRINT("Invalid Band %d\n", Band);
return;
}
if (RfPath > RF_PATH_D) {
RTW_PRINT("Invalid RfPath %d\n", RfPath);
return;
}
for (i = 0; i < rateNum; ++i) {
u8 rate_idx = PHY_GetRateIndexOfTxPowerByRate(rates[i]);
pHalData->TxPwrByRateOffset[Band][RfPath][rate_idx] = PwrByRateVal[i];
}
}
VOID
PHY_InitTxPowerByRate(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 band = 0, rfPath = 0, rate = 0, i = 0, j = 0;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band)
for (rfPath = 0; rfPath < TX_PWR_BY_RATE_NUM_RF; ++rfPath)
for (rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate)
pHalData->TxPwrByRateOffset[band][rfPath][rate] = 0;
}
VOID
phy_store_tx_power_by_rate(
IN PADAPTER pAdapter,
IN u32 Band,
IN u32 RfPath,
IN u32 TxNum,
IN u32 RegAddr,
IN u32 BitMask,
IN u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
if (pDM_Odm->phy_reg_pg_version > 0)
PHY_StoreTxPowerByRateNew(pAdapter, Band, RfPath, RegAddr, BitMask, Data);
else
RTW_INFO("Invalid PHY_REG_PG.txt version %d\n", pDM_Odm->phy_reg_pg_version);
}
VOID
phy_ConvertTxPowerByRateInDbmToRelativeValues(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 base = 0, i = 0, value = 0,
band = 0, path = 0, index = 0,
startIndex = 0, endIndex = 0;
u8 cckRates[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M},
ofdmRates[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M},
mcs0_7Rates[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7},
mcs8_15Rates[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15},
mcs16_23Rates[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23},
vht1ssRates[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4,
MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9},
vht2ssRates[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4,
MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9},
vht3ssRates[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4,
MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9};
/* RTW_INFO("===>PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); */
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band) {
for (path = RF_PATH_A; path <= RF_PATH_D; ++path) {
/* CCK */
if (band == BAND_ON_2_4G) {
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, CCK);
for (i = 0; i < sizeof(cckRates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, cckRates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, cckRates[i], value - base);
}
}
/* OFDM */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, OFDM);
for (i = 0; i < sizeof(ofdmRates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, ofdmRates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, ofdmRates[i], value - base);
}
/* HT MCS0~7 */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, HT_1SS);
for (i = 0; i < sizeof(mcs0_7Rates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, mcs0_7Rates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, mcs0_7Rates[i], value - base);
}
/* HT MCS8~15 */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, HT_2SS);
for (i = 0; i < sizeof(mcs8_15Rates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, mcs8_15Rates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, mcs8_15Rates[i], value - base);
}
/* HT MCS16~23 */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, HT_3SS);
for (i = 0; i < sizeof(mcs16_23Rates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, mcs16_23Rates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, mcs16_23Rates[i], value - base);
}
/* VHT 1SS */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, VHT_1SS);
for (i = 0; i < sizeof(vht1ssRates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, vht1ssRates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, vht1ssRates[i], value - base);
}
/* VHT 2SS */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, VHT_2SS);
for (i = 0; i < sizeof(vht2ssRates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, vht2ssRates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, vht2ssRates[i], value - base);
}
/* VHT 3SS */
base = PHY_GetTxPowerByRateBase(pAdapter, band, path, VHT_3SS);
for (i = 0; i < sizeof(vht3ssRates); ++i) {
value = PHY_GetTxPowerByRate(pAdapter, band, path, vht3ssRates[i]);
PHY_SetTxPowerByRate(pAdapter, band, path, vht3ssRates[i], value - base);
}
}
}
/* RTW_INFO("<===PHY_ConvertTxPowerByRateInDbmToRelativeValues()\n" ); */
}
/*
* This function must be called if the value in the PHY_REG_PG.txt(or header)
* is exact dBm values
*/
VOID
PHY_TxPowerByRateConfiguration(
IN PADAPTER pAdapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
phy_txpwr_by_rate_chk_for_path_dup(pAdapter);
phy_StoreTxPowerByRateBase(pAdapter);
phy_ConvertTxPowerByRateInDbmToRelativeValues(pAdapter);
}
VOID
phy_set_tx_power_index_by_rate_section(
IN PADAPTER pAdapter,
IN enum rf_path RFPath,
IN u8 Channel,
IN u8 RateSection
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
if (RateSection >= RATE_SECTION_NUM) {
RTW_INFO("Invalid RateSection %d in %s", RateSection, __func__);
rtw_warn_on(1);
goto exit;
}
if (RateSection == CCK && pHalData->current_band_type != BAND_ON_2_4G)
goto exit;
PHY_SetTxPowerIndexByRateArray(pAdapter, RFPath, pHalData->current_channel_bw, Channel,
rates_by_sections[RateSection].rates, rates_by_sections[RateSection].rate_num);
exit:
return;
}
BOOLEAN
phy_GetChnlIndex(
IN u8 Channel,
OUT u8 *ChannelIdx
)
{
u8 i = 0;
BOOLEAN bIn24G = _TRUE;
if (Channel <= 14) {
bIn24G = _TRUE;
*ChannelIdx = Channel - 1;
} else {
bIn24G = _FALSE;
for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) {
if (center_ch_5g_all[i] == Channel) {
*ChannelIdx = i;
return bIn24G;
}
}
}
return bIn24G;
}
u8
PHY_GetTxPowerIndexBase(
IN PADAPTER pAdapter,
IN enum rf_path RFPath,
IN u8 Rate,
u8 ntx_idx,
IN enum channel_width BandWidth,
IN u8 Channel,
OUT PBOOLEAN bIn24G
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
u8 i = 0; /* default set to 1S */
u8 txPower = 0;
u8 chnlIdx = (Channel - 1);
if (HAL_IsLegalChannel(pAdapter, Channel) == _FALSE) {
chnlIdx = 0;
RTW_INFO("Illegal channel!!\n");
}
*bIn24G = phy_GetChnlIndex(Channel, &chnlIdx);
if (0)
RTW_INFO("[%s] Channel Index: %d\n", (*bIn24G ? "2.4G" : "5G"), chnlIdx);
if (*bIn24G) {
if (IS_CCK_RATE(Rate)) {
/* CCK-nTX */
txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx];
txPower += pHalData->CCK_24G_Diff[RFPath][RF_1TX];
if (ntx_idx >= RF_2TX)
txPower += pHalData->CCK_24G_Diff[RFPath][RF_2TX];
if (ntx_idx >= RF_3TX)
txPower += pHalData->CCK_24G_Diff[RFPath][RF_3TX];
if (ntx_idx >= RF_4TX)
txPower += pHalData->CCK_24G_Diff[RFPath][RF_4TX];
goto exit;
}
txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx];
/* OFDM-nTX */
if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) {
txPower += pHalData->OFDM_24G_Diff[RFPath][RF_1TX];
if (ntx_idx >= RF_2TX)
txPower += pHalData->OFDM_24G_Diff[RFPath][RF_2TX];
if (ntx_idx >= RF_3TX)
txPower += pHalData->OFDM_24G_Diff[RFPath][RF_3TX];
if (ntx_idx >= RF_4TX)
txPower += pHalData->OFDM_24G_Diff[RFPath][RF_4TX];
goto exit;
}
/* BW20-nS */
if (BandWidth == CHANNEL_WIDTH_20) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][RF_1TX];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][RF_2TX];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][RF_3TX];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_24G_Diff[RFPath][RF_4TX];
goto exit;
}
/* BW40-nS */
if (BandWidth == CHANNEL_WIDTH_40) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_1TX];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_2TX];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_3TX];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_4TX];
goto exit;
}
/* Willis suggest adopt BW 40M power index while in BW 80 mode */
if (BandWidth == CHANNEL_WIDTH_80) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_1TX];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_2TX];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_3TX];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_24G_Diff[RFPath][RF_4TX];
goto exit;
}
}
#ifdef CONFIG_IEEE80211_BAND_5GHZ
else {
if (Rate >= MGN_6M)
txPower = pHalData->Index5G_BW40_Base[RFPath][chnlIdx];
else {
RTW_INFO("===>PHY_GetTxPowerIndexBase: INVALID Rate(0x%02x).\n", Rate);
goto exit;
}
/* OFDM-nTX */
if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate)) {
txPower += pHalData->OFDM_5G_Diff[RFPath][RF_1TX];
if (ntx_idx >= RF_2TX)
txPower += pHalData->OFDM_5G_Diff[RFPath][RF_2TX];
if (ntx_idx >= RF_3TX)
txPower += pHalData->OFDM_5G_Diff[RFPath][RF_3TX];
if (ntx_idx >= RF_4TX)
txPower += pHalData->OFDM_5G_Diff[RFPath][RF_4TX];
goto exit;
}
/* BW20-nS */
if (BandWidth == CHANNEL_WIDTH_20) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][RF_1TX];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][RF_2TX];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][RF_3TX];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW20_5G_Diff[RFPath][RF_4TX];
goto exit;
}
/* BW40-nS */
if (BandWidth == CHANNEL_WIDTH_40) {
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][RF_1TX];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][RF_2TX];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][RF_3TX];
if ((MGN_MCS24 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW40_5G_Diff[RFPath][RF_4TX];
goto exit;
}
/* BW80-nS */
if (BandWidth == CHANNEL_WIDTH_80) {
/* get 80MHz cch index */
for (i = 0; i < CENTER_CH_5G_80M_NUM; ++i) {
if (center_ch_5g_80m[i] == Channel) {
chnlIdx = i;
break;
}
}
if (i >= CENTER_CH_5G_80M_NUM) {
rtw_warn_on(1);
txPower = 0;
goto exit;
}
txPower = pHalData->Index5G_BW80_Base[RFPath][chnlIdx];
if ((MGN_MCS0 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT1SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += + pHalData->BW80_5G_Diff[RFPath][RF_1TX];
if ((MGN_MCS8 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT2SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][RF_2TX];
if ((MGN_MCS16 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT3SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][RF_3TX];
if ((MGN_MCS23 <= Rate && Rate <= MGN_MCS31) || (MGN_VHT4SS_MCS0 <= Rate && Rate <= MGN_VHT4SS_MCS9))
txPower += pHalData->BW80_5G_Diff[RFPath][RF_4TX];
goto exit;
}
/* TODO: BW160-nS */
rtw_warn_on(1);
}
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
exit:
return txPower;
}
s8
PHY_GetTxPowerTrackingOffset(
PADAPTER pAdapter,
enum rf_path RFPath,
u8 Rate
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
s8 offset = 0;
if (pDM_Odm->rf_calibrate_info.txpowertrack_control == _FALSE)
return offset;
if ((Rate == MGN_1M) || (Rate == MGN_2M) || (Rate == MGN_5_5M) || (Rate == MGN_11M)) {
