1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-30 00:47:38 +00:00
rtl8812au/hal/rtl8814a/rtl8814a_hal_init.c

6770 lines
191 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8814A_HAL_INIT_C_
//#include <drv_types.h>
#include <rtl8814a_hal.h>
#include "phydm_antdiv.h"
#define REG_BCN_INTERVAL 0x0554
extern u32 array_length_mp_8814a_fw_ap;
extern u8 array_mp_8814a_fw_ap[];
extern u32 array_length_mp_8814a_fw_nic;
extern u8 array_mp_8814a_fw_nic[];
enum {
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
//-------------------------------------------------------------------------
//
// LLT R/W/Init function
//
//-------------------------------------------------------------------------
VOID
Hal_InitEfuseVars_8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
pu2Byte ptr;
#define INIT_EFUSE(var,value) ptr = (pu2Byte)&var; *ptr = value
RTW_INFO("====> %s \n", __func__);
//2 Common
INIT_EFUSE(pEfuseHal->WordUnit , EFUSE_MAX_WORD_UNIT);
RTW_INFO("====>pEfuseHal->WordUnit %d \n", pEfuseHal->WordUnit);
INIT_EFUSE(pEfuseHal->BankSize , 512);
INIT_EFUSE(pEfuseHal->OOBProtectBytes, EFUSE_OOB_PROTECT_BYTES);
RTW_INFO("====>pEfuseHal->OOBProtectBytes %d \n", pEfuseHal->OOBProtectBytes);
INIT_EFUSE(pEfuseHal->ProtectBytes , EFUSE_PROTECT_BYTES_BANK_8814A);
RTW_INFO("====>pEfuseHal->ProtectBytes %d \n", pEfuseHal->ProtectBytes);
INIT_EFUSE(pEfuseHal->BankAvailBytes , (pEfuseHal->BankSize - pEfuseHal->OOBProtectBytes));
INIT_EFUSE(pEfuseHal->TotalBankNum , EFUSE_MAX_BANK_8814A);
INIT_EFUSE(pEfuseHal->HeaderRetry , 0);
INIT_EFUSE(pEfuseHal->DataRetry , 0);
//2 Wi-Fi
INIT_EFUSE(pEfuseHal->MaxSecNum_WiFi , EFUSE_MAX_SECTION_8814A);
RTW_INFO("====>pEfuseHal->MaxSecNum_WiFi %d \n", pEfuseHal->MaxSecNum_WiFi);
INIT_EFUSE(pEfuseHal->PhysicalLen_WiFi , EFUSE_REAL_CONTENT_LEN_8814A);
RTW_INFO("====>pEfuseHal->PhysicalLen_WiFi %d \n", pEfuseHal->PhysicalLen_WiFi);
INIT_EFUSE(pEfuseHal->LogicalLen_WiFi , EFUSE_MAP_LEN_8814A);
RTW_INFO("====>pEfuseHal->LogicalLen_WiFi %d \n", pEfuseHal->LogicalLen_WiFi);
INIT_EFUSE(pEfuseHal->BankNum_WiFi , pEfuseHal->PhysicalLen_WiFi/pEfuseHal->BankSize);
INIT_EFUSE(pEfuseHal->TotalAvailBytes_WiFi, (pEfuseHal->PhysicalLen_WiFi - (pEfuseHal->TotalBankNum * pEfuseHal->OOBProtectBytes)));
//2 BT
INIT_EFUSE(pEfuseHal->MaxSecNum_BT , 0);
INIT_EFUSE(pEfuseHal->PhysicalLen_BT , 0);
INIT_EFUSE(pEfuseHal->LogicalLen_BT , 0);
INIT_EFUSE(pEfuseHal->BankNum_BT , 0);
INIT_EFUSE(pEfuseHal->TotalAvailBytes_BT, 0);
RTW_INFO("%s <====\n", __func__);
}
s32 InitLLTTable8814A(
IN PADAPTER Adapter
)
{
// Auto-init LLT table ( Set REG:0x208[BIT0] )
//Write 1 to enable HW init LLT, driver need polling to 0 meaning init success
u8 tmp1byte=0, testcnt=0;
s32 Status = _SUCCESS;
tmp1byte = rtw_read8(Adapter, REG_AUTO_LLT_8814A);
rtw_write8(Adapter, REG_AUTO_LLT_8814A, tmp1byte|BIT0);
while(tmp1byte & BIT0)
{
tmp1byte = rtw_read8(Adapter, REG_AUTO_LLT_8814A);
rtw_mdelay_os(100);
testcnt++;
if(testcnt > 100)
{
Status = _FAIL;
break;
}
}
return Status;
}
#ifdef CONFIG_WOWLAN
void hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
}
#endif
VOID
_FWDownloadEnable_8814A(
IN PADAPTER Adapter,
IN BOOLEAN enable
)
{
u8 tmp;
u16 u2Tmp = 0;
if(enable)
{
// MCU firmware download enable.
u2Tmp = rtw_read16(Adapter, REG_8051FW_CTRL_8814A);
u2Tmp &= 0x3000;
u2Tmp &= (~BIT12);
u2Tmp |= BIT13;
u2Tmp |= BIT0;
rtw_write16(Adapter, REG_8051FW_CTRL_8814A, u2Tmp);
// Clear Rom DL enable
// tmp = rtw_read8(Adapter, REG_8051FW_CTRL_8814A+2); //modify by gw 20130826(advice by hw)
// rtw_write8(Adapter, REG_8051FW_CTRL_8814A+2, tmp&0xf7);//clear bit3
}
else
{
// MCU firmware download enable.
tmp = rtw_read8(Adapter, REG_8051FW_CTRL_8814A);
rtw_write8(Adapter, REG_8051FW_CTRL_8814A, tmp&0xfe);
}
}
#define MAX_REG_BOLCK_SIZE 196
VOID
_BlockWrite_8814A(
IN PADAPTER Adapter,
IN PVOID buffer,
IN u32 buffSize
)
{
u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW
u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image.
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8* bufferPtr = (u8*)buffer;
u32 i=0, offset=0;
#ifdef CONFIG_USB_HCI
blockSize_p1 = MAX_REG_BOLCK_SIZE; // Use 196-byte write to download FW
// Small block size will increase USB init speed. But prevent FW download fail
// use 4-Byte instead of 196-Byte to write FW.
#endif
//3 Phase #1
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for(i = 0 ; i < blockCount_p1 ; i++){
#if (DEV_BUS_TYPE == RT_USB_INTERFACE)
rtw_writeN(Adapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1,(bufferPtr + i * blockSize_p1));
#else
rtw_write32(Adapter, (FW_START_ADDRESS + i * blockSize_p1), *((pu4Byte)(bufferPtr + i * blockSize_p1)));
#endif
}
//3 Phase #2
if(remainSize_p1){
offset = blockCount_p1 * blockSize_p1;
blockCount_p2=remainSize_p1/blockSize_p2;
remainSize_p2=remainSize_p1%blockSize_p2;
#if (DEV_BUS_TYPE == RT_USB_INTERFACE)
for(i = 0 ; i < blockCount_p2 ; i++){
rtw_writeN(Adapter, (FW_START_ADDRESS + offset+i*blockSize_p2), blockSize_p2,(bufferPtr + offset+i*blockSize_p2));
}
#endif
}
//3 Phase #3
if(remainSize_p2)
{
offset=(blockCount_p1 * blockSize_p1)+(blockCount_p2*blockSize_p2);
blockCount_p3 = remainSize_p2 /blockSize_p3;
for(i = 0 ; i < blockCount_p3 ; i++){
rtw_write8(Adapter, (FW_START_ADDRESS + offset + i), *(bufferPtr +offset+ i));
}
}
}
VOID
_PageWrite_8814A(
IN PADAPTER Adapter,
IN u32 page,
IN PVOID buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8) (page & 0x07) ;
value8 = (rtw_read8(Adapter, REG_8051FW_CTRL_8814A+2)& 0xF8 ) | u8Page ;
rtw_write8(Adapter,REG_8051FW_CTRL_8814A+2,value8);
_BlockWrite_8814A(Adapter,buffer,size);
}
VOID
_FillDummy_8814A(
u8* pFwBuf,
pu4Byte pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen%4);
remain = (remain==0)?0:(4-remain);
while(remain>0)
{
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
VOID
_WriteFW_8814A(
IN PADAPTER Adapter,
IN PVOID buffer,
IN u32 size
)
{
u32 pageNums,remainSize ;
u32 page,offset;
u8* bufferPtr = (u8*)buffer;
#ifdef CONFIG_PCI_HCI
// 20100120 Joseph: Add for 88CE normal chip.
// Fill in zero to make firmware image to dword alignment.
_FillDummy_8814A(bufferPtr, &size);
#endif //CONFIG_PCI_HCI
pageNums = size / MAX_PAGE_SIZE ;
//RT_ASSERT((pageNums <= 8), ("Page numbers should not greater then 8 \n"));
remainSize = size % MAX_PAGE_SIZE;
for(page = 0; page < pageNums; page++){
offset = page *MAX_PAGE_SIZE;
_PageWrite_8814A(Adapter,page, (bufferPtr+offset),MAX_PAGE_SIZE);
rtw_udelay_os(2);
}
if(remainSize){
offset = pageNums *MAX_PAGE_SIZE;
page = pageNums;
_PageWrite_8814A(Adapter,page, (bufferPtr+offset),remainSize);
}
}
VOID
_3081Disable8814A(
IN PADAPTER Adapter
)
{
u8 u1bTmp;
u1bTmp = rtw_read8(Adapter, REG_SYS_FUNC_EN_8814A+1);
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A+1, u1bTmp&(~BIT2));
}
VOID
_3081Enable8814A(
IN PADAPTER Adapter
)
{
u8 u1bTmp;
u1bTmp = rtw_read8(Adapter, REG_SYS_FUNC_EN_8814A+1);
rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A+1, u1bTmp|BIT2);
}
//add by ylb 20130814 for 3081 download FW
static
BOOLEAN
IDDMADownLoadFW_3081(
IN PADAPTER Adapter,
IN u32 source,
IN u32 dest,
IN u32 length,
IN BOOLEAN fs,
IN BOOLEAN ls
)
{
u32 ch0ctrl = (DDMA_CHKSUM_EN|DDMA_CH_OWN);
u32 cnt;
u1Byte tmp;
//check if ddma ch0 is idle
cnt=20;
while(rtw_read32(Adapter, REG_DDMA_CH0CTRL)&DDMA_CH_OWN)
{
rtw_udelay_os(1000);
cnt--;
if(cnt==0)
{
RTW_INFO("IDDMADownLoadFW_3081, line%d: CNT fail\n", __LINE__);
return _FALSE;
}
}
ch0ctrl |= length & DDMA_LEN_MASK;
//check if chksum continuous
if(fs == _FALSE){
ch0ctrl |= DDMA_CH_CHKSUM_CNT;
}
rtw_write32(Adapter,REG_DDMA_CH0SA, source);
rtw_write32(Adapter,REG_DDMA_CH0DA, dest);
rtw_write32(Adapter,REG_DDMA_CH0CTRL, ch0ctrl);
cnt=20;
while(rtw_read32(Adapter, REG_DDMA_CH0CTRL)&DDMA_CH_OWN)
{
rtw_udelay_os(1000);
cnt--;
if(cnt==0)
{
RTW_INFO("IDDMADownLoadFW_3081, line%d: CNT fail\n", __LINE__);
return _FALSE;
}
}
//check checksum
if(ls == _TRUE)
{
tmp = rtw_read8(Adapter,REG_8051FW_CTRL_8814A);
if(0==(rtw_read32(Adapter,REG_DDMA_CH0CTRL)&DDMA_CHKSUM_FAIL))
{//chksum ok
RTW_INFO("Check sum OK\n");
//imem
if(dest < OCPBASE_DMEM_3081)
{
tmp |= IMEM_DL_RDY;
rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp|IMEM_CHKSUM_OK);
RTW_INFO("imem check sum tmp %d\n",tmp);
}
//dmem
else
{
tmp |= DMEM_DL_RDY;
rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp|DMEM_CHKSUM_OK);
RTW_INFO("dmem check sum tmp %d\n",tmp);
}
}
else
{//chksum fail
RTW_INFO("Check sum fail\n");
ch0ctrl=rtw_read32(Adapter,REG_DDMA_CH0CTRL);
rtw_write32(Adapter, REG_DDMA_CH0CTRL,ch0ctrl|DDMA_RST_CHKSUM_STS);
//imem
if(dest < OCPBASE_DMEM_3081)
{
tmp &= (~IMEM_DL_RDY);
rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp&~IMEM_CHKSUM_OK);
}
//dmem
else
{
tmp &= (~DMEM_DL_RDY);
rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp&~DMEM_CHKSUM_OK);
}
return _FALSE;
}
}
return _TRUE;
}
//add by ylb 20130814 for 3081 download FW
static
BOOLEAN
WaitDownLoadRSVDPageOK_3081(
IN PADAPTER Adapter
)
{
u8 BcnValidReg=0,TxBcReg=0;
u8 count=0, DLBcnCount=0;
BOOLEAN bRetValue = _FALSE;
#if defined(CONFIG_PCI_HCI)
//Polling Beacon Queue to send Beacon
TxBcReg = rtw_read8(Adapter, REG_MGQ_TXBD_NUM_8814A+3);
count=0;
while(( count <20) && (TxBcReg & BIT4))
{
count++;
rtw_udelay_os(10);
TxBcReg = rtw_read8(Adapter, REG_MGQ_TXBD_NUM_8814A+3);
}
rtw_write8(Adapter, REG_MGQ_TXBD_NUM_8814A+3, TxBcReg|BIT4);
#endif //#if defined(CONFIG_PCI_HCI)
// check rsvd page download OK.
BcnValidReg = rtw_read8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1);
count=0;
while(!(BcnValidReg & BIT7) && count <20)
{
count++;
rtw_udelay_os(50);
BcnValidReg = rtw_read8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1);
}
//Set 1 to Clear BIT7 by SW
if(BcnValidReg & BIT7)
{
rtw_write8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1, (BcnValidReg|BIT7));
bRetValue = _TRUE;
}
else
{
RTW_INFO("WaitDownLoadRSVDPageOK_3081(): Download RSVD page failed!\n");
bRetValue = _FALSE;
}
return bRetValue;
}
VOID
SetDownLoadFwRsvdPagePkt_8814A(
IN PADAPTER Adapter,
IN PVOID buffer,
IN u32 len
)
{
PHAL_DATA_TYPE pHalData;
struct xmit_frame *pcmdframe;
struct xmit_priv *pxmitpriv;
struct pkt_attrib *pattrib;
//The desc lengh in Tx packet buffer of 8814A is 40 bytes.
u16 BufIndex=0, TxDescOffset = TXDESC_OFFSET;
u32 TotalPacketLen = len;
BOOLEAN bDLOK = FALSE;
u8 *ReservedPagePacket;
pHalData = GET_HAL_DATA(Adapter);
pxmitpriv = &Adapter->xmitpriv;
#ifdef CONFIG_BCN_ICF
pcmdframe = rtw_alloc_cmdxmitframe(pxmitpriv);
#else
pcmdframe = alloc_mgtxmitframe(pxmitpriv);
#endif
if (pcmdframe == NULL) {
return;
}
ReservedPagePacket = pcmdframe->buf_addr;
BufIndex = TxDescOffset;
TotalPacketLen = len + BufIndex;
_rtw_memcpy(&ReservedPagePacket[BufIndex], buffer, len);
//RTW_INFO("SetFwRsvdPagePkt_8814A(): HW_VAR_SET_TX_CMD: BCN, %p, %d\n", &ReservedPagePacket[BufIndex], len);
//RTW_INFO("SetFwRsvdPagePkt(): TotalPacketLen=%d \n", TotalPacketLen);
// update attribute
pattrib = &pcmdframe->attrib;
update_mgntframe_attrib(Adapter, pattrib);
pattrib->qsel = QSLT_BEACON;
pattrib->pktlen = pattrib->last_txcmdsz = TotalPacketLen - TxDescOffset;
dump_mgntframe(Adapter, pcmdframe);
//ReturnGenTempBuffer(pAdapter, pGenBufReservedPagePacket);
}
/* ************************************************************************************
*
* 20100209 Joseph:
* This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
* We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
* the value of the register via atomic operation.
* This prevents from race condition when setting this register.
* The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
* */
static void SetBcnCtrlReg(
PADAPTER padapter,
u8 SetBits,
u8 ClearBits)
{
PHAL_DATA_TYPE pHalData;
u8 RegBcnCtrlVal = 0;
pHalData = GET_HAL_DATA(padapter);
RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
RegBcnCtrlVal |= SetBits;
RegBcnCtrlVal &= ~ClearBits;
#if 0
/* #ifdef CONFIG_SDIO_HCI */
if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK))
RegBcnCtrlVal |= EN_TXBCN_RPT;
#endif
rtw_write8(padapter, REG_BCN_CTRL, RegBcnCtrlVal);
}
VOID
HalROMDownloadFWRSVDPage8814A(
IN PADAPTER Adapter,
IN PVOID buffer,
IN u32 Len
)
{
u8 u1bTmp=0, tmpReg422=0;
u8 BcnValidReg=0,TxBcReg=0;
BOOLEAN bSendBeacon=_FALSE, bDownLoadRSVDPageOK = _FALSE;
u8* pbuffer = buffer;
BOOLEAN fs = _TRUE, ls = _FALSE;
u8 FWHeaderSize = 64, PageSize = 128 ;
u16 RsvdPageNum = 0;
u32 dmem_pkt_size = 0, iram_pkt_size = 0 ,MaxRsvdPageBufSize = 0;
u32 last_block_size = 0, filesize_ram_block = 0, pkt_offset = 0;
u32 txpktbuf_bndy = 0;
u32 BeaconHeaderInTxPacketBuf = 0, MEMOffsetInTxPacketBuf = 0;
//Set REG_CR bit 8. DMA beacon by SW.
u1bTmp = rtw_read8(Adapter, REG_CR_8814A+1);
rtw_write8(Adapter, REG_CR_8814A+1, (u1bTmp|BIT0));
/*RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));*/
// Disable Hw protection for a time which revserd for Hw sending beacon.