offset = pDM_Odm->rf_calibrate_info.remnant_cck_swing_idx;
/*RTW_INFO("+Remnant_CCKSwingIdx = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_CCKSwingIdx);*/
} else {
offset = pDM_Odm->rf_calibrate_info.remnant_ofdm_swing_idx[RFPath];
/*RTW_INFO("+Remanant_OFDMSwingIdx[RFPath %u][Rate 0x%x] = 0x%x\n", RFPath, Rate, pRFCalibrateInfo->Remnant_OFDMSwingIdx[RFPath]); */
}
return offset;
}
/*The same as MRateToHwRate in hal_com.c*/
u8
PHY_GetRateIndexOfTxPowerByRate(
IN u8 Rate
)
{
u8 index = 0;
switch (Rate) {
case MGN_1M:
index = 0;
break;
case MGN_2M:
index = 1;
break;
case MGN_5_5M:
index = 2;
break;
case MGN_11M:
index = 3;
break;
case MGN_6M:
index = 4;
break;
case MGN_9M:
index = 5;
break;
case MGN_12M:
index = 6;
break;
case MGN_18M:
index = 7;
break;
case MGN_24M:
index = 8;
break;
case MGN_36M:
index = 9;
break;
case MGN_48M:
index = 10;
break;
case MGN_54M:
index = 11;
break;
case MGN_MCS0:
index = 12;
break;
case MGN_MCS1:
index = 13;
break;
case MGN_MCS2:
index = 14;
break;
case MGN_MCS3:
index = 15;
break;
case MGN_MCS4:
index = 16;
break;
case MGN_MCS5:
index = 17;
break;
case MGN_MCS6:
index = 18;
break;
case MGN_MCS7:
index = 19;
break;
case MGN_MCS8:
index = 20;
break;
case MGN_MCS9:
index = 21;
break;
case MGN_MCS10:
index = 22;
break;
case MGN_MCS11:
index = 23;
break;
case MGN_MCS12:
index = 24;
break;
case MGN_MCS13:
index = 25;
break;
case MGN_MCS14:
index = 26;
break;
case MGN_MCS15:
index = 27;
break;
case MGN_MCS16:
index = 28;
break;
case MGN_MCS17:
index = 29;
break;
case MGN_MCS18:
index = 30;
break;
case MGN_MCS19:
index = 31;
break;
case MGN_MCS20:
index = 32;
break;
case MGN_MCS21:
index = 33;
break;
case MGN_MCS22:
index = 34;
break;
case MGN_MCS23:
index = 35;
break;
case MGN_MCS24:
index = 36;
break;
case MGN_MCS25:
index = 37;
break;
case MGN_MCS26:
index = 38;
break;
case MGN_MCS27:
index = 39;
break;
case MGN_MCS28:
index = 40;
break;
case MGN_MCS29:
index = 41;
break;
case MGN_MCS30:
index = 42;
break;
case MGN_MCS31:
index = 43;
break;
case MGN_VHT1SS_MCS0:
index = 44;
break;
case MGN_VHT1SS_MCS1:
index = 45;
break;
case MGN_VHT1SS_MCS2:
index = 46;
break;
case MGN_VHT1SS_MCS3:
index = 47;
break;
case MGN_VHT1SS_MCS4:
index = 48;
break;
case MGN_VHT1SS_MCS5:
index = 49;
break;
case MGN_VHT1SS_MCS6:
index = 50;
break;
case MGN_VHT1SS_MCS7:
index = 51;
break;
case MGN_VHT1SS_MCS8:
index = 52;
break;
case MGN_VHT1SS_MCS9:
index = 53;
break;
case MGN_VHT2SS_MCS0:
index = 54;
break;
case MGN_VHT2SS_MCS1:
index = 55;
break;
case MGN_VHT2SS_MCS2:
index = 56;
break;
case MGN_VHT2SS_MCS3:
index = 57;
break;
case MGN_VHT2SS_MCS4:
index = 58;
break;
case MGN_VHT2SS_MCS5:
index = 59;
break;
case MGN_VHT2SS_MCS6:
index = 60;
break;
case MGN_VHT2SS_MCS7:
index = 61;
break;
case MGN_VHT2SS_MCS8:
index = 62;
break;
case MGN_VHT2SS_MCS9:
index = 63;
break;
case MGN_VHT3SS_MCS0:
index = 64;
break;
case MGN_VHT3SS_MCS1:
index = 65;
break;
case MGN_VHT3SS_MCS2:
index = 66;
break;
case MGN_VHT3SS_MCS3:
index = 67;
break;
case MGN_VHT3SS_MCS4:
index = 68;
break;
case MGN_VHT3SS_MCS5:
index = 69;
break;
case MGN_VHT3SS_MCS6:
index = 70;
break;
case MGN_VHT3SS_MCS7:
index = 71;
break;
case MGN_VHT3SS_MCS8:
index = 72;
break;
case MGN_VHT3SS_MCS9:
index = 73;
break;
case MGN_VHT4SS_MCS0:
index = 74;
break;
case MGN_VHT4SS_MCS1:
index = 75;
break;
case MGN_VHT4SS_MCS2:
index = 76;
break;
case MGN_VHT4SS_MCS3:
index = 77;
break;
case MGN_VHT4SS_MCS4:
index = 78;
break;
case MGN_VHT4SS_MCS5:
index = 79;
break;
case MGN_VHT4SS_MCS6:
index = 80;
break;
case MGN_VHT4SS_MCS7:
index = 81;
break;
case MGN_VHT4SS_MCS8:
index = 82;
break;
case MGN_VHT4SS_MCS9:
index = 83;
break;
default:
RTW_INFO("Invalid rate 0x%x in %s\n", Rate, __FUNCTION__);
break;
};
return index;
}
s8
_PHY_GetTxPowerByRate(
IN PADAPTER pAdapter,
IN u8 Band,
IN enum rf_path RFPath,
IN u8 Rate
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
s8 value = 0;
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
RTW_INFO("Invalid band %d in %s\n", Band, __func__);
goto exit;
}
if (RFPath > RF_PATH_D) {
RTW_INFO("Invalid RfPath %d in %s\n", RFPath, __func__);
goto exit;
}
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) {
RTW_INFO("Invalid RateIndex %d in %s\n", rateIndex, __func__);
goto exit;
}
value = pHalData->TxPwrByRateOffset[Band][RFPath][rateIndex];
exit:
return value;
}
s8
PHY_GetTxPowerByRate(
IN PADAPTER pAdapter,
IN u8 Band,
IN enum rf_path RFPath,
IN u8 Rate
)
{
if (!phy_is_tx_power_by_rate_needed(pAdapter))
return 0;
return _PHY_GetTxPowerByRate(pAdapter, Band, RFPath, Rate);
}
VOID
PHY_SetTxPowerByRate(
IN PADAPTER pAdapter,
IN u8 Band,
IN enum rf_path RFPath,
IN u8 Rate,
IN s8 Value
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
RTW_INFO("Invalid band %d in %s\n", Band, __FUNCTION__);
return;
}
if (RFPath > RF_PATH_D) {
RTW_INFO("Invalid RfPath %d in %s\n", RFPath, __FUNCTION__);
return;
}
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE) {
RTW_INFO("Invalid RateIndex %d in %s\n", rateIndex, __FUNCTION__);
return;
}
pHalData->TxPwrByRateOffset[Band][RFPath][rateIndex] = Value;
}
VOID
phy_set_tx_power_level_by_path(
IN PADAPTER Adapter,
IN u8 channel,
IN u8 path
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
BOOLEAN bIsIn24G = (pHalData->current_band_type == BAND_ON_2_4G);
/* if ( pMgntInfo->RegNByteAccess == 0 ) */
{
if (bIsIn24G)
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, CCK);
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, OFDM);
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, HT_MCS0_MCS7);
if (IS_HARDWARE_TYPE_JAGUAR(Adapter) || IS_HARDWARE_TYPE_8814A(Adapter))
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, VHT_1SSMCS0_1SSMCS9);
if (pHalData->NumTotalRFPath >= 2) {
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, HT_MCS8_MCS15);
if (IS_HARDWARE_TYPE_JAGUAR(Adapter) || IS_HARDWARE_TYPE_8814A(Adapter))
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, VHT_2SSMCS0_2SSMCS9);
if (IS_HARDWARE_TYPE_8814A(Adapter)) {
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, HT_MCS16_MCS23);
phy_set_tx_power_index_by_rate_section(Adapter, path, channel, VHT_3SSMCS0_3SSMCS9);
}
}
}
}
#ifndef DBG_TX_POWER_IDX
#define DBG_TX_POWER_IDX 0
#endif
VOID
PHY_SetTxPowerIndexByRateArray(
IN PADAPTER pAdapter,
IN enum rf_path RFPath,
IN enum channel_width BandWidth,
IN u8 Channel,
IN u8 *Rates,
IN u8 RateArraySize
)
{
u32 powerIndex = 0;
int i = 0;
for (i = 0; i < RateArraySize; ++i) {
#if DBG_TX_POWER_IDX
struct txpwr_idx_comp tic;
powerIndex = rtw_hal_get_tx_power_index(pAdapter, RFPath, Rates[i], BandWidth, Channel, &tic);
RTW_INFO("TXPWR: [%c][%s]ch:%u, %s %uT, pwr_idx:%u = %u + (%d=%d:%d) + (%d) + (%d)\n"
, rf_path_char(RFPath), ch_width_str(BandWidth), Channel, MGN_RATE_STR(Rates[i]), tic.ntx_idx + 1
, powerIndex, tic.base, (tic.by_rate > tic.limit ? tic.limit : tic.by_rate), tic.by_rate, tic.limit, tic.tpt, tic.ebias);
#else
powerIndex = phy_get_tx_power_index(pAdapter, RFPath, Rates[i], BandWidth, Channel);
#endif
PHY_SetTxPowerIndex(pAdapter, powerIndex, RFPath, Rates[i]);
}
}
#ifdef CONFIG_TXPWR_LIMIT
const char *const _txpwr_lmt_rs_str[] = {
"CCK",
"OFDM",
"HT",
"VHT",
"UNKNOWN",
};
static s8
phy_GetChannelIndexOfTxPowerLimit(
IN u8 Band,
IN u8 Channel
)
{
s8 channelIndex = -1;
u8 i = 0;
if (Band == BAND_ON_2_4G)
channelIndex = Channel - 1;
else if (Band == BAND_ON_5G) {
for (i = 0; i < CENTER_CH_5G_ALL_NUM; ++i) {
if (center_ch_5g_all[i] == Channel)
channelIndex = i;
}
} else
RTW_PRINT("Invalid Band %d in %s\n", Band, __func__);
if (channelIndex == -1)
RTW_PRINT("Invalid Channel %d of Band %d in %s\n", Channel, Band, __func__);
return channelIndex;
}
/*
* return txpwr limit absolute value
* MAX_POWER_INDEX is returned when NO limit
*/
s8 phy_get_txpwr_lmt_abs(
IN PADAPTER Adapter,
IN const char *regd_name,
IN BAND_TYPE Band,
IN enum channel_width bw,
u8 tlrs,
u8 ntx_idx,
u8 cch,
u8 lock
)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter);
struct rf_ctl_t *rfctl = adapter_to_rfctl(Adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(Adapter);
struct txpwr_lmt_ent *ent = NULL;
_irqL irqL;
_list *cur, *head;
s8 ch_idx;
u8 is_ww_regd = 0;
s8 lmt = MAX_POWER_INDEX;
if ((Adapter->registrypriv.RegEnableTxPowerLimit == 2 && hal_data->EEPROMRegulatory != 1) ||
Adapter->registrypriv.RegEnableTxPowerLimit == 0)
goto exit;
if (Band != BAND_ON_2_4G && Band != BAND_ON_5G) {
RTW_ERR("%s invalid band:%u\n", __func__, Band);
rtw_warn_on(1);
goto exit;
}
if (Band == BAND_ON_5G && tlrs == TXPWR_LMT_RS_CCK) {
RTW_ERR("5G has no CCK\n");
goto exit;
}
if (lock)
_enter_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL);
if (!regd_name) /* no regd_name specified, use currnet */
regd_name = rfctl->regd_name;
if (rfctl->txpwr_regd_num == 0
|| strcmp(regd_name, regd_str(TXPWR_LMT_NONE)) == 0)
goto release_lock;
if (strcmp(regd_name, regd_str(TXPWR_LMT_WW)) == 0)
is_ww_regd = 1;
if (!is_ww_regd) {
ent = _rtw_txpwr_lmt_get_by_name(rfctl, regd_name);
if (!ent)
goto release_lock;
}
ch_idx = phy_GetChannelIndexOfTxPowerLimit(Band, cch);
if (ch_idx == -1)
goto release_lock;
if (Band == BAND_ON_2_4G) {
if (!is_ww_regd) {
lmt = ent->lmt_2g[bw][tlrs][ch_idx][ntx_idx];
if (lmt != -MAX_POWER_INDEX)
goto release_lock;
}
/* search for min value for WW regd or WW limit */
lmt = MAX_POWER_INDEX;
head = &rfctl->txpwr_lmt_list;
cur = get_next(head);
while ((rtw_end_of_queue_search(head, cur)) == _FALSE) {
ent = LIST_CONTAINOR(cur, struct txpwr_lmt_ent, list);
cur = get_next(cur);
if (ent->lmt_2g[bw][tlrs][ch_idx][ntx_idx] != -MAX_POWER_INDEX)
lmt = rtw_min(lmt, ent->lmt_2g[bw][tlrs][ch_idx][ntx_idx]);
}
}
#ifdef CONFIG_IEEE80211_BAND_5GHZ
else if (Band == BAND_ON_5G) {
if (!is_ww_regd) {
lmt = ent->lmt_5g[bw][tlrs - 1][ch_idx][ntx_idx];
if (lmt != -MAX_POWER_INDEX)
goto release_lock;
}
/* search for min value for WW regd or WW limit */
lmt = MAX_POWER_INDEX;
head = &rfctl->txpwr_lmt_list;
cur = get_next(head);
while ((rtw_end_of_queue_search(head, cur)) == _FALSE) {
ent = LIST_CONTAINOR(cur, struct txpwr_lmt_ent, list);
cur = get_next(cur);
if (ent->lmt_5g[bw][tlrs - 1][ch_idx][ntx_idx] != -MAX_POWER_INDEX)
lmt = rtw_min(lmt, ent->lmt_5g[bw][tlrs - 1][ch_idx][ntx_idx]);
}
}
#endif
release_lock:
if (lock)
_exit_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL);
exit:
return lmt;
}
/*
* return txpwr limit diff value
* MAX_POWER_INDEX is returned when NO limit
*/
inline s8 phy_get_txpwr_lmt(_adapter *adapter
, const char *regd_name
, BAND_TYPE band, enum channel_width bw
, u8 rfpath, u8 rs, u8 ntx_idx, u8 cch, u8 lock
)
{
u8 tlrs;
s8 lmt = MAX_POWER_INDEX;
if (IS_CCK_RATE_SECTION(rs))
tlrs = TXPWR_LMT_RS_CCK;
else if (IS_OFDM_RATE_SECTION(rs))
tlrs = TXPWR_LMT_RS_OFDM;
else if (IS_HT_RATE_SECTION(rs))
tlrs = TXPWR_LMT_RS_HT;
else if (IS_VHT_RATE_SECTION(rs))
tlrs = TXPWR_LMT_RS_VHT;
else {
RTW_ERR("%s invalid rs %u\n", __func__, rs);
rtw_warn_on(1);
goto exit;
}
lmt = phy_get_txpwr_lmt_abs(adapter, regd_name, band, bw, tlrs, ntx_idx, cch, lock);
if (lmt != MAX_POWER_INDEX) {
/* return diff value */
lmt = lmt - PHY_GetTxPowerByRateBase(adapter, band, rfpath, rs);
}
exit:
return lmt;
}
/*
* May search for secondary channels for min limit
* return txpwr limit diff value
*/
s8
PHY_GetTxPowerLimit(_adapter *adapter
, const char *regd_name
, BAND_TYPE band, enum channel_width bw
, u8 rfpath, u8 rate, u8 ntx_idx, u8 cch)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(adapter);
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
BOOLEAN no_sc = _FALSE;
s8 tlrs = -1, rs = -1;
s8 lmt = MAX_POWER_INDEX;
u8 tmp_cch = 0;
u8 tmp_bw;
u8 bw_bmp = 0;
s8 min_lmt = MAX_POWER_INDEX;
u8 final_bw = bw, final_cch = cch;
_irqL irqL;
#ifdef CONFIG_MP_INCLUDED
/* MP mode channel don't use secondary channel */
if (rtw_mp_mode_check(adapter) == _TRUE)
no_sc = _TRUE;
#endif
if (IS_CCK_RATE(rate)) {
tlrs = TXPWR_LMT_RS_CCK;
rs = CCK;
} else if (IS_OFDM_RATE(rate)) {
tlrs = TXPWR_LMT_RS_OFDM;
rs = OFDM;
} else if (IS_HT_RATE(rate)) {
tlrs = TXPWR_LMT_RS_HT;
rs = HT_1SS + (IS_HT1SS_RATE(rate) ? 0 : IS_HT2SS_RATE(rate) ? 1 : IS_HT3SS_RATE(rate) ? 2 : IS_HT4SS_RATE(rate) ? 3 : 0);
} else if (IS_VHT_RATE(rate)) {
tlrs = TXPWR_LMT_RS_VHT;
rs = VHT_1SS + (IS_VHT1SS_RATE(rate) ? 0 : IS_VHT2SS_RATE(rate) ? 1 : IS_VHT3SS_RATE(rate) ? 2 : IS_VHT4SS_RATE(rate) ? 3 : 0);
} else {
RTW_ERR("%s invalid rate 0x%x\n", __func__, rate);
rtw_warn_on(1);
goto exit;
}
if (no_sc == _TRUE) {
/* use the input center channel and bandwidth directly */
tmp_cch = cch;
bw_bmp = ch_width_to_bw_cap(bw);
} else {
/*
* find the possible tx bandwidth bmp for this rate, and then will get center channel for each bandwidth
* if no possible tx bandwidth bmp, select valid bandwidth up to current RF bandwidth into bmp
*/
if (tlrs == TXPWR_LMT_RS_CCK || tlrs == TXPWR_LMT_RS_OFDM)
bw_bmp = BW_CAP_20M; /* CCK, OFDM only BW 20M */
else if (tlrs == TXPWR_LMT_RS_HT) {
bw_bmp = rtw_get_tx_bw_bmp_of_ht_rate(dvobj, rate, bw);
if (bw_bmp == 0)
bw_bmp = ch_width_to_bw_cap(bw > CHANNEL_WIDTH_40 ? CHANNEL_WIDTH_40 : bw);
} else if (tlrs == TXPWR_LMT_RS_VHT) {
bw_bmp = rtw_get_tx_bw_bmp_of_vht_rate(dvobj, rate, bw);
if (bw_bmp == 0)
bw_bmp = ch_width_to_bw_cap(bw > CHANNEL_WIDTH_160 ? CHANNEL_WIDTH_160 : bw);
} else
rtw_warn_on(1);
}
if (bw_bmp == 0)
goto exit;
_enter_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL);
/* loop for each possible tx bandwidth to find minimum limit */
for (tmp_bw = CHANNEL_WIDTH_20; tmp_bw <= bw; tmp_bw++) {
if (!(ch_width_to_bw_cap(tmp_bw) & bw_bmp))
continue;
if (no_sc == _FALSE) {
if (tmp_bw == CHANNEL_WIDTH_20)
tmp_cch = hal_data->cch_20;
else if (tmp_bw == CHANNEL_WIDTH_40)
tmp_cch = hal_data->cch_40;
else if (tmp_bw == CHANNEL_WIDTH_80)
tmp_cch = hal_data->cch_80;
else {
tmp_cch = 0;
rtw_warn_on(1);
}
}
lmt = phy_get_txpwr_lmt_abs(adapter, regd_name, band, tmp_bw, tlrs, ntx_idx, tmp_cch, 0);
if (min_lmt >= lmt) {
min_lmt = lmt;
final_cch = tmp_cch;
final_bw = tmp_bw;
}
}
_exit_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL);
if (min_lmt != MAX_POWER_INDEX) {
/* return diff value */
min_lmt = min_lmt - PHY_GetTxPowerByRateBase(adapter, band, rfpath, rs);
}
exit:
if (0) {
if (final_bw != bw && (IS_HT_RATE(rate) || IS_VHT_RATE(rate)))
RTW_INFO("%s min_lmt: %s ch%u -> %s ch%u\n"
, MGN_RATE_STR(rate)
, ch_width_str(bw), cch
, ch_width_str(final_bw), final_cch);
}
return min_lmt;
}
static void phy_txpwr_lmt_cck_ofdm_mt_chk(_adapter *adapter)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
struct txpwr_lmt_ent *ent;
_list *cur, *head;
u8 channel, tlrs, ntx_idx;
rfctl->txpwr_lmt_2g_cck_ofdm_state = 0;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
rfctl->txpwr_lmt_5g_cck_ofdm_state = 0;
#endif
head = &rfctl->txpwr_lmt_list;
cur = get_next(head);
while ((rtw_end_of_queue_search(head, cur)) == _FALSE) {
ent = LIST_CONTAINOR(cur, struct txpwr_lmt_ent, list);
cur = get_next(cur);
/* check 2G CCK, OFDM state*/
for (tlrs = TXPWR_LMT_RS_CCK; tlrs <= TXPWR_LMT_RS_OFDM; tlrs++) {
for (ntx_idx = RF_1TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) {
for (channel = 0; channel < CENTER_CH_2G_NUM; ++channel) {
if (ent->lmt_2g[CHANNEL_WIDTH_20][tlrs][channel][ntx_idx] != MAX_POWER_INDEX) {
if (tlrs == TXPWR_LMT_RS_CCK)
rfctl->txpwr_lmt_2g_cck_ofdm_state |= TXPWR_LMT_HAS_CCK_1T << ntx_idx;
else
rfctl->txpwr_lmt_2g_cck_ofdm_state |= TXPWR_LMT_HAS_OFDM_1T << ntx_idx;
break;
}
}
}
}
/* if 2G OFDM multi-TX is not defined, reference HT20 */
for (channel = 0; channel < CENTER_CH_2G_NUM; ++channel) {
for (ntx_idx = RF_2TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) {
if (rfctl->txpwr_lmt_2g_cck_ofdm_state & (TXPWR_LMT_HAS_OFDM_1T << ntx_idx))
continue;
ent->lmt_2g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_OFDM][channel][ntx_idx] =
ent->lmt_2g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_HT][channel][ntx_idx];
}
}
#ifdef CONFIG_IEEE80211_BAND_5GHZ
/* check 5G OFDM state*/
for (ntx_idx = RF_1TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) {
for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) {
if (ent->lmt_5g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_OFDM - 1][channel][ntx_idx] != MAX_POWER_INDEX) {
rfctl->txpwr_lmt_5g_cck_ofdm_state |= TXPWR_LMT_HAS_OFDM_1T << ntx_idx;
break;
}
}
}
for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) {
for (ntx_idx = RF_2TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) {
if (rfctl->txpwr_lmt_5g_cck_ofdm_state & (TXPWR_LMT_HAS_OFDM_1T << ntx_idx))
continue;
/* if 5G OFDM multi-TX is not defined, reference HT20 */
ent->lmt_5g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_OFDM - 1][channel][ntx_idx] =
ent->lmt_5g[CHANNEL_WIDTH_20][TXPWR_LMT_RS_HT - 1][channel][ntx_idx];
}
}
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
}
}
#ifdef CONFIG_IEEE80211_BAND_5GHZ
static void phy_txpwr_lmt_cross_ref_ht_vht(_adapter *adapter)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
struct txpwr_lmt_ent *ent;
_list *cur, *head;
u8 bw, channel, tlrs, ref_tlrs, ntx_idx;
int ht_ref_vht_5g_20_40 = 0;
int vht_ref_ht_5g_20_40 = 0;
int ht_has_ref_5g_20_40 = 0;
int vht_has_ref_5g_20_40 = 0;
rfctl->txpwr_lmt_5g_20_40_ref = 0;
head = &rfctl->txpwr_lmt_list;
cur = get_next(head);
while ((rtw_end_of_queue_search(head, cur)) == _FALSE) {
ent = LIST_CONTAINOR(cur, struct txpwr_lmt_ent, list);
cur = get_next(cur);
for (bw = 0; bw < MAX_5G_BANDWIDTH_NUM; ++bw) {
for (channel = 0; channel < CENTER_CH_5G_ALL_NUM; ++channel) {
for (tlrs = TXPWR_LMT_RS_HT; tlrs < TXPWR_LMT_RS_NUM; ++tlrs) {
/* 5G 20M 40M VHT and HT can cross reference */
if (bw == CHANNEL_WIDTH_20 || bw == CHANNEL_WIDTH_40) {
if (tlrs == TXPWR_LMT_RS_HT)
ref_tlrs = TXPWR_LMT_RS_VHT;
else if (tlrs == TXPWR_LMT_RS_VHT)
ref_tlrs = TXPWR_LMT_RS_HT;
else
continue;
for (ntx_idx = RF_1TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) {
if (ent->lmt_5g[bw][ref_tlrs - 1][channel][ntx_idx] == MAX_POWER_INDEX)
continue;
if (tlrs == TXPWR_LMT_RS_HT)
ht_has_ref_5g_20_40++;
else if (tlrs == TXPWR_LMT_RS_VHT)
vht_has_ref_5g_20_40++;
else
continue;
if (ent->lmt_5g[bw][tlrs - 1][channel][ntx_idx] != MAX_POWER_INDEX)
continue;
if (tlrs == TXPWR_LMT_RS_HT && ref_tlrs == TXPWR_LMT_RS_VHT)
ht_ref_vht_5g_20_40++;
else if (tlrs == TXPWR_LMT_RS_VHT && ref_tlrs == TXPWR_LMT_RS_HT)
vht_ref_ht_5g_20_40++;
if (0)
RTW_INFO("reg:%s, bw:%u, ch:%u, %s-%uT ref %s-%uT\n"
, ent->regd_name, bw, channel
, txpwr_lmt_rs_str(tlrs), ntx_idx + 1
, txpwr_lmt_rs_str(ref_tlrs), ntx_idx + 1);
ent->lmt_5g[bw][tlrs - 1][channel][ntx_idx] =
ent->lmt_5g[bw][ref_tlrs - 1][channel][ntx_idx];
}
}
}
}
}
}
if (0) {
RTW_INFO("ht_ref_vht_5g_20_40:%d, ht_has_ref_5g_20_40:%d\n", ht_ref_vht_5g_20_40, ht_has_ref_5g_20_40);
RTW_INFO("vht_ref_hht_5g_20_40:%d, vht_has_ref_5g_20_40:%d\n", vht_ref_ht_5g_20_40, vht_has_ref_5g_20_40);
}
/* 5G 20M&40M HT all come from VHT*/
if (ht_ref_vht_5g_20_40 && ht_has_ref_5g_20_40 == ht_ref_vht_5g_20_40)
rfctl->txpwr_lmt_5g_20_40_ref |= TXPWR_LMT_REF_HT_FROM_VHT;
/* 5G 20M&40M VHT all come from HT*/
if (vht_ref_ht_5g_20_40 && vht_has_ref_5g_20_40 == vht_ref_ht_5g_20_40)
rfctl->txpwr_lmt_5g_20_40_ref |= TXPWR_LMT_REF_VHT_FROM_HT;
}
#endif /* CONFIG_IEEE80211_BAND_5GHZ */
#ifndef DBG_TXPWR_LMT_BAND_CHK
#define DBG_TXPWR_LMT_BAND_CHK 0
#endif
#if DBG_TXPWR_LMT_BAND_CHK
/* check if larger bandwidth limit is less than smaller bandwidth for HT & VHT rate */
void phy_txpwr_limit_bandwidth_chk(_adapter *adapter)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 band, bw, path, tlrs, ntx_idx, cch, offset, scch;
u8 ch_num, n, i;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (bw = CHANNEL_WIDTH_40; bw <= CHANNEL_WIDTH_80; bw++) {
if (bw >= CHANNEL_WIDTH_160)
continue;
if (band == BAND_ON_2_4G && bw >= CHANNEL_WIDTH_80)
continue;
if (band == BAND_ON_2_4G)
ch_num = center_chs_2g_num(bw);
else
ch_num = center_chs_5g_num(bw);
if (ch_num == 0) {
rtw_warn_on(1);
break;
}
for (tlrs = TXPWR_LMT_RS_HT; tlrs < TXPWR_LMT_RS_NUM; tlrs++) {
if (band == BAND_ON_2_4G && tlrs == TXPWR_LMT_RS_VHT)
continue;
if (band == BAND_ON_5G && tlrs == TXPWR_LMT_RS_CCK)
continue;
if (bw > CHANNEL_WIDTH_20 && (tlrs == TXPWR_LMT_RS_CCK || tlrs == TXPWR_LMT_RS_OFDM))
continue;
if (bw > CHANNEL_WIDTH_40 && tlrs == TXPWR_LMT_RS_HT)
continue;
if (tlrs == TXPWR_LMT_RS_VHT && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
for (ntx_idx = RF_1TX; ntx_idx < MAX_TX_COUNT; ntx_idx++) {
struct txpwr_lmt_ent *ent;
_list *cur, *head;
if (ntx_idx >= hal_spec->tx_nss_num)
continue;
/* bypass CCK multi-TX is not defined */
if (tlrs == TXPWR_LMT_RS_CCK && ntx_idx > RF_1TX) {
if (band == BAND_ON_2_4G
&& !(rfctl->txpwr_lmt_2g_cck_ofdm_state & (TXPWR_LMT_HAS_CCK_1T << ntx_idx)))
continue;
}
/* bypass OFDM multi-TX is not defined */
if (tlrs == TXPWR_LMT_RS_OFDM && ntx_idx > RF_1TX) {
if (band == BAND_ON_2_4G
&& !(rfctl->txpwr_lmt_2g_cck_ofdm_state & (TXPWR_LMT_HAS_OFDM_1T << ntx_idx)))
continue;
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (band == BAND_ON_5G
&& !(rfctl->txpwr_lmt_5g_cck_ofdm_state & (TXPWR_LMT_HAS_OFDM_1T << ntx_idx)))
continue;
#endif
}
/* bypass 5G 20M, 40M pure reference */
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (band == BAND_ON_5G && (bw == CHANNEL_WIDTH_20 || bw == CHANNEL_WIDTH_40)) {