// Fix download reserved page packet fail that access collision with the protection time.
// 2010.05.11. Added by tynli.
SetBcnCtrlReg(Adapter, 0, BIT3);
SetBcnCtrlReg(Adapter, BIT4, 0);
// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL_8814A+2);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8814A+2, tmpReg422&(~BIT6));
if(tmpReg422&BIT6)
{
RTW_INFO("HalROMDownloadFWRSVDPage8814A(): There is an Adapter is sending beacon.\n");
bSendBeacon = _TRUE;
}
//Set The head page of packet of Bcnq
rtw_hal_get_def_var(Adapter, HAL_DEF_TX_PAGE_BOUNDARY, (u16*)&txpktbuf_bndy);
rtw_write16(Adapter,REG_FIFOPAGE_CTRL_2_8814A, txpktbuf_bndy);
/* RTW_INFO("HalROMDownloadFWRSVDPage8814A: txpktbuf_bndy=%d\n", txpktbuf_bndy); */
// Clear beacon valid check bit.
BcnValidReg = rtw_read8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1);
rtw_write8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1, (BcnValidReg|BIT7));
// Return Beacon TCB.
//ReturnBeaconQueueTcb_8814A(Adapter);
dmem_pkt_size = (u32)GET_FIRMWARE_HDR_TOTAL_DMEM_SZ_3081(pbuffer);
iram_pkt_size = (u32)GET_FIRMWARE_HDR_IRAM_SZ_3081(pbuffer);
dmem_pkt_size += (u32)FW_CHKSUM_DUMMY_SZ;
iram_pkt_size += (u32)FW_CHKSUM_DUMMY_SZ;
if(dmem_pkt_size + iram_pkt_size + FWHeaderSize != Len)
{
RTW_INFO("ERROR: Fw Hdr size do not match the real fw size!!\n");
RTW_INFO("dmem_pkt_size = %d, iram_pkt_size = %d,FWHeaderSize = %d, Len = %d!!\n",dmem_pkt_size,iram_pkt_size,FWHeaderSize,Len);
return;
}
RTW_INFO("dmem_pkt_size = %d, iram_pkt_size = %d,FWHeaderSize = %d, Len = %d!!\n",dmem_pkt_size,iram_pkt_size,FWHeaderSize,Len);
// download rsvd page.
//RsvdPageNum = GetTxBufferRsvdPageNum8814A(Adapter, _FALSE);
#ifdef CONFIG_BCN_IC
/* TODO: check tx buffer and DMA size */
MaxRsvdPageBufSize = MAX_CMDBUF_SZ-TXDESC_OFFSET;
#else
MaxRsvdPageBufSize = MAX_XMIT_EXTBUF_SZ-TXDESC_OFFSET;//RsvdPageNum*PageSize - 40 -16 /*modified for usb*/;//TX_INFO_SIZE_8814AE;
#endif
RTW_INFO("MaxRsvdPageBufSize %d, Total len %d\n",MaxRsvdPageBufSize,Len);
BeaconHeaderInTxPacketBuf = txpktbuf_bndy * PageSize;
MEMOffsetInTxPacketBuf = OCPBASE_TXBUF_3081 + BeaconHeaderInTxPacketBuf + 40;//TX_INFO_SIZE_8814AE;
//download DMEM
while(dmem_pkt_size > 0)
{
if(dmem_pkt_size > MaxRsvdPageBufSize)
{
filesize_ram_block = MaxRsvdPageBufSize;
ls = _FALSE;
last_block_size = dmem_pkt_size -MaxRsvdPageBufSize;
if(last_block_size < MaxRsvdPageBufSize)
{
if(((last_block_size + 40) & 0x3F) == 0) // Multiples of 64
filesize_ram_block -=4;
}
}
else
{
filesize_ram_block = dmem_pkt_size;
ls = _TRUE;
}
fs = (pkt_offset == 0 ? _TRUE: _FALSE);
// Return Beacon TCB.
//ReturnBeaconQueueTcb_8814A(Adapter);
//RTW_INFO("%d packet offset %d dmem_pkt_size %d\n", __LINE__,pkt_offset, dmem_pkt_size);
SetDownLoadFwRsvdPagePkt_8814A(Adapter, pbuffer+FWHeaderSize+pkt_offset, filesize_ram_block);
bDownLoadRSVDPageOK = WaitDownLoadRSVDPageOK_3081(Adapter);
if(!bDownLoadRSVDPageOK)
{
RTW_INFO("ERROR: DMEM bDownLoadRSVDPageOK is false!!\n");
return;
}
IDDMADownLoadFW_3081(Adapter,MEMOffsetInTxPacketBuf,OCPBASE_DMEM_3081+pkt_offset,filesize_ram_block,fs,ls);
dmem_pkt_size -= filesize_ram_block;
pkt_offset += filesize_ram_block;
}
//download IRAM
pkt_offset = 0;
while(iram_pkt_size > 0)
{
if(iram_pkt_size > MaxRsvdPageBufSize)
{
filesize_ram_block = MaxRsvdPageBufSize;
ls = _FALSE;
last_block_size = iram_pkt_size -MaxRsvdPageBufSize;
if(last_block_size < MaxRsvdPageBufSize)
{
if(((last_block_size + 40) & 0x3F) == 0) // Multiples of 64
filesize_ram_block -=4;
}
}
else
{
filesize_ram_block = iram_pkt_size;
ls = _TRUE;
}
fs = (pkt_offset == 0 ? _TRUE: _FALSE);
// Return Beacon TCB.
//ReturnBeaconQueueTcb_8814A(Adapter);
//RTW_INFO("%d packet offset %d iram_pkt_size %d\n", __LINE__,pkt_offset, iram_pkt_size);
SetDownLoadFwRsvdPagePkt_8814A(Adapter, pbuffer+Len-iram_pkt_size, filesize_ram_block);
bDownLoadRSVDPageOK = WaitDownLoadRSVDPageOK_3081(Adapter);
if(!bDownLoadRSVDPageOK)
{
RTW_INFO("ERROR: IRAM bDownLoadRSVDPageOK is false!!\n");
return;
}
IDDMADownLoadFW_3081(Adapter,MEMOffsetInTxPacketBuf,OCPBASE_IMEM_3081+pkt_offset,filesize_ram_block,fs,ls);
iram_pkt_size -= filesize_ram_block;
pkt_offset += filesize_ram_block;
}
// Enable Bcn
SetBcnCtrlReg(Adapter, BIT3, 0);
SetBcnCtrlReg(Adapter, 0, BIT4);
// To make sure that if there exists an adapter which would like to send beacon.
// If exists, the origianl value of 0x422[6] will be 1, we should check this to
// prevent from setting 0x422[6] to 0 after download reserved page, or it will cause
// the beacon cannot be sent by HW.
// 2010.06.23. Added by tynli.
if(bSendBeacon)
{
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8814A+2, tmpReg422);
}
// Do not enable HW DMA BCN or it will cause Pcie interface hang by timing issue. 2011.11.24. by tynli.
//if(!Adapter->bEnterPnpSleep)
{
// Clear CR[8] or beacon packet will not be send to TxBuf anymore.
u1bTmp = rtw_read8(Adapter, REG_CR_8814A+1);
rtw_write8(Adapter, REG_CR_8814A+1, (u1bTmp&(~BIT0)));
}
u1bTmp=rtw_read8(Adapter, REG_8051FW_CTRL_8814A); //add by gw for flags to show the fw download ok 20130826
if( u1bTmp&DMEM_CHKSUM_OK)
{
if(u1bTmp&IMEM_CHKSUM_OK)
{
u1Byte tem;
tem=rtw_read8(Adapter, REG_8051FW_CTRL_8814A+1);
rtw_write8(Adapter, REG_8051FW_CTRL_8814A+1,(tem|BIT6));
}
}
}
s32
_FWFreeToGo8814A(
IN PADAPTER Adapter
)
{
u32 counter = 0;
u32 value32;
// polling CheckSum report
do{
rtw_mdelay_os(50);
value32 = rtw_read32(Adapter, REG_8051FW_CTRL_8814A);
} while ((counter++ < 100) && (!(value32 & CPU_DL_READY)));
if (counter >= 100) {
RTW_ERR("_FWFreeToGo8814A:: FW init fail ! REG_8051FW_CTRL_8814A:0x%08x .\n", value32);
return _FAIL;
}
RTW_INFO("_FWFreeToGo8814A:: FW init ok ! REG_8051FW_CTRL_8814A:0x%08x .\n", value32);
return _SUCCESS;
}
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
u8 FwBuffer8814[FW_SIZE];
#ifdef CONFIG_MP_INCLUDED
extern char *rtw_fw_mp_bt_file_path;
#endif // CONFIG_MP_INCLUDED
u8 FwBuffer[FW_SIZE];
#endif //CONFIG_FILE_FWIMG
s32
FirmwareDownload8814A(
IN PADAPTER Adapter,
IN BOOLEAN bUsedWoWLANFw
)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
u32 fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 *pFwImageFileName;
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8814 pFirmware = NULL;
u8 *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
pFirmware = (PRT_FIRMWARE_8814)rtw_zmalloc(sizeof(RT_FIRMWARE_8814));
if(!pFirmware)
{
rtStatus = _FAIL;
goto exit;
}
#ifdef CONFIG_FILE_FWIMG
if(rtw_is_file_readable(rtw_fw_file_path) == _TRUE)
{
RTW_INFO("%s accquire FW from file:%s\n", __FUNCTION__, rtw_fw_file_path);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
}
else
#endif //CONFIG_FILE_FWIMG
{
RTW_INFO("%s fw source from Header\n", __FUNCTION__);
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
}
switch(pFirmware->eFWSource)
{
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrieve_from_file(rtw_fw_file_path, FwBuffer8814, FW_SIZE);
pFirmware->ulFwLength = rtStatus>=0?rtStatus:0;
pFirmware->szFwBuffer = FwBuffer8814;
#endif //CONFIG_FILE_FWIMG
break;
case FW_SOURCE_HEADER_FILE:
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw) {
pFirmware->szFwBuffer = array_mp_8814a_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8814a_fw_wowlan;
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "WoWLAN", pFirmware->ulFwLength);
} else
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == _TRUE) {
pFirmware->szFwBuffer = array_mp_8814a_fw_nic_bt;
pFirmware->ulFwLength = array_length_mp_8814a_fw_nic_bt;
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC-BTCOEX", pFirmware->ulFwLength);
} else
#endif /* CONFIG_BT_COEXIST */
{
//ODM_CmnInfoInit(pDM_OutSrc, ODM_CMNINFO_IC_TYPE, ODM_RTL8814A);
pFirmware->szFwBuffer = array_mp_8814a_fw_nic;
pFirmware->ulFwLength = array_length_mp_8814a_fw_nic;
RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength);
}
break;
}
if (pFirmware->ulFwLength > FW_SIZE) {
rtStatus = _FAIL;
RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
pFwHdr = (u8 *)pFirmware->szFwBuffer;
pHalData->firmware_version = (u16)GET_FIRMWARE_HDR_VERSION_3081(pFwHdr);
pHalData->firmware_sub_version = (u16)GET_FIRMWARE_HDR_SUB_VER_3081(pFwHdr);
pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_3081(pFwHdr);
RTW_INFO ("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
__FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature);
fwdl_start_time = rtw_get_current_time();
_FWDownloadEnable_8814A(Adapter, _TRUE);
_3081Disable8814A(Adapter);//add by gw 2013026 for disable mcu core
HalROMDownloadFWRSVDPage8814A(Adapter,pFirmwareBuf,FirmwareLen);
_3081Enable8814A(Adapter);//add by gw 2013026 for Enable mcu core
_FWDownloadEnable_8814A(Adapter, _FALSE);
rtStatus = _FWFreeToGo8814A(Adapter);
if (_SUCCESS != rtStatus)
goto fwdl_stat;
fwdl_stat:
RTW_INFO("FWDL %s. write_fw:%u, %dms\n"
, (rtStatus == _SUCCESS)?"success":"fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8814));
#ifdef CONFIG_WOWLAN
if (adapter_to_pwrctl(Adapter)->wowlan_mode)
InitializeFirmwareVars8814(Adapter);
else
RTW_ERR("%s: wowland_mode:%d wowlan_wake_reason:%d\n",
__func__, adapter_to_pwrctl(Adapter)->wowlan_mode,
adapter_to_pwrctl(Adapter)->wowlan_wake_reason);
#endif
return rtStatus;
}
void InitializeFirmwareVars8814(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
// Init Fw LPS related.
pwrpriv->bFwCurrentInPSMode = _FALSE;
/* Init H2C cmd.*/
rtw_write8(padapter, REG_HMETFR_8814A, 0x0f);
// Init H2C counter. by tynli. 2009.12.09.
pHalData->LastHMEBoxNum = 0;
}
/*
//
// Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW.
// 2013.01.23 by tynli
// Porting from 8723B. 2013.04.01
//
VOID
SetFwBTFwPatchCmd(
IN PADAPTER Adapter,
IN u16 FwSize
)
{
u8 u1BTFwPatchParm[6]={0};
RTW_INFO("SetFwBTFwPatchCmd_8821(): FwSize = %d\n", FwSize);
//SET_8812_H2CCMD_BT_FW_PATCH_ENABLE(u1BTFwPatchParm, 1);
SET_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize);
SET_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, 0);
SET_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, 0xa0);
SET_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, 0x10);
SET_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, 0x80);
FillH2CCmd_8812(Adapter, H2C_BT_FW_PATCH, 6 , u1BTFwPatchParm);
}
int _CheckWLANFwPatchBTFwReady_8821A( PADAPTER Adapter )
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 count=0;
u8 u1bTmp;
int ret = _FAIL;
#if (DEV_BUS_TYPE == RT_SDIO_INTERFACE)
u32 txpktbuf_bndy;
#endif
//---------------------------------------------------------
// Check if BT FW patch procedure is ready.
//---------------------------------------------------------
do{
u1bTmp = rtw_read8(Adapter, REG_FW_DRV_MSG_8812);
if((u1bTmp&BIT6) || (u1bTmp&BIT7))
{
ret = _SUCCESS;
break;
}
count++;
RT_TRACE(_module_mp_, _drv_info_,("0x81=%x, wait for 50 ms (%d) times.\n",
u1bTmp, count));
rtw_msleep_os(50); // 50ms
}while(!((u1bTmp&BIT6) || (u1bTmp&BIT7)) && count < 50);
RT_TRACE(_module_mp_, _drv_notice_,("_CheckWLANFwPatchBTFwReady():"
" Polling ready bit 0x88[6:7] for %d times.\n", count));
if(count >= 50)
{
RTW_INFO("_CheckWLANFwPatchBTFwReady():"
" Polling ready bit 0x88[6:7] FAIL!!\n");
}
//---------------------------------------------------------
// Reset beacon setting to the initial value.
//---------------------------------------------------------
#if (DEV_BUS_TYPE == RT_SDIO_INTERFACE)
#if 0
if(!Adapter->MgntInfo.bWiFiConfg)
{
txpktbuf_bndy = TX_PAGE_BOUNDARY_8821;
}
else
#endif
{// for WMM
txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_8821;
}
ret = InitLLTTable8812A(Adapter, txpktbuf_bndy);
if(_SUCCESS != ret){
RTW_INFO("_CheckWLANFwPatchBTFwReady_8821A(): Failed to init LLT!\n");
}
// Init Tx boundary.
rtw_write8(Adapter, REG_TDECTRL+1, (u8)txpktbuf_bndy);
#endif
SetBcnCtrlReg(Adapter, BIT3, 0);
SetBcnCtrlReg(Adapter, 0, BIT4);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl|BIT6));
pHalData->RegFwHwTxQCtrl |= BIT6;
u1bTmp = rtw_read8(Adapter, REG_CR+1);
rtw_write8(Adapter, REG_CR+1, (u1bTmp&(~BIT0)));
return ret;
}
int _WriteBTFWtoTxPktBuf8812(
PADAPTER Adapter,
PVOID buffer,
u32 FwBufLen,
u8 times
)
{
int rtStatus = _SUCCESS;
//u32 value32;
//u8 numHQ, numLQ, numPubQ;//, txpktbuf_bndy;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo);
u8 BcnValidReg;
u8 count=0, DLBcnCount=0;
u8* FwbufferPtr = (u8*)buffer;
//PRT_TCB pTcb, ptempTcb;
//PRT_TX_LOCAL_BUFFER pBuf;
BOOLEAN bRecover=_FALSE;
u8* ReservedPagePacket = NULL;
u8* pGenBufReservedPagePacket = NULL;
u32 TotalPktLen,txpktbuf_bndy;
//u8 tmpReg422;
//u8 u1bTmp;
u8 *pframe;
struct xmit_priv *pxmitpriv = &(Adapter->xmitpriv);
struct xmit_frame *pmgntframe;
struct pkt_attrib *pattrib;
u8 txdesc_offset = TXDESC_OFFSET;
u8 val8;
#if 1//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
TotalPktLen = FwBufLen;
#else
TotalPktLen = FwBufLen+pHalData->HWDescHeadLength;
#endif
if((TotalPktLen+TXDESC_OFFSET) > MAX_CMDBUF_SZ)
{
RTW_INFO(" WARNING %s => Total packet len = %d over MAX_CMDBUF_SZ:%d \n"
,__FUNCTION__,(TotalPktLen+TXDESC_OFFSET),MAX_CMDBUF_SZ);
return _FAIL;
}
pGenBufReservedPagePacket = rtw_zmalloc(TotalPktLen);//GetGenTempBuffer (Adapter, TotalPktLen);
if (!pGenBufReservedPagePacket)
return _FAIL;
ReservedPagePacket = (u8 *)pGenBufReservedPagePacket;
_rtw_memset(ReservedPagePacket, 0, TotalPktLen);
#if 1//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
_rtw_memcpy(ReservedPagePacket, FwbufferPtr, FwBufLen);
#else
PlatformMoveMemory(ReservedPagePacket+Adapter->HWDescHeadLength , FwbufferPtr, FwBufLen);
#endif
//---------------------------------------------------------
// 1. Pause BCN
//---------------------------------------------------------
//Set REG_CR bit 8. DMA beacon by SW.