if (rfctl->txpwr_lmt_5g_20_40_ref == TXPWR_LMT_REF_HT_FROM_VHT) {
if (tlrs == TXPWR_LMT_RS_HT)
continue;
} else if (rfctl->txpwr_lmt_5g_20_40_ref == TXPWR_LMT_REF_VHT_FROM_HT) {
if (tlrs == TXPWR_LMT_RS_VHT && bw <= CHANNEL_WIDTH_40)
continue;
}
}
#endif
for (n = 0; n < ch_num; n++) {
u8 cch_by_bw[3];
u8 offset_by_bw; /* bitmap, 0 for lower, 1 for upper */
u8 bw_pos;
s8 lmt[3];
if (band == BAND_ON_2_4G)
cch = center_chs_2g(bw, n);
else
cch = center_chs_5g(bw, n);
if (cch == 0) {
rtw_warn_on(1);
break;
}
_rtw_memset(cch_by_bw, 0, 3);
cch_by_bw[bw] = cch;
offset_by_bw = 0x01;
do {
for (bw_pos = bw; bw_pos >= CHANNEL_WIDTH_40; bw_pos--)
cch_by_bw[bw_pos - 1] = rtw_get_scch_by_cch_offset(cch_by_bw[bw_pos], bw_pos, offset_by_bw & BIT(bw_pos) ? HAL_PRIME_CHNL_OFFSET_UPPER : HAL_PRIME_CHNL_OFFSET_LOWER);
head = &rfctl->txpwr_lmt_list;
cur = get_next(head);
while ((rtw_end_of_queue_search(head, cur)) == _FALSE) {
ent = LIST_CONTAINOR(cur, struct txpwr_lmt_ent, list);
cur = get_next(cur);
for (bw_pos = bw; bw_pos < CHANNEL_WIDTH_160; bw_pos--)
lmt[bw_pos] = phy_get_txpwr_lmt_abs(adapter, ent->regd_name, band, bw_pos, tlrs, ntx_idx, cch_by_bw[bw_pos], 0);
for (bw_pos = bw; bw_pos > CHANNEL_WIDTH_20; bw_pos--)
if (lmt[bw_pos] > lmt[bw_pos - 1])
break;
if (bw_pos == CHANNEL_WIDTH_20)
continue;
RTW_PRINT_SEL(RTW_DBGDUMP, "[%s][%s][%s][%uT][%-4s] cch:"
, band_str(band)
, ch_width_str(bw)
, txpwr_lmt_rs_str(tlrs)
, ntx_idx + 1
, ent->regd_name
);
for (bw_pos = bw; bw_pos < CHANNEL_WIDTH_160; bw_pos--)
_RTW_PRINT_SEL(RTW_DBGDUMP, "%03u ", cch_by_bw[bw_pos]);
_RTW_PRINT_SEL(RTW_DBGDUMP, "limit:");
for (bw_pos = bw; bw_pos < CHANNEL_WIDTH_160; bw_pos--) {
if (lmt[bw_pos] == MAX_POWER_INDEX)
_RTW_PRINT_SEL(RTW_DBGDUMP, "N/A ");
else
_RTW_PRINT_SEL(RTW_DBGDUMP, "%2u%s ", lmt[bw_pos] / 2, lmt[bw_pos] % 2 ? ".5" : "");
}
_RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
}
for (bw_pos = bw; bw_pos < CHANNEL_WIDTH_160; bw_pos--)
lmt[bw_pos] = phy_get_txpwr_lmt_abs(adapter, regd_str(TXPWR_LMT_WW), band, bw_pos, tlrs, ntx_idx, cch_by_bw[bw_pos], 0);
for (bw_pos = bw; bw_pos > CHANNEL_WIDTH_20; bw_pos--)
if (lmt[bw_pos] > lmt[bw_pos - 1])
break;
if (bw_pos != CHANNEL_WIDTH_20) {
RTW_PRINT_SEL(RTW_DBGDUMP, "[%s][%s][%s][%uT][%-4s] cch:"
, band_str(band)
, ch_width_str(bw)
, txpwr_lmt_rs_str(tlrs)
, ntx_idx + 1
, regd_str(TXPWR_LMT_WW)
);
for (bw_pos = bw; bw_pos < CHANNEL_WIDTH_160; bw_pos--)
_RTW_PRINT_SEL(RTW_DBGDUMP, "%03u ", cch_by_bw[bw_pos]);
_RTW_PRINT_SEL(RTW_DBGDUMP, "limit:");
for (bw_pos = bw; bw_pos < CHANNEL_WIDTH_160; bw_pos--) {
if (lmt[bw_pos] == MAX_POWER_INDEX)
_RTW_PRINT_SEL(RTW_DBGDUMP, "N/A ");
else
_RTW_PRINT_SEL(RTW_DBGDUMP, "%2u%s ", lmt[bw_pos] / 2, lmt[bw_pos] % 2 ? ".5" : "");
}
_RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
}
offset_by_bw += 2;
if (offset_by_bw & BIT(bw + 1))
break;
} while (1); /* loop for all ch combinations */
} /* loop for center channels */
} /* loop fo each ntx_idx */
} /* loop for tlrs */
} /* loop for bandwidth */
} /* loop for band */
}
#endif /* DBG_TXPWR_LMT_BAND_CHK */
static void phy_txpwr_lmt_post_hdl(_adapter *adapter)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
_irqL irqL;
_enter_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL);
#ifdef CONFIG_IEEE80211_BAND_5GHZ
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
phy_txpwr_lmt_cross_ref_ht_vht(adapter);
#endif
phy_txpwr_lmt_cck_ofdm_mt_chk(adapter);
#if DBG_TXPWR_LMT_BAND_CHK
phy_txpwr_limit_bandwidth_chk(adapter);
#endif
_exit_critical_mutex(&rfctl->txpwr_lmt_mutex, &irqL);
}
BOOLEAN
GetS1ByteIntegerFromStringInDecimal(
IN char *str,
IN OUT s8 *val
)
{
u8 negative = 0;
u16 i = 0;
*val = 0;
while (str[i] != '\0') {
if (i == 0 && (str[i] == '+' || str[i] == '-')) {
if (str[i] == '-')
negative = 1;
} else if (str[i] >= '0' && str[i] <= '9') {
*val *= 10;
*val += (str[i] - '0');
} else
return _FALSE;
++i;
}
if (negative)
*val = -*val;
return _TRUE;
}
#endif /* CONFIG_TXPWR_LIMIT */
/*
* phy_set_tx_power_limit - Parsing TX power limit from phydm array, called by odm_ConfigBB_TXPWR_LMT_XXX in phydm
*/
VOID
phy_set_tx_power_limit(
IN struct dm_struct *pDM_Odm,
IN u8 *Regulation,
IN u8 *Band,
IN u8 *Bandwidth,
IN u8 *RateSection,
IN u8 *ntx,
IN u8 *Channel,
IN u8 *PowerLimit
)
{
#ifdef CONFIG_TXPWR_LIMIT
PADAPTER Adapter = pDM_Odm->adapter;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 band = 0, bandwidth = 0, tlrs = 0, channel;
u8 ntx_idx;
s8 powerLimit = 0, prevPowerLimit, channelIndex;
if (0)
RTW_INFO("Index of power limit table [regulation %s][band %s][bw %s][rate section %s][ntx %s][chnl %s][val %s]\n"
, Regulation, Band, Bandwidth, RateSection, ntx, Channel, PowerLimit);
if (GetU1ByteIntegerFromStringInDecimal((char *)Channel, &channel) == _FALSE
|| GetS1ByteIntegerFromStringInDecimal((char *)PowerLimit, &powerLimit) == _FALSE
) {
RTW_PRINT("Illegal index of power limit table [ch %s][val %s]\n", Channel, PowerLimit);
return;
}
if (powerLimit < -MAX_POWER_INDEX || powerLimit > MAX_POWER_INDEX)
RTW_PRINT("Illegal power limit value [ch %s][val %s]\n", Channel, PowerLimit);
powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit;
powerLimit = powerLimit < -MAX_POWER_INDEX ? -MAX_POWER_INDEX + 1 : powerLimit;
if (eqNByte(RateSection, (u8 *)("CCK"), 3))
tlrs = TXPWR_LMT_RS_CCK;
else if (eqNByte(RateSection, (u8 *)("OFDM"), 4))
tlrs = TXPWR_LMT_RS_OFDM;
else if (eqNByte(RateSection, (u8 *)("HT"), 2))
tlrs = TXPWR_LMT_RS_HT;
else if (eqNByte(RateSection, (u8 *)("VHT"), 3))
tlrs = TXPWR_LMT_RS_VHT;
else {
RTW_PRINT("Wrong rate section:%s\n", RateSection);
return;
}
if (eqNByte(ntx, (u8 *)("1T"), 2))
ntx_idx = RF_1TX;
else if (eqNByte(ntx, (u8 *)("2T"), 2))
ntx_idx = RF_2TX;
else if (eqNByte(ntx, (u8 *)("3T"), 2))
ntx_idx = RF_3TX;
else if (eqNByte(ntx, (u8 *)("4T"), 2))
ntx_idx = RF_4TX;
else {
RTW_PRINT("Wrong tx num:%s\n", ntx);
return;
}
if (eqNByte(Bandwidth, (u8 *)("20M"), 3))
bandwidth = CHANNEL_WIDTH_20;
else if (eqNByte(Bandwidth, (u8 *)("40M"), 3))
bandwidth = CHANNEL_WIDTH_40;
else if (eqNByte(Bandwidth, (u8 *)("80M"), 3))
bandwidth = CHANNEL_WIDTH_80;
else if (eqNByte(Bandwidth, (u8 *)("160M"), 4))
bandwidth = CHANNEL_WIDTH_160;
else {
RTW_PRINT("unknown bandwidth: %s\n", Bandwidth);
return;
}
if (eqNByte(Band, (u8 *)("2.4G"), 4)) {
band = BAND_ON_2_4G;
channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_2_4G, channel);
if (channelIndex == -1) {
RTW_PRINT("unsupported channel: %d at 2.4G\n", channel);
return;
}
if (bandwidth >= MAX_2_4G_BANDWIDTH_NUM) {
RTW_PRINT("unsupported bandwidth: %s at 2.4G\n", Bandwidth);
return;
}
rtw_txpwr_lmt_add(adapter_to_rfctl(Adapter), Regulation, band, bandwidth, tlrs, ntx_idx, channelIndex, powerLimit);
}
#ifdef CONFIG_IEEE80211_BAND_5GHZ
else if (eqNByte(Band, (u8 *)("5G"), 2)) {
band = BAND_ON_5G;
channelIndex = phy_GetChannelIndexOfTxPowerLimit(BAND_ON_5G, channel);
if (channelIndex == -1) {
RTW_PRINT("unsupported channel: %d at 5G\n", channel);
return;
}
rtw_txpwr_lmt_add(adapter_to_rfctl(Adapter), Regulation, band, bandwidth, tlrs, ntx_idx, channelIndex, powerLimit);
}
#endif
else {
RTW_PRINT("unknown/unsupported band:%s\n", Band);
return;
}
#endif
}
u8
phy_get_tx_power_index(
IN PADAPTER pAdapter,
IN enum rf_path RFPath,
IN u8 Rate,
IN enum channel_width BandWidth,
IN u8 Channel
)
{
return rtw_hal_get_tx_power_index(pAdapter, RFPath, Rate, BandWidth, Channel, NULL);
}
VOID
PHY_SetTxPowerIndex(
IN PADAPTER pAdapter,
IN u32 PowerIndex,
IN enum rf_path RFPath,
IN u8 Rate
)
{
if (IS_HARDWARE_TYPE_8814A(pAdapter)) {
#if (RTL8814A_SUPPORT == 1)
PHY_SetTxPowerIndex_8814A(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_JAGUAR(pAdapter)) {
#if ((RTL8812A_SUPPORT == 1) || (RTL8821A_SUPPORT == 1))
PHY_SetTxPowerIndex_8812A(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8723B(pAdapter)) {
#if (RTL8723B_SUPPORT == 1)
PHY_SetTxPowerIndex_8723B(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8703B(pAdapter)) {
#if (RTL8703B_SUPPORT == 1)
PHY_SetTxPowerIndex_8703B(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8723D(pAdapter)) {
#if (RTL8723D_SUPPORT == 1)
PHY_SetTxPowerIndex_8723D(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8192E(pAdapter)) {
#if (RTL8192E_SUPPORT == 1)
PHY_SetTxPowerIndex_8192E(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8188E(pAdapter)) {
#if (RTL8188E_SUPPORT == 1)
PHY_SetTxPowerIndex_8188E(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8188F(pAdapter)) {
#if (RTL8188F_SUPPORT == 1)
PHY_SetTxPowerIndex_8188F(pAdapter, PowerIndex, RFPath, Rate);
#endif
} else if (IS_HARDWARE_TYPE_8822B(pAdapter))
rtw_hal_set_tx_power_index(pAdapter, PowerIndex, RFPath, Rate);
else if (IS_HARDWARE_TYPE_8821C(pAdapter))
rtw_hal_set_tx_power_index(pAdapter, PowerIndex, RFPath, Rate);
}
void dump_tx_power_idx_title(void *sel, _adapter *adapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
u8 bw = hal_data->current_channel_bw;
RTW_PRINT_SEL(sel, "%s", ch_width_str(bw));
if (bw >= CHANNEL_WIDTH_80)
_RTW_PRINT_SEL(sel, ", cch80:%u", hal_data->cch_80);
if (bw >= CHANNEL_WIDTH_40)
_RTW_PRINT_SEL(sel, ", cch40:%u", hal_data->cch_40);
_RTW_PRINT_SEL(sel, ", cch20:%u\n", hal_data->cch_20);
RTW_PRINT_SEL(sel, "%-4s %-9s %2s %-3s %-4s %-3s %-4s %-4s %-3s %-5s\n"
, "path", "rate", "", "pwr", "base", "", "(byr", "lmt)", "tpt", "ebias");
}
void dump_tx_power_idx_by_path_rs(void *sel, _adapter *adapter, u8 rfpath, u8 rs)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
u8 power_idx;
struct txpwr_idx_comp tic;
u8 tx_num, i;
u8 band = hal_data->current_band_type;
u8 cch = hal_data->current_channel;
u8 bw = hal_data->current_channel_bw;
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, rfpath))
return;
if (rs >= RATE_SECTION_NUM)
return;
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->tx_nss_num || tx_num >= hal_spec->max_tx_cnt)
return;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
return;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
return;
for (i = 0; i < rates_by_sections[rs].rate_num; i++) {
power_idx = rtw_hal_get_tx_power_index(adapter, rfpath, rates_by_sections[rs].rates[i], bw, cch, &tic);
RTW_PRINT_SEL(sel, "%4c %9s %uT %3u %4u %3d (%3d %3d) %3d %5d\n"
, rf_path_char(rfpath), MGN_RATE_STR(rates_by_sections[rs].rates[i]), tic.ntx_idx + 1
, power_idx, tic.base, (tic.by_rate > tic.limit ? tic.limit : tic.by_rate), tic.by_rate, tic.limit, tic.tpt, tic.ebias);
}
}
void dump_tx_power_idx(void *sel, _adapter *adapter)
{
u8 rfpath, rs;
dump_tx_power_idx_title(sel, adapter);
for (rfpath = RF_PATH_A; rfpath < RF_PATH_MAX; rfpath++)
for (rs = CCK; rs < RATE_SECTION_NUM; rs++)
dump_tx_power_idx_by_path_rs(sel, adapter, rfpath, rs);
}
bool phy_is_tx_power_limit_needed(_adapter *adapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
#ifdef CONFIG_TXPWR_LIMIT
if (regsty->RegEnableTxPowerLimit == 1
|| (regsty->RegEnableTxPowerLimit == 2 && hal_data->EEPROMRegulatory == 1))
return _TRUE;
#endif
return _FALSE;
}
bool phy_is_tx_power_by_rate_needed(_adapter *adapter)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
if (regsty->RegEnableTxPowerByRate == 1
|| (regsty->RegEnableTxPowerByRate == 2 && hal_data->EEPROMRegulatory != 2))
return _TRUE;
return _FALSE;
}
int phy_load_tx_power_by_rate(_adapter *adapter, u8 chk_file)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
int ret = _FAIL;
hal_data->txpwr_by_rate_loaded = 0;
PHY_InitTxPowerByRate(adapter);
/* tx power limit is based on tx power by rate */
hal_data->txpwr_limit_loaded = 0;
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (chk_file
&& phy_ConfigBBWithPgParaFile(adapter, PHY_FILE_PHY_REG_PG) == _SUCCESS
) {
hal_data->txpwr_by_rate_from_file = 1;
goto post_hdl;
}
#endif
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS == odm_config_bb_with_header_file(&hal_data->odmpriv, CONFIG_BB_PHY_REG_PG)) {
RTW_INFO("default power by rate loaded\n");
hal_data->txpwr_by_rate_from_file = 0;
goto post_hdl;
}
#endif
RTW_ERR("%s():Read Tx power by rate fail\n", __func__);
goto exit;
post_hdl:
if (hal_data->odmpriv.phy_reg_pg_value_type != PHY_REG_PG_EXACT_VALUE) {
rtw_warn_on(1);
goto exit;
}
PHY_TxPowerByRateConfiguration(adapter);
hal_data->txpwr_by_rate_loaded = 1;
ret = _SUCCESS;
exit:
return ret;
}
#ifdef CONFIG_TXPWR_LIMIT
int phy_load_tx_power_limit(_adapter *adapter, u8 chk_file)
{
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = dvobj_to_regsty(adapter_to_dvobj(adapter));
struct rf_ctl_t *rfctl = adapter_to_rfctl(adapter);
int ret = _FAIL;
hal_data->txpwr_limit_loaded = 0;
rtw_regd_exc_list_free(rfctl);
rtw_txpwr_lmt_list_free(rfctl);
if (!hal_data->txpwr_by_rate_loaded && regsty->target_tx_pwr_valid != _TRUE) {
RTW_ERR("%s():Read Tx power limit before target tx power is specify\n", __func__);
goto exit;
}
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (chk_file
&& PHY_ConfigRFWithPowerLimitTableParaFile(adapter, PHY_FILE_TXPWR_LMT) == _SUCCESS
) {
hal_data->txpwr_limit_from_file = 1;
goto post_hdl;
}
#endif
#ifdef CONFIG_EMBEDDED_FWIMG
if (odm_config_rf_with_header_file(&hal_data->odmpriv, CONFIG_RF_TXPWR_LMT, RF_PATH_A) == HAL_STATUS_SUCCESS) {
RTW_INFO("default power limit loaded\n");
hal_data->txpwr_limit_from_file = 0;
goto post_hdl;
}
#endif
RTW_ERR("%s():Read Tx power limit fail\n", __func__);
goto exit;
post_hdl:
phy_txpwr_lmt_post_hdl(adapter);
rtw_txpwr_init_regd(rfctl);
hal_data->txpwr_limit_loaded = 1;
ret = _SUCCESS;
exit:
return ret;
}
#endif /* CONFIG_TXPWR_LIMIT */
void phy_load_tx_power_ext_info(_adapter *adapter, u8 chk_file)
{
struct registry_priv *regsty = adapter_to_regsty(adapter);
/* check registy target tx power */
regsty->target_tx_pwr_valid = rtw_regsty_chk_target_tx_power_valid(adapter);
/* power by rate and limit */
if (phy_is_tx_power_by_rate_needed(adapter)
|| (phy_is_tx_power_limit_needed(adapter) && regsty->target_tx_pwr_valid != _TRUE)
)
phy_load_tx_power_by_rate(adapter, chk_file);
#ifdef CONFIG_TXPWR_LIMIT
if (phy_is_tx_power_limit_needed(adapter))
phy_load_tx_power_limit(adapter, chk_file);
#endif
}
inline void phy_reload_tx_power_ext_info(_adapter *adapter)
{
phy_load_tx_power_ext_info(adapter, 1);
}
inline void phy_reload_default_tx_power_ext_info(_adapter *adapter)
{
phy_load_tx_power_ext_info(adapter, 0);
}
void dump_tx_power_ext_info(void *sel, _adapter *adapter)
{
struct registry_priv *regsty = adapter_to_regsty(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
if (regsty->target_tx_pwr_valid == _TRUE)
RTW_PRINT_SEL(sel, "target_tx_power: from registry\n");
else if (phy_is_tx_power_by_rate_needed(adapter))
RTW_PRINT_SEL(sel, "target_tx_power: from power by rate\n");
else
RTW_PRINT_SEL(sel, "target_tx_power: unavailable\n");
RTW_PRINT_SEL(sel, "tx_power_by_rate: %s, %s, %s\n"
, phy_is_tx_power_by_rate_needed(adapter) ? "enabled" : "disabled"
, hal_data->txpwr_by_rate_loaded ? "loaded" : "unloaded"
, hal_data->txpwr_by_rate_from_file ? "file" : "default"
);
RTW_PRINT_SEL(sel, "tx_power_limit: %s, %s, %s\n"
, phy_is_tx_power_limit_needed(adapter) ? "enabled" : "disabled"
, hal_data->txpwr_limit_loaded ? "loaded" : "unloaded"
, hal_data->txpwr_limit_from_file ? "file" : "default"
);
}
void dump_target_tx_power(void *sel, _adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
struct registry_priv *regsty = adapter_to_regsty(adapter);
int path, tx_num, band, rs;
u8 target;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = 0; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
break;
RTW_PRINT_SEL(sel, "[%s][%c]%s\n", band_str(band), rf_path_char(path)
, (regsty->target_tx_pwr_valid == _FALSE && hal_data->txpwr_by_rate_undefined_band_path[band][path]) ? "(dup)" : "");
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->tx_nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
target = PHY_GetTxPowerByRateBase(adapter, band, path, rs);
if (target % 2)
_RTW_PRINT_SEL(sel, "%7s: %2d.5\n", rate_section_str(rs), target / 2);
else
_RTW_PRINT_SEL(sel, "%7s: %4d\n", rate_section_str(rs), target / 2);
}
}
}
exit:
return;
}
void dump_tx_power_by_rate(void *sel, _adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter);
int path, tx_num, band, n, rs;
u8 rate_num, max_rate_num, base;
s8 by_rate_offset;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; band++) {
if (!hal_is_band_support(adapter, band))
continue;
for (path = 0; path < RF_PATH_MAX; path++) {
if (!HAL_SPEC_CHK_RF_PATH(hal_spec, band, path))
break;
RTW_PRINT_SEL(sel, "[%s][%c]%s\n", band_str(band), rf_path_char(path)
, hal_data->txpwr_by_rate_undefined_band_path[band][path] ? "(dup)" : "");
for (rs = 0; rs < RATE_SECTION_NUM; rs++) {
tx_num = rate_section_to_tx_num(rs);
if (tx_num >= hal_spec->tx_nss_num)
continue;
if (band == BAND_ON_5G && IS_CCK_RATE_SECTION(rs))
continue;
if (IS_VHT_RATE_SECTION(rs) && !IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
continue;
if (IS_HARDWARE_TYPE_JAGUAR_AND_JAGUAR2(adapter))
max_rate_num = 10;
else
max_rate_num = 8;
rate_num = rate_section_rate_num(rs);
base = PHY_GetTxPowerByRateBase(adapter, band, path, rs);
RTW_PRINT_SEL(sel, "%7s: ", rate_section_str(rs));
/* dump power by rate in db */
for (n = rate_num - 1; n >= 0; n--) {
by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, rates_by_sections[rs].rates[n]);
if ((base + by_rate_offset) % 2)
_RTW_PRINT_SEL(sel, "%2d.5 ", (base + by_rate_offset) / 2);
else
_RTW_PRINT_SEL(sel, "%4d ", (base + by_rate_offset) / 2);
}
for (n = 0; n < max_rate_num - rate_num; n++)
_RTW_PRINT_SEL(sel, "%4s ", "");
_RTW_PRINT_SEL(sel, "|");
/* dump power by rate in offset */
for (n = rate_num - 1; n >= 0; n--) {
by_rate_offset = PHY_GetTxPowerByRate(adapter, band, path, rates_by_sections[rs].rates[n]);
_RTW_PRINT_SEL(sel, "%3d ", by_rate_offset);
}
RTW_PRINT_SEL(sel, "\n");
}
}
}
}
/*
* phy file path is stored in global char array rtw_phy_para_file_path
* need to care about racing
*/
int rtw_get_phy_file_path(_adapter *adapter, const char *file_name)
{
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
int len = 0;
if (file_name) {
len += snprintf(rtw_phy_para_file_path, PATH_LENGTH_MAX, "%s", rtw_phy_file_path);
#if defined(CONFIG_MULTIDRV) || defined(REALTEK_CONFIG_PATH_WITH_IC_NAME_FOLDER)
len += snprintf(rtw_phy_para_file_path + len, PATH_LENGTH_MAX - len, "%s/", hal_spec->ic_name);
#endif
len += snprintf(rtw_phy_para_file_path + len, PATH_LENGTH_MAX - len, "%s", file_name);
return _TRUE;
}
#endif
return _FALSE;
}
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
int
phy_ConfigMACWithParaFile(
IN PADAPTER Adapter,
IN char *pFileName
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
if (!(Adapter->registrypriv.load_phy_file & LOAD_MAC_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->mac_reg_len == 0) && (pHalData->mac_reg == NULL)) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->mac_reg = rtw_zvmalloc(rlen);
if (pHalData->mac_reg) {
_rtw_memcpy(pHalData->mac_reg, pHalData->para_file_buf, rlen);
pHalData->mac_reg_len = rlen;
} else
RTW_INFO("%s mac_reg alloc fail !\n", __FUNCTION__);
}
}
} else {
if ((pHalData->mac_reg_len != 0) && (pHalData->mac_reg != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->mac_reg, pHalData->mac_reg_len);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xffff) {
/* Ending. */
break;
}
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove))
rtw_write8(Adapter, u4bRegOffset, (u8)u4bRegValue);
}
}
}
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
return rtStatus;
}
int
phy_ConfigBBWithParaFile(
IN PADAPTER Adapter,
IN char *pFileName,
IN u32 ConfigType
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
char *pBuf = NULL;
u32 *pBufLen = NULL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PARA_FILE))
return rtStatus;
switch (ConfigType) {
case CONFIG_BB_PHY_REG:
pBuf = pHalData->bb_phy_reg;
pBufLen = &pHalData->bb_phy_reg_len;
break;
case CONFIG_BB_AGC_TAB:
pBuf = pHalData->bb_agc_tab;
pBufLen = &pHalData->bb_agc_tab_len;
break;
default:
RTW_INFO("Unknown ConfigType!! %d\r\n", ConfigType);
break;
}
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pBuf = rtw_zvmalloc(rlen);
if (pBuf) {
_rtw_memcpy(pBuf, pHalData->para_file_buf, rlen);
*pBufLen = rlen;
switch (ConfigType) {
case CONFIG_BB_PHY_REG:
pHalData->bb_phy_reg = pBuf;
break;
case CONFIG_BB_AGC_TAB:
pHalData->bb_agc_tab = pBuf;
break;
}
} else
RTW_INFO("%s(): ConfigType %d alloc fail !\n", __FUNCTION__, ConfigType);
}
}
} else {
if ((pBufLen != NULL) && (*pBufLen != 0) && (pBuf != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xffff) {
/* Ending. */
break;
} else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) {
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
} else if (u4bRegOffset == 0xfd)
rtw_mdelay_os(5);
else if (u4bRegOffset == 0xfc)
rtw_mdelay_os(1);
else if (u4bRegOffset == 0xfb)
rtw_udelay_os(50);
else if (u4bRegOffset == 0xfa)
rtw_udelay_os(5);
else if (u4bRegOffset == 0xf9)
rtw_udelay_os(1);
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
/* RTW_INFO("[BB-ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); */
phy_set_bb_reg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue);
if (u4bRegOffset == 0xa24)
pHalData->odmpriv.rf_calibrate_info.rega24 = u4bRegValue;