#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
u1bTmp = rtw_read8(Adapter, REG_CR+1);
rtw_write8(Adapter, REG_CR+1, (u1bTmp|BIT0));
#else
// Remove for temparaily because of the code on v2002 is not sync to MERGE_TMEP for USB/SDIO.
// De not remove this part on MERGE_TEMP. by tynli.
//pHalData->RegCR_1 |= (BIT0);
//rtw_write8(Adapter, REG_CR+1, pHalData->RegCR_1);
#endif
// Disable Hw protection for a time which revserd for Hw sending beacon.
// Fix download reserved page packet fail that access collision with the protection time.
// 2010.05.11. Added by tynli.
val8 = rtw_read8(Adapter, REG_BCN_CTRL);
val8 &= ~BIT(3);
val8 |= BIT(4);
rtw_write8(Adapter, REG_BCN_CTRL, val8);
#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
if( tmpReg422&BIT6)
bRecover = _TRUE;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, tmpReg422&(~BIT6));
#else
// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
if(pHalData->RegFwHwTxQCtrl & BIT(6))
bRecover=_TRUE;
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl&(~BIT(6))));
pHalData->RegFwHwTxQCtrl &= (~ BIT(6));
#endif
//---------------------------------------------------------
// 2. Adjust LLT table to an even boundary.
//---------------------------------------------------------
#if 0//(DEV_BUS_TYPE == RT_SDIO_INTERFACE)
txpktbuf_bndy = 10; // rsvd page start address should be an even value.
rtStatus = InitLLTTable8723BS(Adapter, txpktbuf_bndy);
if(_SUCCESS != rtStatus){
RTW_INFO("_CheckWLANFwPatchBTFwReady_8723B(): Failed to init LLT!\n");
return _FAIL;
}
// Init Tx boundary.
rtw_write8(Adapter, REG_DWBCN0_CTRL_8723B+1, (u8)txpktbuf_bndy);
#endif
//---------------------------------------------------------
// 3. Write Fw to Tx packet buffer by reseverd page.
//---------------------------------------------------------
do
{
// download rsvd page.
// Clear beacon valid check bit.
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
rtw_write8(Adapter, REG_TDECTRL+2, BcnValidReg&(~BIT(0)));
//BT patch is big, we should set 0x209 < 0x40 suggested from Gimmy
RT_TRACE(_module_mp_, _drv_info_,("0x209:%x\n",
rtw_read8(Adapter, REG_TDECTRL+1)));//209 < 0x40
rtw_write8(Adapter, REG_TDECTRL+1, (0x90-0x20*(times-1)));
RTW_INFO("0x209:0x%x\n", rtw_read8(Adapter, REG_TDECTRL+1));
RT_TRACE(_module_mp_, _drv_info_,("0x209:%x\n",
rtw_read8(Adapter, REG_TDECTRL+1)));
#if 0
// Acquice TX spin lock before GetFwBuf and send the packet to prevent system deadlock.
// Advertised by Roger. Added by tynli. 2010.02.22.
PlatformAcquireSpinLock(Adapter, RT_TX_SPINLOCK);
if(MgntGetFWBuffer(Adapter, &pTcb, &pBuf))
{
PlatformMoveMemory(pBuf->Buffer.VirtualAddress, ReservedPagePacket, TotalPktLen);
CmdSendPacket(Adapter, pTcb, pBuf, TotalPktLen, DESC_PACKET_TYPE_NORMAL, _FALSE);
}
else
dbgdump("SetFwRsvdPagePkt(): MgntGetFWBuffer FAIL!!!!!!!!.\n");
PlatformReleaseSpinLock(Adapter, RT_TX_SPINLOCK);
#else
//---------------------------------------------------------
//tx reserved_page_packet
//----------------------------------------------------------
if ((pmgntframe = rtw_alloc_cmdxmitframe(pxmitpriv)) == NULL) {
rtStatus = _FAIL;
goto exit;
}
//update attribute
pattrib = &pmgntframe->attrib;
update_mgntframe_attrib(Adapter, pattrib);
pattrib->qsel = QSLT_BEACON;
pattrib->pktlen = pattrib->last_txcmdsz = FwBufLen ;
//_rtw_memset(pmgntframe->buf_addr, 0, TotalPktLen+txdesc_size);
//pmgntframe->buf_addr = ReservedPagePacket ;
_rtw_memcpy( (u8*) (pmgntframe->buf_addr + txdesc_offset), ReservedPagePacket, FwBufLen);
RTW_INFO("[%d]===>TotalPktLen + TXDESC_OFFSET TotalPacketLen:%d \n", DLBcnCount, (FwBufLen + txdesc_offset));
#ifdef CONFIG_PCI_HCI
dump_mgntframe(Adapter, pmgntframe);
#else
dump_mgntframe_and_wait(Adapter, pmgntframe, 100);
#endif
#endif
#if 1
// check rsvd page download OK.
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
while(!(BcnValidReg & BIT(0)) && count <200)
{
count++;
//PlatformSleepUs(10);
rtw_msleep_os(1);
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
RT_TRACE(_module_mp_, _drv_notice_,("Poll 0x20A = %x\n", BcnValidReg));
}
DLBcnCount++;
//RTW_INFO("##0x208:%08x,0x210=%08x\n",rtw_read32(Adapter, REG_TDECTRL),rtw_read32(Adapter, 0x210));
rtw_write8(Adapter, REG_TDECTRL+2,BcnValidReg);
}while((!(BcnValidReg&BIT(0))) && DLBcnCount<5);
#endif
if(DLBcnCount >=5){
RTW_INFO(" check rsvd page download OK DLBcnCount =%d \n",DLBcnCount);
rtStatus = _FAIL;
goto exit;
}
if(!(BcnValidReg&BIT(0)))
{
RTW_INFO("_WriteFWtoTxPktBuf(): 1 Download RSVD page failed!\n");
rtStatus = _FAIL;
goto exit;
}
//---------------------------------------------------------
// 4. Set Tx boundary to the initial value
//---------------------------------------------------------
//---------------------------------------------------------
// 5. Reset beacon setting to the initial value.
// After _CheckWLANFwPatchBTFwReady().
//---------------------------------------------------------
exit:
if(pGenBufReservedPagePacket)
{
RTW_INFO("_WriteBTFWtoTxPktBuf8723B => rtw_mfree pGenBufReservedPagePacket!\n");
rtw_mfree((u8*)pGenBufReservedPagePacket, TotalPktLen);
}
return rtStatus;
}
int ReservedPage_Compare(PADAPTER Adapter,PRT_MP_FIRMWARE pFirmware,u32 BTPatchSize)
{
u8 temp,ret,lastBTsz;
u32 u1bTmp=0,address_start=0,count=0,i=0;
u8 *myBTFwBuffer = NULL;
myBTFwBuffer = rtw_zmalloc(BTPatchSize);
if (myBTFwBuffer == NULL)
{
RTW_INFO("%s can't be executed due to the failed malloc.\n", __FUNCTION__);
Adapter->mppriv.bTxBufCkFail=_TRUE;
return _FALSE;
}
temp=rtw_read8(Adapter,0x209);
address_start=(temp*128)/8;
rtw_write32(Adapter,0x140,0x00000000);
rtw_write32(Adapter,0x144,0x00000000);
rtw_write32(Adapter,0x148,0x00000000);
rtw_write8(Adapter,0x106,0x69);
for(i=0;i<(BTPatchSize/8);i++)
{
rtw_write32(Adapter,0x140,address_start+5+i) ;
//polling until reg 0x140[23]=1;
do{
u1bTmp = rtw_read32(Adapter, 0x140);
if(u1bTmp&BIT(23))
{
ret = _SUCCESS;
break;
}
count++;
RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n",u1bTmp, count);
rtw_msleep_os(10); // 10ms
}while(!(u1bTmp&BIT(23)) && count < 50);
myBTFwBuffer[i*8+0]=rtw_read8(Adapter, 0x144);
myBTFwBuffer[i*8+1]=rtw_read8(Adapter, 0x145);
myBTFwBuffer[i*8+2]=rtw_read8(Adapter, 0x146);
myBTFwBuffer[i*8+3]=rtw_read8(Adapter, 0x147);
myBTFwBuffer[i*8+4]=rtw_read8(Adapter, 0x148);
myBTFwBuffer[i*8+5]=rtw_read8(Adapter, 0x149);
myBTFwBuffer[i*8+6]=rtw_read8(Adapter, 0x14a);
myBTFwBuffer[i*8+7]=rtw_read8(Adapter, 0x14b);
}
rtw_write32(Adapter,0x140,address_start+5+BTPatchSize/8) ;
lastBTsz=BTPatchSize%8;
//polling until reg 0x140[23]=1;
u1bTmp=0;
count=0;
do{
u1bTmp = rtw_read32(Adapter, 0x140);
if(u1bTmp&BIT(23))
{
ret = _SUCCESS;
break;
}
count++;
RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n",u1bTmp, count);
rtw_msleep_os(10); // 10ms
}while(!(u1bTmp&BIT(23)) && count < 50);
for(i=0;i<lastBTsz;i++)
{
myBTFwBuffer[(BTPatchSize/8)*8+i] = rtw_read8(Adapter, (0x144+i));
}
for(i=0;i<BTPatchSize;i++)
{
if(myBTFwBuffer[i]!= pFirmware->szFwBuffer[i])
{
RTW_INFO(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n",i, myBTFwBuffer[i],pFirmware->szFwBuffer[i]);
Adapter->mppriv.bTxBufCkFail=_TRUE;
break;
}
}
if (myBTFwBuffer != NULL)
{
rtw_mfree(myBTFwBuffer, BTPatchSize);
}
return _TRUE;
}
#ifdef CONFIG_RTL8821A
s32 FirmwareDownloadBT(PADAPTER padapter, PRT_MP_FIRMWARE pFirmware)
{
s32 rtStatus;
u8 *pBTFirmwareBuf;
u32 BTFirmwareLen;
u8 download_time;
s8 i;
rtStatus = _SUCCESS;
pBTFirmwareBuf = NULL;
BTFirmwareLen = 0;
//
// Patch BT Fw. Download BT RAM code to Tx packet buffer.
//
if (padapter->bBTFWReady) {
RTW_INFO("%s: BT Firmware is ready!!\n", __FUNCTION__);
return _FAIL;
}
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(rtw_fw_mp_bt_file_path) == _TRUE)
{
RTW_INFO("%s: accquire MP BT FW from file:%s\n", __FUNCTION__, rtw_fw_mp_bt_file_path);
rtStatus = rtw_retrieve_from_file(rtw_fw_mp_bt_file_path, FwBuffer, 0x8000);
BTFirmwareLen = rtStatus>=0?rtStatus:0;
pBTFirmwareBuf = FwBuffer;
}
else
#endif // CONFIG_FILE_FWIMG
{
#ifdef CONFIG_EMBEDDED_FWIMG
RTW_INFO("%s: Download MP BT FW from header\n", __FUNCTION__);
pBTFirmwareBuf = (u8*)Rtl8821A_BT_MP_Patch_FW;
BTFirmwareLen = Rtl8812BFwBTImgArrayLength;
pFirmware->szFwBuffer = pBTFirmwareBuf;
pFirmware->ulFwLength = BTFirmwareLen;
#endif // CONFIG_EMBEDDED_FWIMG
}
RTW_INFO("%s: MP BT Firmware size=%d\n", __FUNCTION__, BTFirmwareLen);
// for h2c cam here should be set to true
padapter->bFWReady = _TRUE;
download_time = (BTFirmwareLen + 4095) / 4096;
RTW_INFO("%s: download_time is %d\n", __FUNCTION__, download_time);
// Download BT patch Fw.
for (i = (download_time-1); i >= 0; i--)
{
if (i == (download_time - 1))
{
rtStatus = _WriteBTFWtoTxPktBuf8812(padapter, pBTFirmwareBuf+(4096*i), (BTFirmwareLen-(4096*i)), 1);
RTW_INFO("%s: start %d, len %d, time 1\n", __FUNCTION__, 4096*i, BTFirmwareLen-(4096*i));
}
else
{
rtStatus = _WriteBTFWtoTxPktBuf8812(padapter, pBTFirmwareBuf+(4096*i), 4096, (download_time-i));
RTW_INFO("%s: start %d, len 4096, time %d\n", __FUNCTION__, 4096*i, download_time-i);
}
if (rtStatus != _SUCCESS)
{
RTW_INFO("%s: BT Firmware download to Tx packet buffer fail!\n", __FUNCTION__);
padapter->bBTFWReady = _FALSE;
return rtStatus;
}
}
ReservedPage_Compare(padapter,pFirmware,BTFirmwareLen);
padapter->bBTFWReady = _TRUE;
SetFwBTFwPatchCmd_8821(padapter, (u16)BTFirmwareLen);
rtStatus = _CheckWLANFwPatchBTFwReady_8821A(padapter);
RTW_INFO("<===%s: return %s!\n", __FUNCTION__, rtStatus==_SUCCESS?"SUCCESS":"FAIL");
return rtStatus;
}
#endif //CONFIG_RTL8821A*/
#ifdef CONFIG_WOWLAN
//===========================================
//
// Description: Prepare some information to Fw for WoWLAN.
// (1) Download wowlan Fw.
// (2) Download RSVD page packets.
// (3) Enable AP offload if needed.
//
// 2011.04.12 by tynli.
//
VOID
SetFwRelatedForWoWLAN8812(
IN PADAPTER padapter,
IN u8 bHostIsGoingtoSleep
)
{
int status=_FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 bRecover = _FALSE;
//
// 1. Before WoWLAN we need to re-download WoWLAN Fw.
//
status = FirmwareDownload8812(padapter, bHostIsGoingtoSleep);
if(status != _SUCCESS) {
RTW_INFO("SetFwRelatedForWoWLAN8812(): Re-Download Firmware failed!!\n");
return;
} else {
RTW_INFO("SetFwRelatedForWoWLAN8812(): Re-Download Firmware Success !!\n");
}
//
// 2. Re-Init the variables about Fw related setting.
//
InitializeFirmwareVars8812(padapter);
}
#endif //CONFIG_WOWLAN
//===========================================================
// Efuse related code
//===========================================================
BOOLEAN
hal_GetChnlGroup8814A(
IN u8 Channel,
OUT u8* pGroup
)
{
BOOLEAN bIn24G=_TRUE;
if(Channel <= 14)
{
bIn24G=_TRUE;
if (1 <= Channel && Channel <= 2 ) *pGroup = 0;
else if (3 <= Channel && Channel <= 5 ) *pGroup = 1;
else if (6 <= Channel && Channel <= 8 ) *pGroup = 2;
else if (9 <= Channel && Channel <= 11) *pGroup = 3;
else if (12 <= Channel && Channel <= 14) *pGroup = 4;
else
{
RT_DISP(FPHY, PHY_TXPWR_EFUSE, ("==>hal_GetChnlGroupJaguar in 2.4 G, but Channel %d in Group not found \n", Channel));
}
}
else
{
bIn24G=_FALSE;
if (36 <= Channel && Channel <= 42) *pGroup = 0; // 36 38 40
else if (44 <= Channel && Channel <= 48) *pGroup = 1; // 44 46 48
else if (50 <= Channel && Channel <= 58) *pGroup = 2; // 52 54 56
else if (60 <= Channel && Channel <= 64) *pGroup = 3; // 60 62 64
else if (100 <= Channel && Channel <= 106) *pGroup = 4; // 100 102 104
else if (108 <= Channel && Channel <= 114) *pGroup = 5; // 108 110 112
else if (116 <= Channel && Channel <= 122) *pGroup = 6; // 116 118 120
else if (124 <= Channel && Channel <= 130) *pGroup = 7; // 124 126 128
else if (132 <= Channel && Channel <= 138) *pGroup = 8; // 132 134 136
else if (140 <= Channel && Channel <= 144) *pGroup = 9; // 140 142 144
else if (149 <= Channel && Channel <= 155) *pGroup = 10; // 149 151 153
else if (157 <= Channel && Channel <= 161) *pGroup = 11; // 157 159 161
else if (165 <= Channel && Channel <= 171) *pGroup = 12; // 165 167 169
else if (173 <= Channel && Channel <= 177) *pGroup = 13; // 173 175 177
else
{
RT_DISP(FPHY, PHY_TXPWR_EFUSE, ("==>hal_GetChnlGroupJaguar in 5G, but Channel %d in Group not found \n",Channel));
}
}
return bIn24G;
}
#if 0
static void
hal_ReadPowerValueFromPROM8814A(
IN PADAPTER Adapter,
IN PTxPowerInfo24G pwrInfo24G,
IN PTxPowerInfo5G pwrInfo5G,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_8814, group,TxCount=0;
_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
_rtw_memset(pwrInfo5G, 0, sizeof(TxPowerInfo5G));
/* RTW_INFO("hal_ReadPowerValueFromPROM8814A(): PROMContent[0x%x]=0x%x\n", (eeAddr+1), PROMContent[eeAddr+1]); */
if(0xFF == PROMContent[eeAddr+1]) //YJ,add,120316
AutoLoadFail = _TRUE;
if(AutoLoadFail)
{
RTW_INFO("hal_ReadPowerValueFromPROM8814A(): Use Default value!\n");
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
// 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
}
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
// 5G default value
for(group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
{
pwrInfo5G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_5G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo5G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_5G_OFDM_DIFF;
pwrInfo5G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_5G_HT20_DIFF;
pwrInfo5G->BW80_Diff[rfPath][0] = EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW160_Diff[rfPath][0] = EEPROM_DEFAULT_DIFF;
}
else
{
pwrInfo5G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW40_Diff[rfPath][TxCount]= EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW80_Diff[rfPath][TxCount]= EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW160_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
//pHalData->bNOPG = _TRUE;
return;
}
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
// 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
/* RTW_INFO("8814-2G RF-%d-G-%d CCK-Addr-%x BASE=%x\n",
rfPath, group, eeAddr-1, pwrInfo24G->IndexCCK_Base[rfPath][group]); */
}
for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
{
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
/* RTW_INFO("8814-2G RF-%d-G-%d BW40-Addr-%x BASE=%x\n",
rfPath, group, eeAddr-1, pwrInfo24G->IndexBW40_Base[rfPath][group]); */
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]); */
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo24G->OFDM_Diff[rfPath][TxCount]); */
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
}
else
{
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-2G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo24G->BW40_Diff[rfPath][TxCount]); */
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]); */
eeAddr++;
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]); */
{
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-2G RF-%d-SS-%d CCK-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo24G->CCK_Diff[rfPath][TxCount]); */
eeAddr++;
}
}
//5G default value
for(group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
{
pwrInfo5G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo5G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo5G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_DIFF;
/* RTW_INFO("8814-5G RF-%d-G-%d BW40-Addr-%x BASE=%x\n",
rfPath, TxCount, eeAddr-1, pwrInfo5G->IndexBW40_Base[rfPath][group]); */
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo5G->BW40_Diff[rfPath][TxCount]= 0;
{
pwrInfo5G->BW20_Diff[rfPath][0] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo5G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-5G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->BW20_Diff[rfPath][TxCount]); */
{
pwrInfo5G->OFDM_Diff[rfPath][0] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo5G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][TxCount]); */
eeAddr++;
}
else
{
{
pwrInfo5G->BW40_Diff[rfPath][TxCount]= (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo5G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-5G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->BW40_Diff[rfPath][TxCount]); */
{
pwrInfo5G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo5G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-5G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->BW20_Diff[rfPath][TxCount]); */
eeAddr++;
}
}
{
pwrInfo5G->OFDM_Diff[rfPath][1] = (PROMContent[eeAddr]&0xf0)>>4;
pwrInfo5G->OFDM_Diff[rfPath][2] = (PROMContent[eeAddr]&0x0f);
}
/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
rfPath, 2, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][2]); */
eeAddr++;
pwrInfo5G->OFDM_Diff[rfPath][3] = (PROMContent[eeAddr]&0x0f);
/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
rfPath, 3, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][3]); */
eeAddr++;
for(TxCount=1;TxCount<MAX_TX_COUNT;TxCount++)
{
if(pwrInfo5G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][TxCount]); */
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
{
pwrInfo5G->BW80_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo5G->BW80_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW80_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-5G RF-%d-SS-%d BW80-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->BW80_Diff[rfPath][TxCount]); */
{
pwrInfo5G->BW160_Diff[rfPath][TxCount]= (PROMContent[eeAddr]&0x0f);
if(pwrInfo5G->BW160_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW160_Diff[rfPath][TxCount] |= 0xF0;
}
/* RTW_INFO("8814-5G RF-%d-SS-%d BW160-Addr-%x DIFF=%d\n",
rfPath, TxCount, eeAddr, pwrInfo5G->BW160_Diff[rfPath][TxCount]); */
eeAddr++;
}
}
}
#endif
VOID
HALBT_InitHalVars(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
#ifdef CONFIG_BT_COEXIST
#if (MP_DRIVER == 1)
pHalData->bt_coexist.bBtExist = 0;
#else
pHalData->bt_coexist.bBtExist = pHalData->EEPROMBluetoothCoexist;
#endif
pHalData->bt_coexist.btTotalAntNum = pHalData->EEPROMBluetoothAntNum;
pHalData->bt_coexist.btChipType = pHalData->EEPROMBluetoothType;
#endif //CONFIG_BT_COEXIST
}
VOID
BT_InitHalVars(
IN PADAPTER Adapter
)
{
u8 antNum=2, chipType;
BOOLEAN bBtExist=_FALSE;
// HALBT_InitHalVars() must be called first
HALBT_InitHalVars(Adapter);
#if 0
// called after HALBT_InitHalVars()
bBtExist = HALBT_GetBtExist(Adapter);
EXhalbtcoutsrc_SetBtExist(bBtExist);
chipType = HALBT_GetBtChipType(Adapter);
EXhalbtcoutsrc_SetChipType(chipType);
antNum = HALBT_GetPgAntNum(Adapter);
EXhalbtcoutsrc_SetAntNum(BT_COEX_ANT_TYPE_PG, antNum);
#endif
}
VOID
hal_EfuseParseBTCoexistInfo8814A(
IN PADAPTER Adapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tempval=0x0;
if(!AutoLoadFail)
{
tempval = hwinfo[EEPROM_RF_BOARD_OPTION_8814];
if( ((tempval & 0xe0)>>5) == 0x1)// [7:5]
pHalData->EEPROMBluetoothCoexist = 1;
else
pHalData->EEPROMBluetoothCoexist = 0;
pHalData->EEPROMBluetoothType = BT_RTL8814A;
tempval = hwinfo[EEPROM_RF_BT_SETTING_8814];
pHalData->EEPROMBluetoothAntNum = Ant_x1;
}
else
{
pHalData->EEPROMBluetoothCoexist = 0;
pHalData->EEPROMBluetoothType = BT_RTL8814A;
pHalData->EEPROMBluetoothAntNum = Ant_x1;
}
BT_InitHalVars(Adapter);
}
VOID
hal_ReadPROMVersion8814A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(AutoloadFail){
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
else{
pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8814];
if(pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
}
#if 0
void
hal_ReadTxPowerInfo8814A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
TxPowerInfo24G pwrInfo24G;
TxPowerInfo5G pwrInfo5G;
u8 rfPath, ch, group, TxCount;
hal_ReadPowerValueFromPROM8814A(Adapter, &pwrInfo24G,&pwrInfo5G, PROMContent, AutoLoadFail);
//if(!AutoLoadFail)
// pHalData->bTXPowerDataReadFromEEPORM = _TRUE;
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
for (ch = 0 ; ch < CENTER_CH_2G_NUM ; ch++) {
hal_GetChnlGroup8814A(ch+1, &group);
if(ch == 14-1)
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
else
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
//RTW_INFO("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
//RTW_INFO("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_CCK_Base[rfPath][ch]);
//RTW_INFO("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index24G_BW40_Base[rfPath][ch]);
}
for (ch = 0 ; ch < CENTER_CH_5G_ALL_NUM; ch++) {
hal_GetChnlGroup8814A(center_ch_5g_all[ch], &group);
pHalData->Index5G_BW40_Base[rfPath][ch] = pwrInfo5G.IndexBW40_Base[rfPath][group];
//RTW_INFO("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
//RTW_INFO("Index5G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index5G_BW40_Base[rfPath][ch]);
}
for (ch = 0 ; ch < CENTER_CH_5G_80M_NUM; ch++) {
u8 upper, lower;
hal_GetChnlGroup8814A(center_ch_5g_80m[ch], &group);
upper = pwrInfo5G.IndexBW40_Base[rfPath][group];
lower = pwrInfo5G.IndexBW40_Base[rfPath][group+1];
pHalData->Index5G_BW80_Base[rfPath][ch] = (upper + lower) / 2;
//RTW_INFO("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
//RTW_INFO("Index5G_BW80_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index5G_BW80_Base[rfPath][ch]);
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
pHalData->OFDM_5G_Diff[rfPath][TxCount]=pwrInfo5G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW40_Diff[rfPath][TxCount];
pHalData->BW80_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW80_Diff[rfPath][TxCount];
//#if DBG
#if 0
RTW_INFO("--------------------------------------- 2.4G ---------------------------------------\n");
RTW_INFO("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]);
RTW_INFO("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]);
RTW_INFO("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]);
RTW_INFO("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]);
RTW_INFO("---------------------------------------- 5G ----------------------------------------\n");
RTW_INFO("OFDM_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_5G_Diff[rfPath][TxCount]);
RTW_INFO("BW20_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_5G_Diff[rfPath][TxCount]);
RTW_INFO("BW40_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_5G_Diff[rfPath][TxCount]);
RTW_INFO("BW80_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW80_5G_Diff[rfPath][TxCount]);
#endif
}
}
// 2010/10/19 MH Add Regulator recognize for CU.
if(!AutoLoadFail)
{
struct registry_priv *registry_par = &Adapter->registrypriv;
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8814]&0x7); //bit0~2
if(PROMContent[EEPROM_RF_BOARD_OPTION_8814] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2
}
else
{
pHalData->EEPROMRegulatory = 0;
}
RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
#else
void
hal_ReadTxPowerInfo8814A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
TxPowerInfo24G pwrInfo24G;
TxPowerInfo5G pwrInfo5G;
hal_load_txpwr_info(Adapter, &pwrInfo24G, &pwrInfo5G, PROMContent);
/* 2010/10/19 MH Add Regulator recognize for CU. */
if (!AutoLoadFail) {
struct registry_priv *registry_par = &Adapter->registrypriv;
if (PROMContent[EEPROM_RF_BOARD_OPTION_8814] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8814] & 0x7); /* bit0~2 */
} else
pHalData->EEPROMRegulatory = 0;
RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
}
#endif
VOID
hal_ReadBoardType8814A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(!AutoloadFail)
{
pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8814]&0xE0)>>5;
if(PROMContent[EEPROM_RF_BOARD_OPTION_8814] == 0xFF)
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION&0xE0)>>5;
}
else
{
pHalData->InterfaceSel = 0;
}
RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel);
}
VOID
hal_Read_TRX_antenna_8814A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 trx_antenna = RF_2T4R;
if (!AutoloadFail) {
u8 trx_antenna_option = PROMContent[EEPROM_TRX_ANTENNA_OPTION_8814];
if (trx_antenna_option == 0xff) {
trx_antenna = RF_4T4R;
RTW_INFO("EEPROM RF set 4T4R\n");
} else if (trx_antenna_option == 0xee) {
trx_antenna = RF_3T3R;
RTW_INFO("EEPROM RF set 3T3R\n");
} else if (trx_antenna_option == 0x66) {
trx_antenna = RF_2T2R;
RTW_INFO("EEPROM RF set 2T2R\n");
} else if (trx_antenna_option == 0x6f) {
trx_antenna = RF_2T4R;
RTW_INFO("EEPROM RF set 2T4R\n");
} else {
trx_antenna = RF_2T4R;
RTW_INFO("unknown EEPROM RF set, default to 2T4R\n");
}
} else {
trx_antenna = RF_2T4R;
RTW_INFO("AutoloadFail, default to 2T4R\n");
}
/* if driver doesn't set rf_config, use the value of EEPROM */
if (Adapter->registrypriv.rf_config == RF_TYPE_MAX) {
if (trx_antenna == RF_4T4R
#ifdef CONFIG_USB_HCI
&& IS_SUPER_SPEED_USB(Adapter)
#endif /* CONFIG_USB_HCI */
)
Adapter->registrypriv.rf_config = RF_3T3R;
else if (trx_antenna == RF_2T4R)
Adapter->registrypriv.rf_config = RF_2T4R;
else {
Adapter->registrypriv.rf_config = RF_2T4R;
RTW_INFO("default rf type: %d\n", Adapter->registrypriv.rf_config);
}
} else {
#ifdef CONFIG_USB_HCI
if (!IS_SUPER_SPEED_USB(Adapter))
Adapter->registrypriv.rf_config = RF_2T4R;
#endif /* CONFIG_USB_HCI */
}
RTW_INFO("Final rf_config: %d\n", Adapter->registrypriv.rf_config);
}
VOID
hal_ReadThermalMeter_8814A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
pHalData->eeprom_thermal_meter = 0xff;
if(!AutoloadFail)
pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8814];
#if 0 /* ToDo: check with RF */
else
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8814A;
if ((pHalData->eeprom_thermal_meter == 0xff) || (_TRUE == AutoloadFail)) {
pHalData->odmpriv.rf_calibrate_info.bAPKThermalMeterIgnore = _TRUE;
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8814A;
}
#endif
//pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter;
RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter);
}
void hal_ReadRemoteWakeup_8814A(
PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if(AutoLoadFail){
pwrctl->bHWPowerdown = _FALSE;
pwrctl->bSupportRemoteWakeup = _FALSE;
}
else
{
// decide hw if support remote wakeup function
// if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume
/* todo: wowlan should check the efuse again
#ifdef CONFIG_USB_HCI
if(IS_HARDWARE_TYPE_8821U(padapter))
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0_8811AU] & BIT1)?_TRUE :_FALSE;
else
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1)?_TRUE :_FALSE;
#endif //CONFIG_USB_HCI
*/
RTW_INFO("%s...bSupportRemoteWakeup(%x)\n",__FUNCTION__, pwrctl->bSupportRemoteWakeup);
}
}
VOID
hal_ReadChannelPlan8814A(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
hal_com_config_channel_plan(
padapter
, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8814] : NULL
, hwinfo ? hwinfo[EEPROM_ChannelPlan_8814] : 0xFF
, padapter->registrypriv.alpha2
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_REALTEK_DEFINE
, AutoLoadFail
);
/*
padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
padapter
, hwinfo?hwinfo[EEPROM_ChannelPlan_8814]:0xFF
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_REALTEK_DEFINE
, AutoLoadFail
);
*/
RTW_INFO("rfctl->ChannelPlan = 0x%02x\n", rfctl->ChannelPlan);
}
void hal_GetRxGainOffset_8814A(
PADAPTER Adapter,
pu1Byte PROMContent,
BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct registry_priv *pregistrypriv = &Adapter->registrypriv;
pHalData->RxGainOffset[0] = 0;
pHalData->RxGainOffset[1] = 0;
pHalData->RxGainOffset[2] = 0;
pHalData->RxGainOffset[3] = 0;
if ((pregistrypriv->reg_rxgain_offset_2g != 0 && pregistrypriv->reg_rxgain_offset_5gl != 0) &&
(pregistrypriv->reg_rxgain_offset_5gm != 0 && pregistrypriv->reg_rxgain_offset_5gh != 0)) {
pHalData->RxGainOffset[0] = pregistrypriv->reg_rxgain_offset_2g;
pHalData->RxGainOffset[1] = pregistrypriv->reg_rxgain_offset_5gl;
pHalData->RxGainOffset[2] = pregistrypriv->reg_rxgain_offset_5gm;
pHalData->RxGainOffset[3] = pregistrypriv->reg_rxgain_offset_5gh;
RTW_INFO("%s():Use registrypriv 0x%x 0x%x 0x%x 0x%x !!\n", __func__, pregistrypriv->reg_rxgain_offset_2g, pregistrypriv->reg_rxgain_offset_5gl, pregistrypriv->reg_rxgain_offset_5gm, pregistrypriv->reg_rxgain_offset_5gh);
} else {
RTW_INFO("%s(): AutoloadFail = %d!!\n", __func__, AutoloadFail);
pHalData->RxGainOffset[0] = PROMContent[EEPROM_IG_OFFSET_4_CD_2G_8814A];
pHalData->RxGainOffset[0] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_2G_8814A]) << 8;
pHalData->RxGainOffset[1] = PROMContent[EEPROM_IG_OFFSET_4_CD_5GL_8814A];
pHalData->RxGainOffset[1] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_5GL_8814A]) << 8;
pHalData->RxGainOffset[2] = PROMContent[EEPROM_IG_OFFSET_4_CD_5GM_8814A];
pHalData->RxGainOffset[2] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_5GM_8814A]) << 8;
pHalData->RxGainOffset[3] = PROMContent[EEPROM_IG_OFFSET_4_CD_5GH_8814A];
pHalData->RxGainOffset[3] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_5GH_8814A]) << 8;
}
RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_2G = 0x%x!!\n", pHalData->RxGainOffset[0]);
RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_5GL = 0x%x!!\n", pHalData->RxGainOffset[1]);
RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_5GM = 0x%x!!\n", pHalData->RxGainOffset[2]);
RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_5GH = 0x%x!!\n", pHalData->RxGainOffset[3]);
}
void Hal_EfuseParseKFreeData_8814A(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail)
{
#ifdef CONFIG_RF_GAIN_OFFSET
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
u8 kfreePhydata[KFREE_GAIN_DATA_LENGTH_8814A];
u32 i = 0, j = 2, chidx = 0, efuseaddr = 0;
u8 rfpath = 0;
if (GET_PG_KFREE_ON_8814A(PROMContent) && PROMContent[0xc8] != 0xff)
kfree_data->flag |= KFREE_FLAG_ON;
if (GET_PG_KFREE_THERMAL_K_ON_8814A(PROMContent) && PROMContent[0xc8] != 0xff)
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
if (Adapter->registrypriv.RegRfKFreeEnable == 1) {
kfree_data->flag |= KFREE_FLAG_ON;
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
_rtw_memset(kfree_data->bb_gain, 0xff, BB_GAIN_NUM * RF_PATH_MAX);
if (kfree_data->flag & KFREE_FLAG_ON) {
for (i = 0; i < KFREE_GAIN_DATA_LENGTH_8814A; i++) {
efuseaddr = PPG_BB_GAIN_2G_TXBA_OFFSET_8814A - i;
if (efuseaddr <= PPG_BB_GAIN_2G_TXBA_OFFSET_8814A) {
kfreePhydata[i] = EFUSE_Read1Byte(Adapter, efuseaddr);
RTW_INFO("%s,kfreePhydata[%d] = %x\n", __func__, i, kfreePhydata[i]);
}
}
kfree_data->bb_gain[0][RF_PATH_A]
= (kfreePhydata[0] & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->bb_gain[0][RF_PATH_B]
= (kfreePhydata[0] & PPG_BB_GAIN_2G_TXB_OFFSET_MASK) >> 4;
kfree_data->bb_gain[0][RF_PATH_C]
= (kfreePhydata[1] & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->bb_gain[0][RF_PATH_D]
= (kfreePhydata[1] & PPG_BB_GAIN_2G_TXB_OFFSET_MASK) >> 4;
for (chidx = 1; chidx <= BB_GAIN_5GHB; chidx++) {
for (rfpath = RF_PATH_A; rfpath < RF_PATH_MAX; rfpath++)
kfree_data->bb_gain[chidx][rfpath] = kfreePhydata[j + rfpath] & PPG_BB_GAIN_5G_TX_OFFSET_MASK;
j = j + RF_PATH_MAX;
}
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
pHalData->eeprom_thermal_meter += kfree_data->thermal;
RTW_INFO("registrypriv.RegRfKFreeEnable = %d\n", Adapter->registrypriv.RegRfKFreeEnable);
RTW_INFO("kfree flag:%u\n", kfree_data->flag);
if (Adapter->registrypriv.RegRfKFreeEnable == 1 || kfree_data->flag & KFREE_FLAG_ON) {
for (chidx = 0 ; chidx <= BB_GAIN_5GHB; chidx++) {
for (rfpath = RF_PATH_A; rfpath < RF_PATH_MAX; rfpath++)
RTW_INFO("bb_gain[%d][%d]= %x\n", chidx, rfpath, kfree_data->bb_gain[chidx][rfpath]);
}
}
#endif /*CONFIG_RF_GAIN_OFFSET */
}
VOID
hal_EfuseParseXtal_8814A(
IN PADAPTER pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if(!AutoLoadFail)
{
pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8814];
if(pHalData->crystal_cap == 0xFF)
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8814; /* what value should 8814 set? */
}
else
{
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8814;
}
RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap);
}
VOID
hal_ReadAntennaDiversity8814A(
IN PADAPTER pAdapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
pHalData->TRxAntDivType = NO_ANTDIV;
pHalData->AntDivCfg = 0;
RTW_INFO("SWAS: bHwAntDiv = %x, TRxAntDivType = %x\n",
pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
VOID
hal_ReadPAType_8814A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail,
OUT u8* pPAType,
OUT u8* pLNAType
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 LNAType_AB, LNAType_CD;
if( ! AutoloadFail )
{
u8 rfe_type = PROMContent[EEPROM_RFE_OPTION_8814];
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
*pPAType = EF1Byte( *(u8*)&PROMContent[EEPROM_PA_TYPE_8814] );
LNAType_AB = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_AB_2G_8814] );
LNAType_CD = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_CD_2G_8814] );
if (*pPAType == 0xFF && rfe_type == 0xFF)
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
else
pHalData->ExternalPA_2G = (*pPAType & BIT4) ? 1 : 0;
if (LNAType_AB == 0xFF)
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
else
pHalData->ExternalLNA_2G = (LNAType_AB & BIT3) ? 1 : 0;
*pLNAType = (LNAType_AB & BIT3) << 1 | (LNAType_AB & BIT7) >> 2 |
(LNAType_CD & BIT3) << 3 | (LNAType_CD & BIT7);
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
LNAType_AB = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_AB_5G_8814] );
LNAType_CD = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_CD_5G_8814] );
if (*pPAType == 0xFF && rfe_type == 0xFF)
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
else
pHalData->external_pa_5g = (*pPAType & BIT0) ? 1 : 0;
if (LNAType_AB == 0xFF)
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
else
pHalData->external_lna_5g = (LNAType_AB & BIT3) ? 1 : 0;
(*pLNAType) |= ((LNAType_AB & BIT3) >> 3 | (LNAType_AB & BIT7) >> 6 |
(LNAType_CD & BIT3) >> 1 | (LNAType_CD & BIT7) >> 4);
}
else
{
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
else
{
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->external_pa_5g = 0xFF;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->external_lna_5g = 0xFF;
if (GetRegAmplifierType2G(Adapter) == 0)
{
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0)
{
pHalData->external_pa_5g = 0;
pHalData->external_lna_5g = 0;
}
else
{
pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
RTW_INFO("PAType is 0x%x, LNAType is 0x%x\n", *pPAType, *pLNAType);
RTW_INFO("pHalData->ExternalPA_2G = %d, pHalData->external_pa_5g = %d\n", pHalData->ExternalPA_2G, pHalData->external_pa_5g);
RTW_INFO("pHalData->ExternalLNA_2G = %d, pHalData->external_lna_5g = %d\n", pHalData->ExternalLNA_2G, pHalData->external_lna_5g);
}
VOID hal_ReadAmplifierType_8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
switch(pHalData->rfe_type)
{
case 1: /* 8814AU */
pHalData->external_pa_5g = pHalData->external_lna_5g = _TRUE;
pHalData->TypeAPA = pHalData->TypeALNA = 0;/* APA and ALNA is 0 */
break;
case 2: /* socket board 8814AR and 8194AR */
pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
pHalData->TypeAPA = pHalData->TypeALNA = 0x55;/* APA and ALNA is 1 */
pHalData->TypeGPA = pHalData->TypeGLNA = 0x55;/* GPA and GLNA is 1 */
break;
case 3: /* high power on-board 8814AR and 8194AR */
pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
pHalData->TypeAPA = pHalData->TypeALNA = 0xaa;/* APA and ALNA is 2 */
pHalData->TypeGPA = pHalData->TypeGLNA = 0xaa;/* GPA and GLNA is 2 */
break;
case 4: /* on-board 8814AR and 8194AR */
pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
pHalData->TypeAPA = 0x55;/* APA is 1 */
pHalData->TypeALNA = 0xff; /* ALNA is 3 */
pHalData->TypeGPA = pHalData->TypeGLNA = 0x55;/* GPA and GLNA is 1 */
break;
case 5:
pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
pHalData->TypeAPA = 0xaa; /* APA2 */
pHalData->TypeALNA = 0x5500; /* ALNA4 */
pHalData->TypeGPA = pHalData->TypeGLNA = 0xaa; /* GPA2,GLNA2 */
break;
case 6:
pHalData->external_lna_5g = _TRUE;
pHalData->TypeALNA = 0; /* ALNA0 */
break;
case 0:
default: /* 8814AE */
break;
}
RTW_INFO("pHalData->ExternalPA_2G = %d, pHalData->external_pa_5g = %d\n", pHalData->ExternalPA_2G, pHalData->external_pa_5g);
RTW_INFO("pHalData->ExternalLNA_2G = %d, pHalData->external_lna_5g = %d\n", pHalData->ExternalLNA_2G, pHalData->external_lna_5g);
RTW_INFO("pHalData->TypeGPA = 0x%X, pHalData->TypeAPA = 0x%X\n", pHalData->TypeGPA, pHalData->TypeAPA);
RTW_INFO("pHalData->TypeGLNA = 0x%X, pHalData->TypeALNA = 0x%X\n", pHalData->TypeGLNA, pHalData->TypeALNA);
}
VOID
hal_ReadRFEType_8814A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(!AutoloadFail)
{
if ((GetRegRFEType(Adapter) != 64) || 0xFF == PROMContent[EEPROM_RFE_OPTION_8814] || PROMContent[EEPROM_RFE_OPTION_8814] & BIT7) {
if(GetRegRFEType(Adapter) != 64)
pHalData->rfe_type = GetRegRFEType(Adapter);
else if(IS_HARDWARE_TYPE_8814AE(Adapter))
pHalData->rfe_type = 0;
else if(IS_HARDWARE_TYPE_8814AU(Adapter))
pHalData->rfe_type = 1;
hal_ReadAmplifierType_8814A(Adapter);
} else {
/* bit7==0 means RFE type defined by 0xCA[6:0] */
pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8814] & 0x7F;
hal_ReadAmplifierType_8814A(Adapter);
}
}
else
{
if(GetRegRFEType(Adapter) != 64)
pHalData->rfe_type = GetRegRFEType(Adapter);
else if(IS_HARDWARE_TYPE_8814AE(Adapter))
pHalData->rfe_type = 0;
else if(IS_HARDWARE_TYPE_8814AU(Adapter))
pHalData->rfe_type = 1;
hal_ReadAmplifierType_8814A(Adapter);
}
RTW_INFO("RFE Type: 0x%2x\n", pHalData->rfe_type);
}
static VOID
hal_EfusePowerSwitch8814A(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
u8 tempval;
u16 tmpV16;
u8 EFUSE_ACCESS_ON_8814A = 0x69;
u8 EFUSE_ACCESS_OFF_8814A = 0x00;
if (PwrState == _TRUE)
{
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON_8814A);
// Reset: 0x0000h[28], default valid
tmpV16 = PlatformEFIORead2Byte(pAdapter,REG_SYS_FUNC_EN);
if( !(tmpV16 & FEN_ELDR) ){
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16);
}
// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
tmpV16 = PlatformEFIORead2Byte(pAdapter,REG_SYS_CLKR);
if( (!(tmpV16 & LOADER_CLK_EN) ) ||(!(tmpV16 & ANA8M) ) )
{
tmpV16 |= (LOADER_CLK_EN |ANA8M ) ;
rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16);
}
if(bWrite == _TRUE)
{
// Enable LDO 2.5V before read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
}
}
else
{
rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF_8814A);
if(bWrite == _TRUE){
// Disable LDO 2.5V after read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
}
}
}
static VOID
rtl8814_EfusePowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
hal_EfusePowerSwitch8814A(pAdapter, bWrite, PwrState);
}
static VOID
hal_EfuseReadEFuse8814A(
PADAPTER Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
u8 *efuseTbl = NULL;
u16 eFuse_Addr = 0;
u8 offset=0, wden=0;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 offset_2_0=0;
u8 efuseHeader=0, efuseExtHdr=0, efuseData=0;
//
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
//
if((_offset + _size_byte)>EFUSE_MAP_LEN_8814A)
{// total E-Fuse table is 512bytes
RTW_INFO("Hal_EfuseReadEFuse8814A(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
goto exit;
}
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_8814A);
if(efuseTbl == NULL)
{
RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_8814A, EFUSE_MAX_WORD_UNIT_8814A, 2);
if(eFuseWord == NULL)
{
RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_8814A; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT_8814A; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if(efuseHeader != 0xFF)
{
efuse_utilized++;
}
else
{
RTW_INFO("EFUSE is empty\n");
efuse_utilized = 0;
goto exit;
}
/* RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Hal_EfuseReadEFuse8814A(): efuse_utilized: %d\n", efuse_utilized)); */
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((efuseHeader != 0xFF) && AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if(EXT_HEADER(efuseHeader)) //extended header
{
offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("extended header offset_2_0=%X\n", offset_2_0));
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseExtHdr));
if(efuseExtHdr != 0xff)
{
efuse_utilized++;
if(ALL_WORDS_DISABLED(efuseExtHdr))
{
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if(efuseHeader != 0xff)
{
efuse_utilized++;
}
break;
}
else
{
offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0;
wden = (efuseExtHdr & 0x0F);
}
}
else
{
RTW_INFO("Error condition, extended = 0xff\n");
// We should handle this condition.
break;
}
}
else
{
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_8814A)
{
// Get word enable value from PG header
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Offset-%X Worden=%X\n", offset, wden));
for(i=0; i<EFUSE_MAX_WORD_UNIT_8814A; i++)
{
// Check word enable condition in the section
if(!(wden & (0x01<<i)))
{
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseData, bPseudoTest);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseData));
efuse_utilized++;
eFuseWord[offset][i] = (efuseData & 0xff);
if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
break;
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseData, bPseudoTest);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseData));
efuse_utilized++;
eFuseWord[offset][i] |= (((u16)efuseData << 8) & 0xff00);
if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
break;
}
}
}
else{//deal with error offset,skip error data
RTW_ERR("invalid offset:0x%02x \n",offset);
for(i=0; i<EFUSE_MAX_WORD_UNIT_8814A; i++){
// Check word enable condition in the section
if(!(wden & 0x01)){
eFuse_Addr++;
efuse_utilized++;
if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
break;
eFuse_Addr++;
efuse_utilized++;
if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
break;
}
}
}
// Read next PG header
efuse_OneByteRead(Adapter, eFuse_Addr, &efuseHeader, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(efuseHeader != 0xFF)
{
eFuse_Addr++;
efuse_utilized++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_8814A; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT_8814A; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
/* RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Hal_EfuseReadEFuse8814A(): efuse_utilized: %d\n", efuse_utilized)); */
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u1Byte)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_8814A);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_8814A);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_8814A, EFUSE_MAX_WORD_UNIT_8814A, sizeof(u16));
}
static VOID
rtl8814_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
hal_EfuseReadEFuse8814A(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}
//Do not support BT
VOID
hal_EFUSEGetEfuseDefinition8814A(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT PVOID pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
u8* pMax_section;
pMax_section = (u8*)pOut;
*pMax_section = EFUSE_MAX_SECTION_8814A;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8814A;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8814A;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_OOB_PROTECT_BYTES);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_OOB_PROTECT_BYTES);
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)EFUSE_MAP_LEN_8814A;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES);
}
break;
default:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = 0;
}
break;
}
}
static VOID
rtl8814_EFUSE_GetEfuseDefinition(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
hal_EFUSEGetEfuseDefinition8814A(pAdapter, efuseType, type, pOut);
}
static u8
hal_EfuseWordEnableDataWrite8814A( IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u16 readbackAddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 readbackData[PGPKT_DATA_SIZE];
_rtw_memset((PVOID)readbackData, 0xff, PGPKT_DATA_SIZE);
RTW_INFO("word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
if ( ! (word_en&BIT0))
{
readbackAddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor
efuse_OneByteRead(pAdapter,readbackAddr, &readbackData[0], bPseudoTest);
efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[1], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor
if((data[0]!=readbackData[0])||(data[1]!=readbackData[1])){
badworden &= (~BIT0);
}
}
if ( ! (word_en&BIT1))
{
readbackAddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor
efuse_OneByteRead(pAdapter,readbackAddr , &readbackData[2], bPseudoTest);
efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[3], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor
if((data[2]!=readbackData[2])||(data[3]!=readbackData[3])){
badworden &=( ~BIT1);
}
}
if ( ! (word_en&BIT2))
{
readbackAddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor
efuse_OneByteRead(pAdapter,readbackAddr, &readbackData[4], bPseudoTest);
efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[5], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor
if((data[4]!=readbackData[4])||(data[5]!=readbackData[5])){
badworden &=( ~BIT2);
}
}
if ( ! (word_en&BIT3))
{
readbackAddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor
efuse_OneByteRead(pAdapter,readbackAddr, &readbackData[6], bPseudoTest);
efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[7], bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor
if((data[6]!=readbackData[6])||(data[7]!=readbackData[7])){
badworden &=( ~BIT3);
}
}
return badworden;
}
static u8
rtl8814_Efuse_WordEnableDataWrite( IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret=0;
ret = hal_EfuseWordEnableDataWrite8814A(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u16 hal_EfuseGetCurrentSize_8814A( PADAPTER pAdapter, BOOLEAN bPseudoTest)
{
int bContinual = _TRUE;
u16 efuse_addr = 0;
u8 hoffset=0, hworden=0;
u8 efuse_data, word_cnts=0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
RTW_INFO("=======> %s() \n", __func__);
if(bPseudoTest)
{
efuse_addr = (u16)(fakeEfuseUsedBytes);
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
}
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr));
while ( bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) &&
(efuse_addr < EFUSE_REAL_CONTENT_LEN_8814A))
{
if (efuse_data != 0xFF)
{
if ((efuse_data&0x1F) == 0x0F) //extended header
{
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F)
{
efuse_addr++;
continue;
} else {
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
} else {
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
}
else
{
bContinual = _FALSE ;
}
}
if(bPseudoTest)
{
fakeEfuseUsedBytes = efuse_addr;
pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
RTW_INFO ("%s(), return %d \n", __func__, pEfuseHal->fakeEfuseUsedBytes );
}
else
{
pEfuseHal->EfuseUsedBytes = efuse_addr;
pEfuseHal->EfuseUsedPercentage = (u1Byte)((pEfuseHal->EfuseUsedBytes*100)/pEfuseHal->PhysicalLen_WiFi);
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_USAGE, (u8 *)&(pEfuseHal->EfuseUsedPercentage));
RTW_INFO("%s(), return %d\n", __func__, efuse_addr);
}
return efuse_addr;
}
static u16
rtl8814_EfuseGetCurrentSize(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret=0;
ret = hal_EfuseGetCurrentSize_8814A(pAdapter, bPseudoTest);
return ret;
}
static int
hal_EfusePgPacketRead_8814A(
IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
u8 ReadState = PG_STATE_HEADER;
int bContinual = _TRUE;
int bDataEmpty = _TRUE ;
u8 efuse_data,word_cnts=0;
u16 efuse_addr = 0;
u8 hoffset=0,hworden=0;
u8 tmpidx=0;
u8 tmpdata[8];
u8 tmp_header = 0;
if(data==NULL) return _FALSE;
if(offset>=EFUSE_MAX_SECTION_JAGUAR) return _FALSE;
_rtw_memset((PVOID)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
_rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
//
// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// Skip dummy parts to prevent unexpected data read from Efuse.