/* Add 1us delay between BB/RF register setting. */
rtw_udelay_os(1);
}
}
}
}
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
return rtStatus;
}
VOID
phy_DecryptBBPgParaFile(
PADAPTER Adapter,
char *buffer
)
{
u32 i = 0, j = 0;
u8 map[95] = {0};
u8 currentChar;
char *BufOfLines, *ptmp;
/* RTW_INFO("=====>phy_DecryptBBPgParaFile()\n"); */
/* 32 the ascii code of the first visable char, 126 the last one */
for (i = 0; i < 95; ++i)
map[i] = (u8)(94 - i);
ptmp = buffer;
i = 0;
for (BufOfLines = GetLineFromBuffer(ptmp); BufOfLines != NULL; BufOfLines = GetLineFromBuffer(ptmp)) {
/* RTW_INFO("Encrypted Line: %s\n", BufOfLines); */
for (j = 0; j < strlen(BufOfLines); ++j) {
currentChar = BufOfLines[j];
if (currentChar == '\0')
break;
currentChar -= (u8)((((i + j) * 3) % 128));
BufOfLines[j] = map[currentChar - 32] + 32;
}
/* RTW_INFO("Decrypted Line: %s\n", BufOfLines ); */
if (strlen(BufOfLines) != 0)
i++;
BufOfLines[strlen(BufOfLines)] = '\n';
}
}
int
phy_ParseBBPgParaFile(
PADAPTER Adapter,
char *buffer
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegMask, u4bRegValue;
u32 u4bMove;
BOOLEAN firstLine = _TRUE;
u8 tx_num = 0;
u8 band = 0, rf_path = 0;
/* RTW_INFO("=====>phy_ParseBBPgParaFile()\n"); */
if (Adapter->registrypriv.RegDecryptCustomFile == 1)
phy_DecryptBBPgParaFile(Adapter, buffer);
ptmp = buffer;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (isAllSpaceOrTab(szLine, sizeof(*szLine)))
continue;
if (!IsCommentString(szLine)) {
/* Get header info (relative value or exact value) */
if (firstLine) {
if (eqNByte(szLine, (u8 *)("#[v1]"), 5)) {
pHalData->odmpriv.phy_reg_pg_version = szLine[3] - '0';
/* RTW_INFO("This is a new format PHY_REG_PG.txt\n"); */
} else if (eqNByte(szLine, (u8 *)("#[v0]"), 5)) {
pHalData->odmpriv.phy_reg_pg_version = szLine[3] - '0';
/* RTW_INFO("This is a old format PHY_REG_PG.txt ok\n"); */
} else {
RTW_INFO("The format in PHY_REG_PG are invalid %s\n", szLine);
return _FAIL;
}
if (eqNByte(szLine + 5, (u8 *)("[Exact]#"), 8)) {
pHalData->odmpriv.phy_reg_pg_value_type = PHY_REG_PG_EXACT_VALUE;
/* RTW_INFO("The values in PHY_REG_PG are exact values ok\n"); */
firstLine = _FALSE;
continue;
} else if (eqNByte(szLine + 5, (pu1Byte)("[Relative]#"), 11)) {
pHalData->odmpriv.phy_reg_pg_value_type = PHY_REG_PG_RELATIVE_VALUE;
/* RTW_INFO("The values in PHY_REG_PG are relative values ok\n"); */
firstLine = _FALSE;
continue;
} else {
RTW_INFO("The values in PHY_REG_PG are invalid %s\n", szLine);
return _FAIL;
}
}
if (pHalData->odmpriv.phy_reg_pg_version == 0) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
szLine += u4bMove;
if (u4bRegOffset == 0xffff) {
/* Ending. */
break;
}
/* Get 2nd hex value as register mask. */
if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_RELATIVE_VALUE) {
/* Get 3rd hex value as register value. */
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
phy_store_tx_power_by_rate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, u4bRegValue);
/* RTW_INFO("[ADDR] %03X=%08X Mask=%08x\n", u4bRegOffset, u4bRegValue, u4bRegMask); */
} else
return _FAIL;
} else if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_EXACT_VALUE) {
u32 combineValue = 0;
u8 integer = 0, fraction = 0;
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
phy_store_tx_power_by_rate(Adapter, 0, 0, 1, u4bRegOffset, u4bRegMask, combineValue);
/* RTW_INFO("[ADDR] 0x%3x = 0x%4x\n", u4bRegOffset, combineValue ); */
}
}
} else if (pHalData->odmpriv.phy_reg_pg_version > 0) {
u32 index = 0, cnt = 0;
if (eqNByte(szLine, "0xffff", 6))
break;
if (!eqNByte("#[END]#", szLine, 7)) {
/* load the table label info */
if (szLine[0] == '#') {
index = 0;
if (eqNByte(szLine, "#[2.4G]" , 7)) {
band = BAND_ON_2_4G;
index += 8;
} else if (eqNByte(szLine, "#[5G]", 5)) {
band = BAND_ON_5G;
index += 6;
} else {
RTW_INFO("Invalid band %s in PHY_REG_PG.txt\n", szLine);
return _FAIL;
}
rf_path = szLine[index] - 'A';
/* RTW_INFO(" Table label Band %d, RfPath %d\n", band, rf_path ); */
} else { /* load rows of tables */
if (szLine[1] == '1')
tx_num = RF_1TX;
else if (szLine[1] == '2')
tx_num = RF_2TX;
else if (szLine[1] == '3')
tx_num = RF_3TX;
else if (szLine[1] == '4')
tx_num = RF_4TX;
else {
RTW_INFO("Invalid row in PHY_REG_PG.txt '%c'(%d)\n", szLine[1], szLine[1]);
return _FAIL;
}
while (szLine[index] != ']')
++index;
++index;/* skip ] */
/* Get 2nd hex value as register offset. */
szLine += index;
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
/* Get 2nd hex value as register mask. */
if (GetHexValueFromString(szLine, &u4bRegMask, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_RELATIVE_VALUE) {
/* Get 3rd hex value as register value. */
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
phy_store_tx_power_by_rate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, u4bRegValue);
/* RTW_INFO("[ADDR] %03X (tx_num %d) =%08X Mask=%08x\n", u4bRegOffset, tx_num, u4bRegValue, u4bRegMask); */
} else
return _FAIL;
} else if (pHalData->odmpriv.phy_reg_pg_value_type == PHY_REG_PG_EXACT_VALUE) {
u32 combineValue = 0;
u8 integer = 0, fraction = 0;
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
if (GetFractionValueFromString(szLine, &integer, &fraction, &u4bMove))
szLine += u4bMove;
else
return _FAIL;
integer *= 2;
if (fraction == 5)
integer += 1;
combineValue <<= 8;
combineValue |= (((integer / 10) << 4) + (integer % 10));
/* RTW_INFO(" %d", integer ); */
phy_store_tx_power_by_rate(Adapter, band, rf_path, tx_num, u4bRegOffset, u4bRegMask, combineValue);
/* RTW_INFO("[ADDR] 0x%3x (tx_num %d) = 0x%4x\n", u4bRegOffset, tx_num, combineValue ); */
}
}
}
}
}
}
/* RTW_INFO("<=====phy_ParseBBPgParaFile()\n"); */
return rtStatus;
}
int
phy_ConfigBBWithPgParaFile(
IN PADAPTER Adapter,
IN const char *pFileName)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_PG_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if (pHalData->bb_phy_reg_pg == NULL) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->bb_phy_reg_pg = rtw_zvmalloc(rlen);
if (pHalData->bb_phy_reg_pg) {
_rtw_memcpy(pHalData->bb_phy_reg_pg, pHalData->para_file_buf, rlen);
pHalData->bb_phy_reg_pg_len = rlen;
} else
RTW_INFO("%s bb_phy_reg_pg alloc fail !\n", __FUNCTION__);
}
}
} else {
if ((pHalData->bb_phy_reg_pg_len != 0) && (pHalData->bb_phy_reg_pg != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
/* RTW_INFO("phy_ConfigBBWithPgParaFile(): read %s ok\n", pFileName); */
phy_ParseBBPgParaFile(Adapter, pHalData->para_file_buf);
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
return rtStatus;
}
#if (MP_DRIVER == 1)
int
phy_ConfigBBWithMpParaFile(
IN PADAPTER Adapter,
IN char *pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
if (!(Adapter->registrypriv.load_phy_file & LOAD_BB_MP_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->bb_phy_reg_mp_len == 0) && (pHalData->bb_phy_reg_mp == NULL)) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->bb_phy_reg_mp = rtw_zvmalloc(rlen);
if (pHalData->bb_phy_reg_mp) {
_rtw_memcpy(pHalData->bb_phy_reg_mp, pHalData->para_file_buf, rlen);
pHalData->bb_phy_reg_mp_len = rlen;
} else
RTW_INFO("%s bb_phy_reg_mp alloc fail !\n", __FUNCTION__);
}
}
} else {
if ((pHalData->bb_phy_reg_mp_len != 0) && (pHalData->bb_phy_reg_mp != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
/* RTW_INFO("phy_ConfigBBWithMpParaFile(): read %s ok\n", pFileName); */
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xffff) {
/* Ending. */
break;
} else if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) {
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
} else if (u4bRegOffset == 0xfd)
rtw_mdelay_os(5);
else if (u4bRegOffset == 0xfc)
rtw_mdelay_os(1);
else if (u4bRegOffset == 0xfb)
rtw_udelay_os(50);
else if (u4bRegOffset == 0xfa)
rtw_udelay_os(5);
else if (u4bRegOffset == 0xf9)
rtw_udelay_os(1);
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
/* RTW_INFO("[ADDR]%03lX=%08lX\n", u4bRegOffset, u4bRegValue); */
phy_set_bb_reg(Adapter, u4bRegOffset, bMaskDWord, u4bRegValue);
/* Add 1us delay between BB/RF register setting. */
rtw_udelay_os(1);
}
}
}
}
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
return rtStatus;
}
#endif
int
PHY_ConfigRFWithParaFile(
IN PADAPTER Adapter,
IN char *pFileName,
IN enum rf_path eRFPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 u4bRegOffset, u4bRegValue, u4bMove;
u16 i;
char *pBuf = NULL;
u32 *pBufLen = NULL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_PARA_FILE))
return rtStatus;
switch (eRFPath) {
case RF_PATH_A:
pBuf = pHalData->rf_radio_a;
pBufLen = &pHalData->rf_radio_a_len;
break;
case RF_PATH_B:
pBuf = pHalData->rf_radio_b;
pBufLen = &pHalData->rf_radio_b_len;
break;
default:
RTW_INFO("Unknown RF path!! %d\r\n", eRFPath);
break;
}
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pBufLen != NULL) && (*pBufLen == 0) && (pBuf == NULL)) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pBuf = rtw_zvmalloc(rlen);
if (pBuf) {
_rtw_memcpy(pBuf, pHalData->para_file_buf, rlen);
*pBufLen = rlen;
switch (eRFPath) {
case RF_PATH_A:
pHalData->rf_radio_a = pBuf;
break;
case RF_PATH_B:
pHalData->rf_radio_b = pBuf;
break;
default:
RTW_INFO("Unknown RF path!! %d\r\n", eRFPath);
break;
}
} else
RTW_INFO("%s(): eRFPath=%d alloc fail !\n", __FUNCTION__, eRFPath);
}
}
} else {
if ((pBufLen != NULL) && (*pBufLen != 0) && (pBuf != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pBuf, *pBufLen);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
/* RTW_INFO("%s(): read %s successfully\n", __FUNCTION__, pFileName); */
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
/* Get 1st hex value as register offset. */
if (GetHexValueFromString(szLine, &u4bRegOffset, &u4bMove)) {
if (u4bRegOffset == 0xfe || u4bRegOffset == 0xffe) {
/* Deay specific ms. Only RF configuration require delay. */
#ifdef CONFIG_LONG_DELAY_ISSUE
rtw_msleep_os(50);
#else
rtw_mdelay_os(50);
#endif
} else if (u4bRegOffset == 0xfd) {
/* delay_ms(5); */
for (i = 0; i < 100; i++)
rtw_udelay_os(MAX_STALL_TIME);
} else if (u4bRegOffset == 0xfc) {
/* delay_ms(1); */
for (i = 0; i < 20; i++)
rtw_udelay_os(MAX_STALL_TIME);
} else if (u4bRegOffset == 0xfb)
rtw_udelay_os(50);
else if (u4bRegOffset == 0xfa)
rtw_udelay_os(5);
else if (u4bRegOffset == 0xf9)
rtw_udelay_os(1);
else if (u4bRegOffset == 0xffff)
break;
/* Get 2nd hex value as register value. */
szLine += u4bMove;
if (GetHexValueFromString(szLine, &u4bRegValue, &u4bMove)) {
phy_set_rf_reg(Adapter, eRFPath, u4bRegOffset, bRFRegOffsetMask, u4bRegValue);
/* Temp add, for frequency lock, if no delay, that may cause */
/* frequency shift, ex: 2412MHz => 2417MHz */
/* If frequency shift, the following action may works. */
/* Fractional-N table in radio_a.txt */
/* 0x2a 0x00001 */ /* channel 1 */
/* 0x2b 0x00808 frequency divider. */
/* 0x2b 0x53333 */
/* 0x2c 0x0000c */
rtw_udelay_os(1);
}
}
}
}
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
return rtStatus;
}
VOID
initDeltaSwingIndexTables(
PADAPTER Adapter,
char *Band,
char *Path,
char *Sign,
char *Channel,
char *Rate,
char *Data
)
{
#define STR_EQUAL_5G(_band, _path, _sign, _rate, _chnl) \
((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\
(strcmp(Rate, _rate) == 0) && (strcmp(Channel, _chnl) == 0)\
)
#define STR_EQUAL_2G(_band, _path, _sign, _rate) \
((strcmp(Band, _band) == 0) && (strcmp(Path, _path) == 0) && (strcmp(Sign, _sign) == 0) &&\
(strcmp(Rate, _rate) == 0)\
)
#define STORE_SWING_TABLE(_array, _iteratedIdx) \
do { \
for (token = strsep(&Data, delim); token != NULL; token = strsep(&Data, delim)) {\
sscanf(token, "%d", &idx);\
_array[_iteratedIdx++] = (u8)idx;\
} } while (0)\
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
struct dm_rf_calibration_struct *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info);
u32 j = 0;
char *token;
char delim[] = ",";
u32 idx = 0;
/* RTW_INFO("===>initDeltaSwingIndexTables(): Band: %s;\nPath: %s;\nSign: %s;\nChannel: %s;\nRate: %s;\n, Data: %s;\n", */
/* Band, Path, Sign, Channel, Rate, Data); */
if (STR_EQUAL_2G("2G", "A", "+", "CCK"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_p, j);
else if (STR_EQUAL_2G("2G", "A", "-", "CCK"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_n, j);
else if (STR_EQUAL_2G("2G", "B", "+", "CCK"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_p, j);
else if (STR_EQUAL_2G("2G", "B", "-", "CCK"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_n, j);
else if (STR_EQUAL_2G("2G", "A", "+", "ALL"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2ga_p, j);
else if (STR_EQUAL_2G("2G", "A", "-", "ALL"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2ga_n, j);
else if (STR_EQUAL_2G("2G", "B", "+", "ALL"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2gb_p, j);
else if (STR_EQUAL_2G("2G", "B", "-", "ALL"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_2gb_n, j);
else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "0"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[0], j);
else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "0"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[0], j);
else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "0"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[0], j);
else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "0"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[0], j);
else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "1"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[1], j);
else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "1"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[1], j);
else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "1"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[1], j);
else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "1"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[1], j);
else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "2"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[2], j);
else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "2"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[2], j);
else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "2"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[2], j);
else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "2"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[2], j);
else if (STR_EQUAL_5G("5G", "A", "+", "ALL", "3"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_p[3], j);
else if (STR_EQUAL_5G("5G", "A", "-", "ALL", "3"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5ga_n[3], j);
else if (STR_EQUAL_5G("5G", "B", "+", "ALL", "3"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_p[3], j);
else if (STR_EQUAL_5G("5G", "B", "-", "ALL", "3"))
STORE_SWING_TABLE(pRFCalibrateInfo->delta_swing_table_idx_5gb_n[3], j);
else
RTW_INFO("===>initDeltaSwingIndexTables(): The input is invalid!!\n");
}
int
PHY_ConfigRFWithTxPwrTrackParaFile(
IN PADAPTER Adapter,
IN char *pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
struct dm_rf_calibration_struct *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info);
int rlen = 0, rtStatus = _FAIL;
char *szLine, *ptmp;
u32 i = 0, j = 0;
char c = 0;
if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_TRACK_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if ((pHalData->rf_tx_pwr_track_len == 0) && (pHalData->rf_tx_pwr_track == NULL)) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->rf_tx_pwr_track = rtw_zvmalloc(rlen);
if (pHalData->rf_tx_pwr_track) {
_rtw_memcpy(pHalData->rf_tx_pwr_track, pHalData->para_file_buf, rlen);
pHalData->rf_tx_pwr_track_len = rlen;
} else
RTW_INFO("%s rf_tx_pwr_track alloc fail !\n", __FUNCTION__);
}
}
} else {
if ((pHalData->rf_tx_pwr_track_len != 0) && (pHalData->rf_tx_pwr_track != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
/* RTW_INFO("%s(): read %s successfully\n", __FUNCTION__, pFileName); */
ptmp = pHalData->para_file_buf;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (!IsCommentString(szLine)) {
char band[5] = "", path[5] = "", sign[5] = "";
char chnl[5] = "", rate[10] = "";
char data[300] = ""; /* 100 is too small */
if (strlen(szLine) < 10 || szLine[0] != '[')
continue;
strncpy(band, szLine + 1, 2);
strncpy(path, szLine + 5, 1);
strncpy(sign, szLine + 8, 1);
i = 10; /* szLine+10 */
if (!ParseQualifiedString(szLine, &i, rate, '[', ']')) {
/* RTW_INFO("Fail to parse rate!\n"); */
}
if (!ParseQualifiedString(szLine, &i, chnl, '[', ']')) {
/* RTW_INFO("Fail to parse channel group!\n"); */
}
while (szLine[i] != '{' && i < strlen(szLine))
i++;
if (!ParseQualifiedString(szLine, &i, data, '{', '}')) {
/* RTW_INFO("Fail to parse data!\n"); */
}
initDeltaSwingIndexTables(Adapter, band, path, sign, chnl, rate, data);
}
}
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
#if 0
for (i = 0; i < DELTA_SWINGIDX_SIZE; ++i) {
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2ga_p[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2ga_p[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2ga_n[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2ga_n[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2gb_p[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2gb_p[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2gb_n[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2gb_n[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_p[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_p[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_n[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2g_cck_a_n[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_p[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_p[i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_n[%d] = %d\n", i, pRFCalibrateInfo->delta_swing_table_idx_2g_cck_b_n[i]);
for (j = 0; j < 3; ++j) {
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_5ga_p[%d][%d] = %d\n", j, i, pRFCalibrateInfo->delta_swing_table_idx_5ga_p[j][i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_5ga_n[%d][%d] = %d\n", j, i, pRFCalibrateInfo->delta_swing_table_idx_5ga_n[j][i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_5gb_p[%d][%d] = %d\n", j, i, pRFCalibrateInfo->delta_swing_table_idx_5gb_p[j][i]);
RTW_INFO("pRFCalibrateInfo->delta_swing_table_idx_5gb_n[%d][%d] = %d\n", j, i, pRFCalibrateInfo->delta_swing_table_idx_5gb_n[j][i]);
}
}
#endif
return rtStatus;
}
#ifdef CONFIG_TXPWR_LIMIT
#ifndef DBG_TXPWR_LMT_FILE_PARSE
#define DBG_TXPWR_LMT_FILE_PARSE 0
#endif
#define PARSE_RET_NO_HDL 0
#define PARSE_RET_SUCCESS 1
#define PARSE_RET_FAIL 2
/*
* @@Ver=2.0
* or
* @@DomainCode=0x28, Regulation=C6
* or
* @@CountryCode=GB, Regulation=C7
*/
static u8 parse_reg_exc_config(_adapter *adapter, char *szLine)
{
#define VER_PREFIX "Ver="
#define DOMAIN_PREFIX "DomainCode=0x"
#define COUNTRY_PREFIX "CountryCode="
#define REG_PREFIX "Regulation="
const u8 ver_prefix_len = strlen(VER_PREFIX);
const u8 domain_prefix_len = strlen(DOMAIN_PREFIX);
const u8 country_prefix_len = strlen(COUNTRY_PREFIX);
const u8 reg_prefix_len = strlen(REG_PREFIX);
u32 i, i_val_s, i_val_e;
u32 j;
u8 domain = 0xFF;
char *country = NULL;
u8 parse_reg = 0;
if (szLine[0] != '@' || szLine[1] != '@')
return PARSE_RET_NO_HDL;
i = 2;
if (strncmp(szLine + i, VER_PREFIX, ver_prefix_len) == 0)
; /* nothing to do */
else if (strncmp(szLine + i, DOMAIN_PREFIX, domain_prefix_len) == 0) {
/* get string after domain prefix to ',' */
i += domain_prefix_len;
i_val_s = i;
while (szLine[i] != ',') {
if (szLine[i] == '\0')
return PARSE_RET_FAIL;
i++;
}
i_val_e = i;
/* check if all hex */
for (j = i_val_s; j < i_val_e; j++)
if (IsHexDigit(szLine[j]) == _FALSE)
return PARSE_RET_FAIL;
/* get value from hex string */
if (sscanf(szLine + i_val_s, "%hhx", &domain) != 1)
return PARSE_RET_FAIL;
parse_reg = 1;
} else if (strncmp(szLine + i, COUNTRY_PREFIX, country_prefix_len) == 0) {
/* get string after country prefix to ',' */
i += country_prefix_len;
i_val_s = i;
while (szLine[i] != ',') {
if (szLine[i] == '\0')
return PARSE_RET_FAIL;
i++;
}
i_val_e = i;
if (i_val_e - i_val_s != 2)
return PARSE_RET_FAIL;
/* check if all alpha */
for (j = i_val_s; j < i_val_e; j++)
if (is_alpha(szLine[j]) == _FALSE)
return PARSE_RET_FAIL;
country = szLine + i_val_s;
parse_reg = 1;
} else
return PARSE_RET_FAIL;
if (parse_reg) {
/* move to 'R' */
while (szLine[i] != 'R') {
if (szLine[i] == '\0')
return PARSE_RET_FAIL;
i++;
}
/* check if matching regulation prefix */
if (strncmp(szLine + i, REG_PREFIX, reg_prefix_len) != 0)
return PARSE_RET_FAIL;
/* get string after regulation prefix ending with space */
i += reg_prefix_len;
i_val_s = i;
while (szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0')
i++;
if (i == i_val_s)
return PARSE_RET_FAIL;
rtw_regd_exc_add_with_nlen(adapter_to_rfctl(adapter), country, domain, szLine + i_val_s, i - i_val_s);
}
return PARSE_RET_SUCCESS;
}
static int
phy_ParsePowerLimitTableFile(
PADAPTER Adapter,
char *buffer
)
{
#define LD_STAGE_EXC_MAPPING 0
#define LD_STAGE_TAB_DEFINE 1
#define LD_STAGE_TAB_START 2
#define LD_STAGE_COLUMN_DEFINE 3
#define LD_STAGE_CH_ROW 4
int rtStatus = _FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_struct *pDM_Odm = &(pHalData->odmpriv);
u8 loadingStage = LD_STAGE_EXC_MAPPING;
u32 i = 0, forCnt = 0;