// By pass right now. 2009.02.19.
//
while(bContinual && (efuse_addr < pEfuseHal->PhysicalLen_WiFi) )
{
//------- Header Read -------------
if(ReadState & PG_STATE_HEADER)
{
if(efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF))
{
if(ALL_WORDS_DISABLED(efuse_data))
{
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) != 0x0F)
{
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
efuse_addr++;
break;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = _TRUE ;
if(hoffset==offset){
for(tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++){
if(efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) ){
tmpdata[tmpidx] = efuse_data;
if(efuse_data!=0xff){
bDataEmpty = _FALSE;
}
}
}
if(bDataEmpty==_FALSE){
ReadState = PG_STATE_DATA;
}else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{
bContinual = _FALSE ;
}
}
//------- Data section Read -------------
else if(ReadState & PG_STATE_DATA)
{
efuse_WordEnableDataRead(hworden,tmpdata,data);
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
if( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff) && (data[3]==0xff) &&
(data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff) && (data[7]==0xff))
return _FALSE;
else
return _TRUE;
}
static int
rtl8814_Efuse_PgPacketRead( IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
ret = hal_EfusePgPacketRead_8814A(pAdapter, offset, data, bPseudoTest);
return ret;
}
static BOOLEAN efuse_PgPacketCheck(
PADAPTER pAdapter,
u8 efuseType,
BOOLEAN bPseudoTest
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_PROTECT_BYTES_BANK_8814A))
{
RTW_INFO("%s()error: %x >= %x\n", __func__, Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_PROTECT_BYTES_BANK_8814A));
return _FALSE;
}
return _TRUE;
}
static VOID
efuse_PgPacketConstruct(
IN u8 offset,
IN u8 word_en,
IN u8* pData,
IN OUT PPGPKT_STRUCT pTargetPkt
)
{
_rtw_memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8)*8);
pTargetPkt->offset = offset;
pTargetPkt->word_en= word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
RTW_INFO("efuse_PgPacketConstruct(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts);
}
u16
efuse_PgPacketExceptionHandle(
IN PADAPTER pAdapter,
IN u16 ErrOffset
)
{
RTW_INFO("===> efuse_PgPacketExceptionHandle(), ErrOffset = 0x%X\n", ErrOffset);
// ErrOffset is the offset of bad (extension) header.
//if (IS_HARDWARE_TYPE_8812AU(pAdapter))
//ErrOffset = Hal_EfusePgPacketExceptionHandle_8812A(pAdapter, ErrOffset);
RTW_INFO("<=== efuse_PgPacketExceptionHandle(), recovered! Jump to Offset = 0x%X\n", ErrOffset);
return ErrOffset;
}
static BOOLEAN
hal_EfuseCheckIfDatafollowed(
IN PADAPTER pAdapter,
IN u8 word_cnts,
IN u16 startAddr,
IN BOOLEAN bPseudoTest
)
{
BOOLEAN bRet=FALSE;
u8 i, efuse_data;
for(i=0; i<(word_cnts*2) ; i++)
{
if(efuse_OneByteRead(pAdapter, (startAddr+i) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF))
bRet = TRUE;
}
return bRet;
}
static BOOLEAN
hal_EfuseWordEnMatched(
IN PPGPKT_STRUCT pTargetPkt,
IN PPGPKT_STRUCT pCurPkt,
IN u8* pWden
)
{
u8 match_word_en = 0x0F; // default all words are disabled
// check if the same words are enabled both target and current PG packet
if( ((pTargetPkt->word_en & BIT0) == 0) &&
((pCurPkt->word_en & BIT0) == 0) )
{
match_word_en &= ~BIT0; // enable word 0
}
if( ((pTargetPkt->word_en & BIT1) == 0) &&
((pCurPkt->word_en & BIT1) == 0) )
{
match_word_en &= ~BIT1; // enable word 1
}
if( ((pTargetPkt->word_en & BIT2) == 0) &&
((pCurPkt->word_en & BIT2) == 0) )
{
match_word_en &= ~BIT2; // enable word 2
}
if( ((pTargetPkt->word_en & BIT3) == 0) &&
((pCurPkt->word_en & BIT3) == 0) )
{
match_word_en &= ~BIT3; // enable word 3
}
*pWden = match_word_en;
if(match_word_en != 0xf)
return TRUE;
else
return FALSE;
}
static BOOLEAN
efuse_PgPacketPartialWrite(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u16* pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal=&(pHalData->EfuseHal);
BOOLEAN bRet=_FALSE;
u8 i, efuse_data=0, cur_header=0;
u8 matched_wden=0, badworden=0;
u16 startAddr=0;
PGPKT_STRUCT curPkt;
u16 max_sec_num = (efuseType == EFUSE_WIFI) ? pEfuseHal->MaxSecNum_WiFi : pEfuseHal->MaxSecNum_BT;
u16 efuse_max = pEfuseHal->BankSize;
u16 efuse_max_available_len =
(efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT;
if (bPseudoTest) {
pEfuseHal->fakeEfuseBank = (efuseType == EFUSE_WIFI) ? 0 : pEfuseHal->fakeEfuseBank;
Efuse_GetCurrentSize(pAdapter, efuseType, _TRUE);
}
//EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
//EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if(efuseType == EFUSE_WIFI)
{
if(bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8*)&startAddr);
}
}
else
{
if(bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BT_BYTES, (u8*)&startAddr);
}
}
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
RTW_INFO("efuse_PgPacketPartialWrite(), startAddr = 0x%X\n", startAddr);
while(1)
{
if(startAddr >= efuse_max_available_len)
{
bRet = _FALSE;
RTW_INFO("startAddr(%d) >= efuse_max_available_len(%d)\n",
startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data!=0xFF))
{
if(EXT_HEADER(efuse_data))
{
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
{
u16 recoveredAddr = startAddr;
recoveredAddr = efuse_PgPacketExceptionHandle(pAdapter, startAddr-1);
if (recoveredAddr == (startAddr-1)) {
RTW_INFO("Error! All words disabled and the recovery failed, (Addr, Data) = (0x%X, 0x%X)\n",
startAddr, efuse_data);
pAdapter->LastError = ERR_INVALID_DATA;
break;
} else {
startAddr = recoveredAddr;
RTW_INFO("Bad extension header but recovered => Keep going.\n");
continue;
}
}
else
{
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
}
else
{
if (ALL_WORDS_DISABLED(efuse_data)) {
u16 recoveredAddr = startAddr;
recoveredAddr = efuse_PgPacketExceptionHandle(pAdapter, startAddr);
if (recoveredAddr != startAddr) {
efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
RTW_INFO("Bad header but recovered => Read header again.\n");
}
}
cur_header = efuse_data;
curPkt.offset = (cur_header>>4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
if (curPkt.offset > max_sec_num) {
pAdapter->LastError = ERR_OUT_OF_RANGE;
pEfuseHal->Status = ERR_OUT_OF_RANGE;
bRet = _FALSE;
break;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
// if same header is found but no data followed
// write some part of data followed by the header.
if( (curPkt.offset == pTargetPkt->offset) &&
(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) &&
hal_EfuseWordEnMatched(pTargetPkt, &curPkt, &matched_wden) )
{
RTW_INFO("Need to partial write data by the previous wrote header\n");
//RT_ASSERT(_FALSE, ("Error, Need to partial write data by the previous wrote header!!\n"));
// Here to write partial data
badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
if(badworden != 0x0F)
{
u32 PgWriteSuccess=0;
// if write fail on some words, write these bad words again
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if(!PgWriteSuccess)
{
bRet = _FALSE; // write fail, return
break;
}
}
// partial write ok, update the target packet for later use
for(i=0; i<4; i++)
{
if((matched_wden & (0x1<<i)) == 0) // this word has been written
{
pTargetPkt->word_en |= (0x1<<i); // disable the word
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
// read from next header
startAddr = startAddr + (curPkt.word_cnts*2) +1;
}
else
{
// not used header, 0xff
*pAddr = startAddr;
RTW_INFO("Started from unused header offset=%d\n", startAddr);
bRet = _TRUE;
break;
}
}
return bRet;
}
static BOOLEAN
hal_EfuseFixHeaderProcess(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN PPGPKT_STRUCT pFixPkt,
IN u16* pAddr,
IN BOOLEAN bPseudoTest
)
{
u8 originaldata[8], badworden=0;
u16 efuse_addr=*pAddr;
u32 PgWriteSuccess=0;
_rtw_memset((PVOID)originaldata, 0xff, 8);
if(Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest))
{ //check if data exist
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);
if(badworden != 0xf) // write fail
{
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
if(!PgWriteSuccess)
return _FALSE;
else
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
}
else
{
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
}
}
else
{
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
}
*pAddr = efuse_addr;
return _TRUE;
}
BOOLEAN
efuse_PgPacketWrite2ByteHeader(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u16* pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
BOOLEAN bRet=_FALSE;
u16 efuse_addr=*pAddr;
u8 pg_header=0, tmp_header=0, pg_header_temp=0;
u8 repeatcnt=0;
u16 efuse_max_available_len =
(efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT;
RTW_INFO("Wirte 2byte header\n");
while(efuse_addr < efuse_max_available_len)
{
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
RTW_INFO("pg_header = 0x%x\n", pg_header);
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF || pg_header != tmp_header)
{
if(repeatcnt++ > pEfuseHal->DataRetry)
{
RTW_INFO("Repeat over limit for pg_header!!\n");
return _FALSE;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
//to write ext_header
if(tmp_header == pg_header)
{
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF || pg_header != tmp_header)
{
if(repeatcnt++ > pEfuseHal->DataRetry)
{
RTW_INFO("Repeat over limit for ext_header!!\n");
return _FALSE;
}
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
}
if((tmp_header & 0x0F) == 0x0F) //word_en PG fail
{
if(repeatcnt++ > pEfuseHal->DataRetry)
{
RTW_INFO("Repeat over limit for word_en!!\n");
return _FALSE;
}
else
{
efuse_addr++;
continue;
}
}
else if(pg_header != tmp_header) //offset PG fail
{
PGPKT_STRUCT fixPkt;
//RT_ASSERT(_FALSE, ("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n"));
RTW_INFO("Error condition for offset PG fail, need to cover the existed data\n");
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return _FALSE;
}
else
{
bRet = _TRUE;
break;
}
}
else if ((tmp_header & 0x1F) == 0x0F) //wrong extended header
{
efuse_addr+=2;
continue;
}
}
*pAddr = efuse_addr;
return bRet;
}
BOOLEAN
efuse_PgPacketWrite1ByteHeader(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u16* pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
PEFUSE_HAL pEfuseHal=&(pHalData->EfuseHal);
BOOLEAN bRet=_FALSE;
u8 pg_header=0, tmp_header=0;
u16 efuse_addr=*pAddr;
u8 repeatcnt=0;
RTW_INFO("Wirte 1byte header\n");
pg_header = ((pTargetPkt->offset << 4) & 0xf0) |pTargetPkt->word_en;
if (IS_HARDWARE_TYPE_8723BE(pAdapter))
efuse_OneByteWrite(pAdapter, 0x1FF, 00, _FALSE); // increase current
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor
while(tmp_header == 0xFF || pg_header != tmp_header)
{
if(repeatcnt++ > pEfuseHal->HeaderRetry)
{
RTW_INFO("retry %d times fail!!\n", repeatcnt);
return _FALSE;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
RTW_INFO("===> efuse_PgPacketWrite1ByteHeader: Keep %d-th retrying, tmp_header = 0x%X\n", repeatcnt, tmp_header);
}
if(pg_header == tmp_header)
{
bRet = _TRUE;
}
else
{
PGPKT_STRUCT fixPkt;
//RT_ASSERT(_FALSE, ("Error, efuse_PgPacketWrite1ByteHeader(), offset PG fail, need to cover the existed data!!\n"));
RTW_INFO(" pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header);
RTW_INFO("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n",
efuse_addr, tmp_header);
fixPkt.offset = (tmp_header>>4) & 0x0F;
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return _FALSE;
}
*pAddr = efuse_addr;
return bRet;
}
static BOOLEAN
efuse_PgPacketWriteHeader(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u16* pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
BOOLEAN bRet=_FALSE;
if(pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
{
bRet = efuse_PgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
}
else
{
bRet = efuse_PgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
}
return bRet;
}
BOOLEAN
efuse_PgPacketWriteData(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u16* pAddr,
IN PPGPKT_STRUCT pTargetPkt,
IN BOOLEAN bPseudoTest)
{
BOOLEAN bRet=_FALSE;
u16 efuse_addr=*pAddr;
u8 badworden=0;
u32 PgWriteSuccess=0;
badworden = 0x0f;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if(badworden == 0x0F)
{
RTW_INFO("efuse_PgPacketWriteData ok!!\n");
return _TRUE;
}
else
{ // Reorganize other pg packet
//RT_ASSERT(_FALSE, ("Error, efuse_PgPacketWriteData(), wirte data fail!!\n"));
RTW_INFO("efuse_PgPacketWriteData Fail!!\n");
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if(!PgWriteSuccess)
return _FALSE;
else
return _TRUE;
}
return bRet;
}
int
hal_EfusePgPacketWrite_8814A(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *pData,
IN BOOLEAN bPseudoTest)
{
u8 efuseType = EFUSE_WIFI;
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
RTW_INFO("===> efuse_PgPacketWrite[%s], offset: 0x%X\n", (efuseType == EFUSE_WIFI) ? "WIFI" : "BT", offset);
//4 [1] Check if the remaining space is available to write.
if(!efuse_PgPacketCheck(pAdapter, efuseType, bPseudoTest))
{
pAdapter->LastError = ERR_WRITE_PROTECT;
RTW_INFO("efuse_PgPacketCheck(), fail!!\n");
return _FALSE;
}
//4 [2] Construct a packet to write: (Data, Offset, and WordEnable)
efuse_PgPacketConstruct(offset, word_en, pData, &targetPkt);
//4 [3] Fix headers without data or fix bad headers, and then return the address where to get started.
if(!efuse_PgPacketPartialWrite(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
{
pAdapter->LastError = ERR_INVALID_DATA;
RTW_INFO("efuse_PgPacketPartialWrite(), fail!!\n");
return _FALSE;
}
//4 [4] Write the (extension) header.
if(!efuse_PgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
{
pAdapter->LastError = ERR_IO_FAILURE;
RTW_INFO("efuse_PgPacketWriteHeader(), fail!!\n");
return _FALSE;
}
//4 [5] Write the data.
if(!efuse_PgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
{
pAdapter->LastError = ERR_IO_FAILURE;
RTW_INFO("efuse_PgPacketWriteData(), fail!!\n");
return _FALSE;
}
RTW_INFO("<=== efuse_PgPacketWrite\n");
return _TRUE;
}
static int
rtl8814_Efuse_PgPacketWrite(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8814A(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
void InitRDGSetting8814A(PADAPTER padapter)
{
rtw_write8(padapter, REG_RD_CTRL, 0xFF);
rtw_write16(padapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05);
}
void ReadRFType8814A(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
//if (pHalData->rf_type == RF_1T1R){
// pHalData->bRFPathRxEnable[0] = _TRUE;
//}
//else { // Default unknow type is 2T2r
// pHalData->bRFPathRxEnable[0] = pHalData->bRFPathRxEnable[1] = _TRUE;
//}
if (IsSupported24G(padapter->registrypriv.wireless_mode) &&
is_supported_5g(padapter->registrypriv.wireless_mode))
pHalData->BandSet = BAND_ON_BOTH;
else if (is_supported_5g(padapter->registrypriv.wireless_mode))
pHalData->BandSet = BAND_ON_5G;
else
pHalData->BandSet = BAND_ON_2_4G;
//if(padapter->bInHctTest)
// pHalData->BandSet = BAND_ON_2_4G;
}
void rtl8814_start_thread(PADAPTER padapter)
{
}
void rtl8814_stop_thread(PADAPTER padapter)
{
}
void hal_notch_filter_8814(_adapter *adapter, bool enable)
{
if (enable) {
RTW_INFO("Enable notch filter\n");
//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
} else {
RTW_INFO("Disable notch filter\n");
//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
}
u8
GetEEPROMSize8814A(
IN PADAPTER Adapter
)
{
u8 size = 0;
u32 curRCR;
curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL);
size = (curRCR & EEPROMSEL) ? 6 : 4; // 6: EEPROM used is 93C46, 4: boot from E-Fuse.