u8 limitValue = 0, fraction = 0, negative = 0;
char *szLine, *ptmp;
char band[10], bandwidth[10], rateSection[10], ntx[10], colNumBuf[10];
char **regulation = NULL;
u8 colNum = 0;
RTW_INFO("%s enter\n", __func__);
if (Adapter->registrypriv.RegDecryptCustomFile == 1)
phy_DecryptBBPgParaFile(Adapter, buffer);
ptmp = buffer;
for (szLine = GetLineFromBuffer(ptmp); szLine != NULL; szLine = GetLineFromBuffer(ptmp)) {
if (isAllSpaceOrTab(szLine, sizeof(*szLine)))
continue;
if (IsCommentString(szLine))
continue;
if (loadingStage == LD_STAGE_EXC_MAPPING) {
if (szLine[0] == '#' || szLine[1] == '#') {
loadingStage = LD_STAGE_TAB_DEFINE;
if (DBG_TXPWR_LMT_FILE_PARSE)
dump_regd_exc_list(RTW_DBGDUMP, adapter_to_rfctl(Adapter));
} else {
if (parse_reg_exc_config(Adapter, szLine) == PARSE_RET_FAIL) {
RTW_ERR("Fail to parse regulation exception ruls!\n");
goto exit;
}
continue;
}
}
if (loadingStage == LD_STAGE_TAB_DEFINE) {
/* read "## 2.4G, 20M, 1T, CCK" */
if (szLine[0] != '#' || szLine[1] != '#')
continue;
/* skip the space */
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
szLine[--i] = ' '; /* return the space in front of the regulation info */
/* Parse the label of the table */
_rtw_memset((PVOID) band, 0, 10);
_rtw_memset((PVOID) bandwidth, 0, 10);
_rtw_memset((PVOID) ntx, 0, 10);
_rtw_memset((PVOID) rateSection, 0, 10);
if (!ParseQualifiedString(szLine, &i, band, ' ', ',')) {
RTW_ERR("Fail to parse band!\n");
goto exit;
}
if (!ParseQualifiedString(szLine, &i, bandwidth, ' ', ',')) {
RTW_ERR("Fail to parse bandwidth!\n");
goto exit;
}
if (!ParseQualifiedString(szLine, &i, ntx, ' ', ',')) {
RTW_ERR("Fail to parse ntx!\n");
goto exit;
}
if (!ParseQualifiedString(szLine, &i, rateSection, ' ', ',')) {
RTW_ERR("Fail to parse rate!\n");
goto exit;
}
loadingStage = LD_STAGE_TAB_START;
} else if (loadingStage == LD_STAGE_TAB_START) {
/* read "## START" */
if (szLine[0] != '#' || szLine[1] != '#')
continue;
/* skip the space */
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
if (!eqNByte((u8 *)(szLine + i), (u8 *)("START"), 5)) {
RTW_ERR("Missing \"## START\" label\n");
goto exit;
}
loadingStage = LD_STAGE_COLUMN_DEFINE;
} else if (loadingStage == LD_STAGE_COLUMN_DEFINE) {
/* read "## #5# FCC ETSI MKK IC KCC" */
if (szLine[0] != '#' || szLine[1] != '#')
continue;
/* skip the space */
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
_rtw_memset((PVOID) colNumBuf, 0, 10);
if (!ParseQualifiedString(szLine, &i, colNumBuf, '#', '#')) {
RTW_ERR("Fail to parse column number!\n");
goto exit;
}
if (!GetU1ByteIntegerFromStringInDecimal(colNumBuf, &colNum)) {
RTW_ERR("Column number \"%s\" is not unsigned decimal\n", colNumBuf);
goto exit;
}
if (colNum == 0) {
RTW_ERR("Column number is 0\n");
goto exit;
}
if (DBG_TXPWR_LMT_FILE_PARSE)
RTW_PRINT("[%s][%s][%s][%s] column num:%d\n", band, bandwidth, rateSection, ntx, colNum);
regulation = (char **)rtw_zmalloc(sizeof(char *) * colNum);
if (!regulation) {
RTW_ERR("Regulation alloc fail\n");
goto exit;
}
for (forCnt = 0; forCnt < colNum; ++forCnt) {
u32 i_ns;
/* skip the space */
while (szLine[i] == ' ' || szLine[i] == '\t')
i++;
i_ns = i;
while (szLine[i] != ' ' && szLine[i] != '\t' && szLine[i] != '\0')
i++;
regulation[forCnt] = (char *)rtw_malloc(i - i_ns + 1);
if (!regulation[forCnt]) {
RTW_ERR("Regulation alloc fail\n");
goto exit;
}
_rtw_memcpy(regulation[forCnt], szLine + i_ns, i - i_ns);
regulation[forCnt][i - i_ns] = '\0';
}
if (DBG_TXPWR_LMT_FILE_PARSE) {
RTW_PRINT("column name:");
for (forCnt = 0; forCnt < colNum; ++forCnt)
_RTW_PRINT(" %s", regulation[forCnt]);
_RTW_PRINT("\n");
}
loadingStage = LD_STAGE_CH_ROW;
} else if (loadingStage == LD_STAGE_CH_ROW) {
char channel[10] = {0}, powerLimit[10] = {0};
u8 cnt = 0;
/* the table ends */
if (szLine[0] == '#' && szLine[1] == '#') {
i = 2;
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
if (eqNByte((u8 *)(szLine + i), (u8 *)("END"), 3)) {
loadingStage = LD_STAGE_TAB_DEFINE;
if (regulation) {
for (forCnt = 0; forCnt < colNum; ++forCnt) {
if (regulation[forCnt]) {
rtw_mfree(regulation[forCnt], strlen(regulation[forCnt]) + 1);
regulation[forCnt] = NULL;
}
}
rtw_mfree((u8 *)regulation, sizeof(char *) * colNum);
regulation = NULL;
}
colNum = 0;
continue;
} else {
RTW_ERR("Missing \"## END\" label\n");
goto exit;
}
}
if ((szLine[0] != 'c' && szLine[0] != 'C') ||
(szLine[1] != 'h' && szLine[1] != 'H')
) {
RTW_WARN("Wrong channel prefix: '%c','%c'(%d,%d)\n", szLine[0], szLine[1], szLine[0], szLine[1]);
continue;
}
i = 2;/* move to the location behind 'h' */
/* load the channel number */
cnt = 0;
while (szLine[i] >= '0' && szLine[i] <= '9') {
channel[cnt] = szLine[i];
++cnt;
++i;
}
/* RTW_INFO("chnl %s!\n", channel); */
for (forCnt = 0; forCnt < colNum; ++forCnt) {
/* skip the space between channel number and the power limit value */
while (szLine[i] == ' ' || szLine[i] == '\t')
++i;
/* load the power limit value */
cnt = 0;
fraction = 0;
negative = 0;
_rtw_memset((PVOID) powerLimit, 0, 10);
while ((szLine[i] >= '0' && szLine[i] <= '9') || szLine[i] == '.'
|| szLine[i] == '+' || szLine[i] == '-'
) {
/* try to get valid decimal number */
if (szLine[i] == '+' || szLine[i] == '-') {
if (cnt != 0) {
RTW_ERR("Wrong position for sign '%c'\n", szLine[i]);
goto exit;
}
if (szLine[i] == '-') {
negative = 1;
++i;
continue;
}
} else if (szLine[i] == '.') {
if ((szLine[i + 1] >= '0' && szLine[i + 1] <= '9')) {
fraction = szLine[i + 1];
i += 2;
} else {
RTW_ERR("Wrong fraction '%c'(%d)\n", szLine[i + 1], szLine[i + 1]);
goto exit;
}
break;
}
powerLimit[cnt] = szLine[i];
++cnt;
++i;
}
if (powerLimit[0] == '\0') {
if (szLine[i] == 'W' && szLine[i + 1] == 'W') {
/*
* case "WW" assign special value -63
* means to get minimal limit in other regulations at same channel
*/
powerLimit[0] = '-';
powerLimit[1] = '6';
powerLimit[2] = '3';
i += 2;
} else if (szLine[i] == 'N' && szLine[i + 1] == 'A') {
/*
* case "NA" assign special value 63
* means no limitation
*/
powerLimit[0] = '6';
powerLimit[1] = '3';
i += 2;
} else {
RTW_ERR("Wrong limit expression \"%c%c\"(%d, %d)\n"
, szLine[i], szLine[i + 1], szLine[i], szLine[i + 1]);
goto exit;
}
} else {
/* transform dicimal value to power index */
if (!GetU1ByteIntegerFromStringInDecimal(powerLimit, &limitValue)) {
RTW_ERR("Limit \"%s\" is not valid decimal\n", powerLimit);
goto exit;
}
limitValue *= 2;
cnt = 0;
if (negative)
powerLimit[cnt++] = '-';
if (fraction == '5')
++limitValue;
/* the value is greater or equal to 100 */
if (limitValue >= 100) {
powerLimit[cnt++] = limitValue / 100 + '0';
limitValue %= 100;
if (limitValue >= 10) {
powerLimit[cnt++] = limitValue / 10 + '0';
limitValue %= 10;
} else
powerLimit[cnt++] = '0';
powerLimit[cnt++] = limitValue + '0';
}
/* the value is greater or equal to 10 */
else if (limitValue >= 10) {
powerLimit[cnt++] = limitValue / 10 + '0';
limitValue %= 10;
powerLimit[cnt++] = limitValue + '0';
}
/* the value is less than 10 */
else
powerLimit[cnt++] = limitValue + '0';
powerLimit[cnt] = '\0';
}
/* RTW_INFO("ch%s => %s\n", channel, powerLimit); */
/* store the power limit value */
phy_set_tx_power_limit(pDM_Odm, (u8 *)regulation[forCnt], (u8 *)band,
(u8 *)bandwidth, (u8 *)rateSection, (u8 *)ntx, (u8 *)channel, (u8 *)powerLimit);
}
}
}
rtStatus = _SUCCESS;
exit:
if (regulation) {
for (forCnt = 0; forCnt < colNum; ++forCnt) {
if (regulation[forCnt]) {
rtw_mfree(regulation[forCnt], strlen(regulation[forCnt]) + 1);
regulation[forCnt] = NULL;
}
}
rtw_mfree((u8 *)regulation, sizeof(char *) * colNum);
regulation = NULL;
}
RTW_INFO("%s return %d\n", __func__, rtStatus);
return rtStatus;
}
int
PHY_ConfigRFWithPowerLimitTableParaFile(
IN PADAPTER Adapter,
IN const char *pFileName
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rlen = 0, rtStatus = _FAIL;
if (!(Adapter->registrypriv.load_phy_file & LOAD_RF_TXPWR_LMT_PARA_FILE))
return rtStatus;
_rtw_memset(pHalData->para_file_buf, 0, MAX_PARA_FILE_BUF_LEN);
if (pHalData->rf_tx_pwr_lmt == NULL) {
rtw_get_phy_file_path(Adapter, pFileName);
if (rtw_is_file_readable(rtw_phy_para_file_path) == _TRUE) {
rlen = rtw_retrieve_from_file(rtw_phy_para_file_path, pHalData->para_file_buf, MAX_PARA_FILE_BUF_LEN);
if (rlen > 0) {
rtStatus = _SUCCESS;
pHalData->rf_tx_pwr_lmt = rtw_zvmalloc(rlen);
if (pHalData->rf_tx_pwr_lmt) {
_rtw_memcpy(pHalData->rf_tx_pwr_lmt, pHalData->para_file_buf, rlen);
pHalData->rf_tx_pwr_lmt_len = rlen;
} else
RTW_INFO("%s rf_tx_pwr_lmt alloc fail !\n", __FUNCTION__);
}
}
} else {
if ((pHalData->rf_tx_pwr_lmt_len != 0) && (pHalData->rf_tx_pwr_lmt != NULL)) {
_rtw_memcpy(pHalData->para_file_buf, pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len);
rtStatus = _SUCCESS;
} else
RTW_INFO("%s(): Critical Error !!!\n", __FUNCTION__);
}
if (rtStatus == _SUCCESS) {
/* RTW_INFO("%s(): read %s ok\n", __FUNCTION__, pFileName); */
rtStatus = phy_ParsePowerLimitTableFile(Adapter, pHalData->para_file_buf);
} else
RTW_INFO("%s(): No File %s, Load from HWImg Array!\n", __FUNCTION__, pFileName);
return rtStatus;
}
#endif /* CONFIG_TXPWR_LIMIT */
void phy_free_filebuf_mask(_adapter *padapter, u8 mask)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (pHalData->mac_reg && (mask & LOAD_MAC_PARA_FILE)) {
rtw_vmfree(pHalData->mac_reg, pHalData->mac_reg_len);
pHalData->mac_reg = NULL;
}
if (mask & LOAD_BB_PARA_FILE) {
if (pHalData->bb_phy_reg) {
rtw_vmfree(pHalData->bb_phy_reg, pHalData->bb_phy_reg_len);
pHalData->bb_phy_reg = NULL;
}
if (pHalData->bb_agc_tab) {
rtw_vmfree(pHalData->bb_agc_tab, pHalData->bb_agc_tab_len);
pHalData->bb_agc_tab = NULL;
}
}
if (pHalData->bb_phy_reg_pg && (mask & LOAD_BB_PG_PARA_FILE)) {
rtw_vmfree(pHalData->bb_phy_reg_pg, pHalData->bb_phy_reg_pg_len);
pHalData->bb_phy_reg_pg = NULL;
}
if (pHalData->bb_phy_reg_mp && (mask & LOAD_BB_MP_PARA_FILE)) {
rtw_vmfree(pHalData->bb_phy_reg_mp, pHalData->bb_phy_reg_mp_len);
pHalData->bb_phy_reg_mp = NULL;
}
if (mask & LOAD_RF_PARA_FILE) {
if (pHalData->rf_radio_a) {
rtw_vmfree(pHalData->rf_radio_a, pHalData->rf_radio_a_len);
pHalData->rf_radio_a = NULL;
}
if (pHalData->rf_radio_b) {
rtw_vmfree(pHalData->rf_radio_b, pHalData->rf_radio_b_len);
pHalData->rf_radio_b = NULL;
}
}
if (pHalData->rf_tx_pwr_track && (mask & LOAD_RF_TXPWR_TRACK_PARA_FILE)) {
rtw_vmfree(pHalData->rf_tx_pwr_track, pHalData->rf_tx_pwr_track_len);
pHalData->rf_tx_pwr_track = NULL;
}
if (pHalData->rf_tx_pwr_lmt && (mask & LOAD_RF_TXPWR_LMT_PARA_FILE)) {
rtw_vmfree(pHalData->rf_tx_pwr_lmt, pHalData->rf_tx_pwr_lmt_len);
pHalData->rf_tx_pwr_lmt = NULL;
}
}
inline void phy_free_filebuf(_adapter *padapter)
{
phy_free_filebuf_mask(padapter, 0xFF);
}
#endif