RTW_INFO("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
//return size;
return 4; // <20120713, Kordan> The default value of HW is 6 ?!!
}
/*
void CheckAutoloadState8812A(PADAPTER padapter)
{
u8 val8;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
// check system boot selection
val8 = rtw_read8(padapter, REG_9346CR);
pHalData->EepromOrEfuse = (val8 & BOOT_FROM_EEPROM) ? _TRUE : _FALSE;
pHalData->bautoload_fail_flag = (val8 & EEPROM_EN) ? _FALSE : _TRUE;
RTW_INFO("%s: 9346CR(%#x)=0x%02x, Boot from %s, Autoload %s!\n",
__FUNCTION__, REG_9346CR, val8,
(pHalData->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(pHalData->bautoload_fail_flag ? "Fail" : "OK"));
}
*/
void InitPGData8814A(PADAPTER padapter)
{
u32 i;
u16 val16;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
if (_FALSE == pHalData->bautoload_fail_flag)
{
// autoload OK.
if (is_boot_from_eeprom(padapter))
{
// Read all Content from EEPROM or EFUSE.
//for (i = 0; i < HWSET_MAX_SIZE_JAGUAR; i += 2)
{
//val16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1)));
//*((u16*)(&PROMContent[i])) = val16;
}
}
else
{
// Read EFUSE real map to shadow.
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
}
else
{
// update to default value 0xFF
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
static void read_chip_version_8814a(PADAPTER Adapter)
{
u32 value32;
PHAL_DATA_TYPE pHalData;
u8 vdr;
pHalData = GET_HAL_DATA(Adapter);
value32 = rtw_read32(Adapter, REG_SYS_CFG);
RTW_INFO("%s SYS_CFG(0x%X)=0x%08x \n", __FUNCTION__, REG_SYS_CFG, value32);
pHalData->version_id.ICType = CHIP_8814A;
pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
pHalData->version_id.RFType = RF_TYPE_3T3R;
if(Adapter->registrypriv.special_rf_path == 1)
pHalData->version_id.RFType = RF_TYPE_1T1R; //RF_1T1R;
vdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
if(vdr == 0x00)
pHalData->version_id.VendorType = CHIP_VENDOR_TSMC;
else if(vdr == 0x01)
pHalData->version_id.VendorType = CHIP_VENDOR_SMIC;
else if(vdr == 0x02)
pHalData->version_id.VendorType = CHIP_VENDOR_UMC;
pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
rtw_hal_config_rftype(Adapter);
#if 1
dump_chip_info(pHalData->version_id);
#endif
}
VOID
hal_PatchwithJaguar_8814(
IN PADAPTER Adapter,
IN RT_MEDIA_STATUS MediaStatus
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_ext_priv *pmlmeext = &(Adapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if( (MediaStatus == RT_MEDIA_CONNECT) &&
(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP ))
{
rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x1);
rtw_write8(Adapter, REG_TCR+3, BIT2);
}
else
{
rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x3F);
rtw_write8(Adapter, REG_TCR+3, BIT0|BIT1|BIT2);
}
/*if( (MediaStatus == RT_MEDIA_CONNECT) &&
((pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP) ||
(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP)))
{
pHalData->Reg837 |= BIT2;
rtw_write8(Adapter, rBWIndication_Jaguar+3, pHalData->Reg837);
}
else
{
pHalData->Reg837 &= (~BIT2);
rtw_write8(Adapter, rBWIndication_Jaguar+3, pHalData->Reg837);
}*/
}
void init_hal_spec_8814a(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8814a";
hal_spec->macid_num = MACID_NUM_8814A;
hal_spec->sec_cam_ent_num = SEC_CAM_ENT_NUM_8814A;
hal_spec->sec_cap = SEC_CAP_CHK_BMC;
hal_spec->rfpath_num_2g = 3;
hal_spec->rfpath_num_5g = 3;
hal_spec->max_tx_cnt = 4;
hal_spec->txgi_max = 63;
hal_spec->txgi_pdbm = 2;
hal_spec->tx_nss_num = 4;
hal_spec->rx_nss_num = 4;
hal_spec->band_cap = BAND_CAP_8814A;
hal_spec->bw_cap = BW_CAP_8814A;
hal_spec->port_num = 2;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N | PROTO_CAP_11AC;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
hal_spec->pg_txpwr_saddr = 0x10;
hal_spec->pg_txgi_diff_factor = 1;
rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
, REG_MACID_SLEEP
, REG_MACID_SLEEP_1
, REG_MACID_SLEEP_2
, REG_MACID_SLEEP_3);
}
void InitDefaultValue8814A(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = adapter_to_pwrctl(padapter);
// init default value
pHalData->fw_ractrl = _FALSE;
if (!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
init_hal_spec_8814a(padapter);
// init dm default value
pHalData->bChnlBWInitialized = _FALSE;
pHalData->bIQKInitialized = _FALSE;
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
}
VOID
_InitBeaconParameters_8814A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8); // port0 and port1
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == 1)
{
// Enable prot0 beacon function for PSTDMA
val16 |= EN_BCN_FUNCTION;
}
#endif
rtw_write16(Adapter, REG_BCN_CTRL, val16);
//rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
// TODO: Remove these magic number
rtw_write16(Adapter, REG_TBTT_PROHIBIT,0x6404);// ms
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8814);// 5ms
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8814); // 2ms
// Suggested by designer timchen. Change beacon AIFS to the largest number
// beacause test chip does not contension before sending beacon. by tynli. 2009.11.03
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
//pHalData->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
//pHalData->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE);
//pHalData->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
//pHalData->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2);
//pHalData->RegCR_1 = rtw_read8(Adapter, REG_CR+1);
}
static VOID
_BeaconFunctionEnable(
IN PADAPTER Adapter,
IN BOOLEAN Enable,
IN BOOLEAN Linked
)
{
rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
//SetBcnCtrlReg(Adapter, (BIT4 | BIT3 | BIT1), 0x00);
//RT_TRACE(COMP_BEACON, DBG_LOUD, ("_BeaconFunctionEnable 0x550 0x%x\n", rtw_read8(Adapter, 0x550)));
rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F);
}
void SetBeaconRelatedRegisters8814A(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
//reset TSF, enable update TSF, correcting TSF On Beacon
//REG_BCN_INTERVAL
//REG_BCNDMATIM
//REG_ATIMWND
//REG_TBTT_PROHIBIT
//REG_DRVERLYINT
//REG_BCN_MAX_ERR
//REG_BCNTCFG //(0x510)
//REG_DUAL_TSF_RST
//REG_BCN_CTRL //(0x550)
//BCN interval
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1){
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
#endif
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtw_write8(padapter, REG_ATIMWND, 0x02);// 2ms
_InitBeaconParameters_8814A(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 =rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
// NOTE: Fix test chip's bug (about contention windows's randomness)
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
//rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6));
//rtw_write8(padapter, 0x541, 0xff);
//rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0));
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1));
}
#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 0)
VOID
SetBeamformingCLK_8812(
IN PADAPTER Adapter
)
{
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter);
u16 u2btmp;
u8 Count = 0, u1btmp;
RTW_INFO(" ==>%s\n", __FUNCTION__);
if ( (check_fwstate(&Adapter->mlmepriv, _FW_UNDER_SURVEY)==_TRUE)
#ifdef CONFIG_CONCURRENT_MODE
|| (check_buddy_fwstate(Adapter, _FW_UNDER_SURVEY) == _TRUE)
#endif
)
{
RTW_INFO(" <==%s return by Scan\n", __FUNCTION__);
return;
}
// Stop Usb TxDMA
rtw_write_port_cancel(Adapter);
#ifdef CONFIG_PCI_HCI
// Stop PCIe TxDMA
rtw_write8(Adapter, REG_PCIE_CTRL_REG+1, 0xFE);
#endif
// Wait TXFF empty
for(Count = 0; Count < 100; Count++)
{
u2btmp = rtw_read16(Adapter, REG_TXPKT_EMPTY);
u2btmp = u2btmp & 0xfff;
if(u2btmp != 0xfff)
{
rtw_mdelay_os(10);
continue;
}
else
break;
}
RTW_INFO(" Tx Empty count %d \n", Count);
// TX pause
rtw_write8(Adapter, REG_TXPAUSE, 0xFF);
// Wait TX State Machine OK
for(Count = 0; Count < 100; Count++)
{
if (rtw_read32(Adapter, REG_SCH_TXCMD_8812A) != 0)
continue;
else
break;
}
RTW_INFO(" Tx Status count %d\n", Count);
// Stop RX DMA path
u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp | BIT2);
for(Count = 0; Count < 100; Count++)
{
u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
if(u1btmp & BIT1)
break;
else
rtw_mdelay_os(10);
}
RTW_INFO(" Rx Empty count %d \n", Count);
// Disable clock
rtw_write8(Adapter, REG_SYS_CLKR+1, 0xf0);
// Disable 320M
rtw_write8(Adapter, REG_AFE_PLL_CTRL+3, 0x8);
// Enable 320M
rtw_write8(Adapter, REG_AFE_PLL_CTRL+3, 0xa);
// Enable clock
rtw_write8(Adapter, REG_SYS_CLKR+1, 0xfc);
// Release Tx pause
rtw_write8(Adapter, REG_TXPAUSE, 0);
// Enable RX DMA path
u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp & (~BIT2));
// Start Usb TxDMA
RTW_ENABLE_FUNC(Adapter, DF_TX_BIT);
RTW_INFO("%s \n", __FUNCTION__);
RTW_INFO("<==%s\n", __FUNCTION__);
}
VOID
SetBeamformRfMode_8812(
IN PADAPTER Adapter,
IN struct beamforming_info *pBeamInfo
)
{
BOOLEAN bSelfBeamformer = _FALSE;
BOOLEAN bSelfBeamformee = _FALSE;
BEAMFORMING_CAP BeamformCap = BEAMFORMING_CAP_NONE;
BeamformCap = beamforming_get_beamform_cap(pBeamInfo);
if(BeamformCap == pBeamInfo->beamforming_cap)
return;
else
pBeamInfo->beamforming_cap = BeamformCap;
if(GET_RF_TYPE(Adapter) == RF_1T1R)
return;
bSelfBeamformer = BeamformCap & BEAMFORMER_CAP;
bSelfBeamformee = BeamformCap & BEAMFORMEE_CAP;
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_WeLut_Jaguar, 0x80000,0x1); // RF Mode table write enable
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_WeLut_Jaguar, 0x80000,0x1); // RF Mode table write enable
if(bSelfBeamformer)
{
// Paath_A
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableAddr, 0x78000,0x3); // Select RX mode
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData1, 0xfffff,0xE26BF); // Enable TXIQGEN in RX mode
// Path_B
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); // Select RX mode
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData1, 0xfffff,0xE26BF); // Enable TXIQGEN in RX mode
}
else
{
// Paath_A
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableAddr, 0x78000, 0x3); // Select RX mode
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData1, 0xfffff,0xC26BF); // Disable TXIQGEN in RX mode
// Path_B
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); // Select RX mode
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData1, 0xfffff,0xC26BF); // Disable TXIQGEN in RX mode
}
PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_WeLut_Jaguar, 0x80000,0x0); // RF Mode table write disable
PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_WeLut_Jaguar, 0x80000,0x0); // RF Mode table write disable
if(bSelfBeamformer)
PHY_SetBBReg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x33);
else
PHY_SetBBReg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x11);
}
VOID
SetBeamformEnter_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
u8 i = 0;
u32 CSI_Param;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
struct beamforming_entry BeamformEntry = pBeamInfo->beamforming_entry[Idx];
u16 STAid = 0;
SetBeamformRfMode_8812(Adapter, pBeamInfo);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE))
STAid = BeamformEntry.mac_id;
else
STAid = BeamformEntry.p_aid;
// Sounding protocol control
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB);
// MAC addresss/Partial AID of Beamformer
if(Idx == 0)
{
for(i = 0; i < 6 ; i++)
rtw_write8(Adapter, (REG_BFMER0_INFO_8812A+i), BeamformEntry.mac_addr[i]);
/* CSI report use legacy ofdm so don't need to fill P_AID.*/
/*rtw_write16(Adapter, REG_BFMER0_INFO_8812A+6, BeamformEntry.P_AID);*/
}
else
{
for(i = 0; i < 6 ; i++)
rtw_write8(Adapter, (REG_BFMER1_INFO_8812A+i), BeamformEntry.mac_addr[i]);
/* CSI report use legacy ofdm so don't need to fill P_AID.*/
/*rtw_write16(Adapter, REG_BFMER1_INFO_8812A+6, BeamformEntry.P_AID);*/
}
// CSI report parameters of Beamformee
if( (BeamformEntry.beamforming_entry_cap & BEAMFORMEE_CAP_VHT_SU) ||
(BeamformEntry.beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU) )
{
if(pHalData->rf_type == RF_2T2R)
CSI_Param = 0x01090109;
else
CSI_Param = 0x01080108;
}
else
{
if(pHalData->rf_type == RF_2T2R)
CSI_Param = 0x03090309;
else
CSI_Param = 0x03080308;
}
if(pHalData->rf_type == RF_2T2R)
rtw_write32(Adapter, 0x9B4, 0x00000000); // Nc =2
else
rtw_write32(Adapter, 0x9B4, 0x01081008); // Nc =1
rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW20_8812A, CSI_Param);
rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW40_8812A, CSI_Param);
rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW80_8812A, CSI_Param);
// P_AID of Beamformee & enable NDPA transmission & enable NDPA interrupt
if(Idx == 0)
{
rtw_write16(Adapter, REG_TXBF_CTRL_8812A, STAid);
rtw_write8(Adapter, REG_TXBF_CTRL_8812A+3, rtw_read8(Adapter, REG_TXBF_CTRL_8812A+3)|BIT4|BIT6|BIT7);
}
else
{
rtw_write16(Adapter, REG_TXBF_CTRL_8812A+2, STAid | BIT12 | BIT14 | BIT15);
}
// CSI report parameters of Beamformee
if(Idx == 0)
{
// Get BIT24 & BIT25
u8 tmp = rtw_read8(Adapter, REG_BFMEE_SEL_8812A+3) & 0x3;
rtw_write8(Adapter, REG_BFMEE_SEL_8812A+3, tmp | 0x60);
rtw_write16(Adapter, REG_BFMEE_SEL_8812A, STAid | BIT9);
}
else
{
// Set BIT25
rtw_write16(Adapter, REG_BFMEE_SEL_8812A+2, STAid | (0xE2 << 8));
}
// Timeout value for MAC to leave NDP_RX_standby_state (60 us, Test chip) (80 us, MP chip)
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A+3, 0x50);
beamforming_notify(Adapter);
}
VOID
SetBeamformLeave_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
SetBeamformRfMode_8812(Adapter, pBeamInfo);
/* Clear P_AID of Beamformee
* Clear MAC addresss of Beamformer
* Clear Associated Bfmee Sel
*/
if(pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE)
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8);
if(Idx == 0)
{
rtw_write16(Adapter, REG_TXBF_CTRL_8812A, 0);
rtw_write32(Adapter, REG_BFMER0_INFO_8812A, 0);
rtw_write16(Adapter, REG_BFMER0_INFO_8812A+4, 0);
rtw_write16(Adapter, REG_BFMEE_SEL_8812A, 0);
}
else
{
rtw_write16(Adapter, REG_TXBF_CTRL_8812A+2, rtw_read16(Adapter, REG_TXBF_CTRL_8812A+2) & 0xF000);
rtw_write32(Adapter, REG_BFMER1_INFO_8812A, 0);
rtw_write16(Adapter, REG_BFMER1_INFO_8812A+4, 0);
rtw_write16(Adapter, REG_BFMEE_SEL_8812A+2, rtw_read16(Adapter, REG_BFMEE_SEL_8812A+2) & 0x60);
}
}
VOID
SetBeamformStatus_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
u16 BeamCtrlVal;
u32 BeamCtrlReg;
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
struct beamforming_entry BeamformEntry = pBeamInfo->beamforming_entry[Idx];
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE))
BeamCtrlVal = BeamformEntry.mac_id;
else
BeamCtrlVal = BeamformEntry.p_aid;
if(Idx == 0)
BeamCtrlReg = REG_TXBF_CTRL_8812A;
else
{
BeamCtrlReg = REG_TXBF_CTRL_8812A+2;
BeamCtrlVal |= BIT12 | BIT14|BIT15;
}
if(BeamformEntry.beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED)
{
if(BeamformEntry.sound_bw == CHANNEL_WIDTH_20)
BeamCtrlVal |= BIT9;
else if(BeamformEntry.sound_bw == CHANNEL_WIDTH_40)
BeamCtrlVal |= BIT10;
else if(BeamformEntry.sound_bw == CHANNEL_WIDTH_80)
BeamCtrlVal |= BIT11;
}
else
{
BeamCtrlVal &= ~(BIT9|BIT10|BIT11);
}
rtw_write16(Adapter, BeamCtrlReg, BeamCtrlVal);
RTW_INFO("%s Idx %d BeamCtrlReg %x BeamCtrlVal %x\n", __FUNCTION__, Idx, BeamCtrlReg, BeamCtrlVal);
}
VOID
SetBeamformFwTxBFCmd_8812(
IN PADAPTER Adapter
)
{
u8 Idx, Period0 = 0, Period1 = 0;
u8 PageNum0 = 0xFF, PageNum1 = 0xFF;
u8 u1TxBFParm[3]={0};
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
for(Idx = 0; Idx < BEAMFORMING_ENTRY_NUM; Idx++)
{
if(pBeamInfo->beamforming_entry[Idx].beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED)
{
if(Idx == 0)
{
if(pBeamInfo->beamforming_entry[Idx].bSound)
PageNum0 = 0xFE;
else
PageNum0 = 0xFF; //stop sounding
Period0 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period);
}
else if(Idx == 1)
{
if(pBeamInfo->beamforming_entry[Idx].bSound)
PageNum1 = 0xFE;
else
PageNum1 = 0xFF; //stop sounding
Period1 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period);
}
}
}
u1TxBFParm[0] = PageNum0;
u1TxBFParm[1] = PageNum1;
u1TxBFParm[2] = (Period1 << 4) | Period0;
FillH2CCmd_8812(Adapter, H2C_8812_TxBF, 3, u1TxBFParm);
RTW_INFO("%s PageNum0 = %d Period0 = %d\n", __FUNCTION__, PageNum0, Period0);
RTW_INFO("PageNum1 = %d Period1 %d\n", PageNum1, Period1);
}
VOID
SetBeamformDownloadNDPA_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
u8 u1bTmp=0, tmpReg422=0, Head_Page;
u8 BcnValidReg=0, count=0, DLBcnCount=0;
BOOLEAN bSendBeacon=_FALSE;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 TxPageBndy= LAST_ENTRY_OF_TX_PKT_BUFFER_8812; // default reseved 1 page for the IC type which is undefined.
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
struct beamforming_entry *pBeamEntry = pBeamInfo->beamforming_entry+Idx;
//pHalData->bFwDwRsvdPageInProgress = _TRUE;
if(Idx == 0)
Head_Page = 0xFE;
else
Head_Page = 0xFE;
rtw_hal_get_def_var(Adapter, HAL_DEF_TX_PAGE_BOUNDARY, (u16 *)&TxPageBndy);
//Set REG_CR bit 8. DMA beacon by SW.
u1bTmp = rtw_read8(Adapter, REG_CR+1);
rtw_write8(Adapter, REG_CR+1, (u1bTmp|BIT0));
pHalData->RegCR_1 |= BIT0;
rtw_write8(Adapter, REG_CR+1, pHalData->RegCR_1);
// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, tmpReg422&(~BIT6));
if(tmpReg422&BIT6)
{
RTW_INFO("SetBeamformDownloadNDPA_8812(): There is an Adapter is sending beacon.\n");
bSendBeacon = _TRUE;
}
// TDECTRL[15:8] 0x209[7:0] = 0xF6 Beacon Head for TXDMA
rtw_write8(Adapter,REG_TDECTRL+1, Head_Page);
do
{
// Clear beacon valid check bit.
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
rtw_write8(Adapter, REG_TDECTRL+2, (BcnValidReg|BIT0));
// download NDPA rsvd page.
if(pBeamEntry->beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU)
beamforming_send_vht_ndpa_packet(Adapter,pBeamEntry->mac_addr,pBeamEntry->aid,pBeamEntry->sound_bw, BCN_QUEUE_INX);
else
beamforming_send_ht_ndpa_packet(Adapter,pBeamEntry->mac_addr,pBeamEntry->sound_bw, BCN_QUEUE_INX);
// check rsvd page download OK.
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
count=0;
while(!(BcnValidReg & BIT0) && count <20)
{
count++;
rtw_udelay_os(10);
BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
}
DLBcnCount++;
}while(!(BcnValidReg&BIT0) && DLBcnCount<5);
if(!(BcnValidReg&BIT0))
RTW_INFO("%s Download RSVD page failed!\n", __FUNCTION__);
// TDECTRL[15:8] 0x209[7:0] = 0xF6 Beacon Head for TXDMA
rtw_write8(Adapter,REG_TDECTRL+1, TxPageBndy);
// To make sure that if there exists an adapter which would like to send beacon.
// If exists, the origianl value of 0x422[6] will be 1, we should check this to
// prevent from setting 0x422[6] to 0 after download reserved page, or it will cause
// the beacon cannot be sent by HW.
// 2010.06.23. Added by tynli.
if(bSendBeacon)
{
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, tmpReg422);
}
// Do not enable HW DMA BCN or it will cause Pcie interface hang by timing issue. 2011.11.24. by tynli.
// Clear CR[8] or beacon packet will not be send to TxBuf anymore.
u1bTmp = rtw_read8(Adapter, REG_CR+1);
rtw_write8(Adapter, REG_CR+1, (u1bTmp&(~BIT0)));
pBeamEntry->beamforming_entry_state = BEAMFORMING_ENTRY_STATE_PROGRESSED;
//pHalData->bFwDwRsvdPageInProgress = _FALSE;
}
VOID
SetBeamformFwTxBF_8812(
IN PADAPTER Adapter,
IN u8 Idx
)
{
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
struct beamforming_entry *pBeamEntry = pBeamInfo->beamforming_entry+Idx;
if(pBeamEntry->beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSING)
SetBeamformDownloadNDPA_8812(Adapter, Idx);
SetBeamformFwTxBFCmd_8812(Adapter);
}
VOID
SetBeamformPatch_8812(
IN PADAPTER Adapter,
IN u8 Operation
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
if(pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE)
return;
/*if(Operation == SCAN_OPT_BACKUP_BAND0)
{
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8);
}
else if(Operation == SCAN_OPT_RESTORE)
{
rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB);
}*/
}
#endif /*#if (BEAMFORMING_SUPPORT == 0) for driver's TxBF*/
#endif /*CONFIG_BEAMFORMING*/
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 value_rcr, rcr_bits;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
/* Leave IPS */
rtw_pm_set_ips(Adapter, IPS_NONE);
LeaveAllPowerSaveMode(Adapter);
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
#if 0
/*
CRC and ICV packet will drop in recvbuf2recvframe()
We no turn on it.
*/
rcr_bits |= (RCR_ACRC32 | RCR_AICV);
#endif
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
value_rcr = rcr_bits;
rtw_write32(Adapter, REG_RCR, value_rcr);
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
#if 0
/* tx pause */
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
#endif
} else {
/* do nothing */
}
}
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
{
u8 val8;
u8 mode = *((u8 *)val);
u32 value_rcr;
static u8 isMonitor = _FALSE;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if (isMonitor == _TRUE) {
/* reset RCR */
rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig);
isMonitor = _FALSE;
}
if (mode == _HW_STATE_MONITOR_) {
isMonitor = _TRUE;
/* set net_type */
Set_MSR(Adapter, _HW_STATE_NOLINK_);
hw_var_set_monitor(Adapter, variable, val);
return;
}
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
// disable Port1 TSF update
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_TSF_UDT);
// set net_type
val8 = rtw_read8(Adapter, MSR)&0x03;
val8 |= (mode<<2);
rtw_write8(Adapter, MSR, val8);
RTW_INFO("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8814AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else //CONFIG_PCI_HCI
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8814AU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_8812);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8814AU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812));
#endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif //CONFIG_PCI_HCI
}
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x11);//disable atim wnd and disable beacon function
//rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
#ifdef RTL8814AE_SW_BCN
/*Beacon is polled to TXBUF*/
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a);
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8814AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8814AU(Adapter,_TRUE ,IMR_BCNDMAINT0_8812, 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8814AU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812), 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
#ifdef RTL8814AE_SW_BCN
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
value_rcr = rtw_read32(Adapter, REG_RCR);
value_rcr &= ~(RCR_CBSSID_DATA);//Clear CBSSID_DATA
rtw_write32(Adapter, REG_RCR, value_rcr);
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); // 10ms for port1
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF2
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//enable BCN1 Function for if2
//don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
#endif
//BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked
//rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5));
//rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3));
//dis BCN0 ATIM WND if if1 is station
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else //else for port0
#endif // CONFIG_CONCURRENT_MODE
{
// disable Port0 TSF update
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
// set net_type
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
RTW_INFO("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
#ifdef CONFIG_CONCURRENT_MODE
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
#endif // CONFIG_CONCURRENT_MODE
{
StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8814AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8814AU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_8812);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8814AU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812));
#endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif
}
rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd
//rtw_write8(Adapter,REG_BCN_CTRL, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
#ifdef RTL8814AE_SW_BCN
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8814AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8814AU(Adapter,_TRUE ,IMR_BCNDMAINT0_8812, 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8814AU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812), 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
/*Beacon is polled to TXBUF*/
#ifdef RTL8814AE_SW_BCN
rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
value_rcr = rtw_read32(Adapter, REG_RCR);
value_rcr &= ~(RCR_CBSSID_DATA);//Clear CBSSID_DATA
rtw_write32(Adapter, REG_RCR, value_rcr);
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND, 0x0a); // 10ms
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//enable BCN0 Function for if1
//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
//dis BCN1 ATIM WND if if2 is station
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
}
static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_macid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_macid = REG_MACID1;
}
else
#endif
{
reg_macid = REG_MACID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(GET_PRIMARY_ADAPTER(Adapter), (reg_macid+idx), val[idx]);
}
}
static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_bssid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_bssid = REG_BSSID1;
}
else
#endif //CONFIG_CONCURRENT_MODE
{
reg_bssid = REG_BSSID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
}
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
{
u32 bcn_ctrl_reg;
u8 val8;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
else
#endif
{
bcn_ctrl_reg = REG_BCN_CTRL;
}
if(*((u8 *)val))
{
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
}
else
{
u8 val8;
val8 = rtw_read8(Adapter, bcn_ctrl_reg);
val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
#ifdef CONFIG_BT_COEXIST
if (GET_HAL_DATA(Adapter)->EEPROMBluetoothCoexist == 1)
{
// Always enable port0 beacon function for PSTDMA
if (REG_BCN_CTRL == bcn_ctrl_reg)
val8 |= EN_BCN_FUNCTION;
}
#endif //CONFIG_BT_COEXIST
rtw_write8(Adapter, bcn_ctrl_reg, val8);
}
}
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
{
#if 0 //check 8814 still need sw sync tsf??
#ifdef CONFIG_CONCURRENT_MODE
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(Adapter);
}
if(Adapter->iface_type == IFACE_PORT1)
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(Adapter);
}
#endif //CONFIG_CONCURRENT_MODE
#endif //0
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
if(Adapter->iface_type == IFACE_PORT1)
{
//reset TSF1
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//disable update TSF1
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
// disable Port1's beacon function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
}
else
{
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
#endif //CONFIG_CONCURRENT_MODE
}
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
{
struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter);
u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv=&(Adapter->mlmepriv);
u8 ap_num = 0;
#ifdef DBG_IFACE_STATUS
DBG_IFACE_STATUS_DUMP(Adapter);
#endif
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
reg_bcn_ctl = REG_BCN_CTRL_1;
else
#endif //CONFIG_CONCURRENT_MODE
reg_bcn_ctl = REG_BCN_CTRL;
#ifdef CONFIG_FIND_BEST_CHANNEL
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
#else /* CONFIG_FIND_BEST_CHANNEL */
rcr_clear_bit = RCR_CBSSID_BCN;
//config RCR to receive different BSSID & not to receive data frame
value_rxfltmap2 = 0;
#endif /* CONFIG_FIND_BEST_CHANNEL */
if( (check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
#ifdef CONFIG_CONCURRENT_MODE
|| (check_buddy_fwstate(Adapter, WIFI_AP_STATE) == _TRUE)
#endif
)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#ifdef CONFIG_TDLS
// TDLS will clear RCR_CBSSID_DATA bit for connection.
else if (Adapter->tdlsinfo.link_established == _TRUE)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#endif // CONFIG_TDLS
value_rcr = rtw_read32(Adapter, REG_RCR);
if(*((u8 *)val))//under sitesurvey
{
value_rcr &= ~(rcr_clear_bit);
rtw_write32(Adapter, REG_RCR, value_rcr);
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
//disable update TSF
rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)|DIS_TSF_UDT);
}
// Save orignal RRSR setting.
pHalData->RegRRSR = rtw_read16(Adapter, REG_RRSR);
if (ap_num)
StopTxBeacon(Adapter);
}
else//sitesurvey done
{
if(check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE))
#ifdef CONFIG_CONCURRENT_MODE
|| check_buddy_fwstate(Adapter, (_FW_LINKED|WIFI_AP_STATE))
#endif
)
{
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
//enable update TSF
rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)&(~(DIS_TSF_UDT)));
}
value_rcr |= rcr_clear_bit;
rtw_write32(Adapter, REG_RCR, value_rcr);
// Restore orignal RRSR setting.
rtw_write16(Adapter, REG_RRSR, pHalData->RegRRSR);
if (ap_num) {
int i;
_adapter *iface;
ResumeTxBeacon(Adapter);
for (i = 0; i < dvobj->iface_nums; i++) {
iface = dvobj->padapters[i];
if (!iface)
continue;
if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE) == _TRUE
&& check_fwstate(&iface->mlmepriv, WIFI_ASOC_STATE) == _TRUE
) {
iface->mlmepriv.update_bcn = _TRUE;
#ifndef CONFIG_INTERRUPT_BASED_TXBCN
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
tx_beacon_hdl(iface, NULL);
#endif
#endif
}
}
}
}
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
if(type == 0) // prepare to join
{
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if(type == 1) //joinbss_event call back when join res < 0
{
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
else if(type == 2) //sta add event call back
{
//enable update TSF
if(Adapter->iface_type == IFACE_PORT1)
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
else
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
//fixed beacon issue for 8191su...........
rtw_write8(Adapter,0x542 ,0x02);
RetryLimit = 0x7;
}
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
rtw_write16(Adapter, REG_RETRY_LIMIT, BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit));
#endif //CONFIG_CONCURRENT_MODE
}
static void rtw_store_all_sta_hwseq(_adapter *padapter)
{
_irqL irqL;
_list *plist, *phead;
u8 index;
u16 hw_seq[NUM_STA];
u32 shcut_addr = 0;
struct sta_info *psta;
struct sta_priv *pstapriv = &padapter->stapriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
/* save each HW sequence of mac id from report fifo */
for (index = 0; index < macid_ctl->num && index < NUM_STA; index++) {
if (rtw_macid_is_used(macid_ctl, index)) {
rtw_write16(padapter, 0x140, 0x662 | ((index & BIT5)>>5));
shcut_addr = 0x8000;
shcut_addr = (shcut_addr | ((index&0x1f)<<7) | (10<<2)) + 1;
hw_seq[index] = rtw_read16(padapter, shcut_addr);
/* RTW_INFO("mac_id:%d is used, hw_seq[index]=%d\n", index, hw_seq[index]); */
}
}
_enter_critical_bh(&pstapriv->sta_hash_lock, &irqL);
for (index = 0; index < NUM_STA; index++) {
psta = NULL;
phead = &(pstapriv->sta_hash[index]);
plist = get_next(phead);
while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
psta = LIST_CONTAINOR(plist, struct sta_info, hash_list);
plist = get_next(plist);
psta->hwseq = hw_seq[psta->cmn.mac_id];
/* RTW_INFO(" psta->cmn.mac_id=%d, psta->hwseq=%d\n" , psta->cmn.mac_id, psta->hwseq); */
}
}
_exit_critical_bh(&pstapriv->sta_hash_lock, &irqL);
}
static void rtw_restore_all_sta_hwseq(_adapter *padapter)
{
_irqL irqL;
_list *plist, *phead;
u8 index;
u16 hw_seq[NUM_STA];
u32 shcut_addr = 0;
struct sta_info *psta;
struct sta_priv *pstapriv = &padapter->stapriv;
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
_enter_critical_bh(&pstapriv->sta_hash_lock, &irqL);
for (index = 0; index < NUM_STA; index++) {
psta = NULL;
phead = &(pstapriv->sta_hash[index]);
plist = get_next(phead);
while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
psta = LIST_CONTAINOR(plist, struct sta_info, hash_list);
plist = get_next(plist);
hw_seq[psta->cmn.mac_id] = psta->hwseq;
/* RTW_INFO(" psta->cmn.mac_id=%d, psta->hwseq=%d\n", psta->cmn.mac_id, psta->hwseq); */
}
}
_exit_critical_bh(&pstapriv->sta_hash_lock, &irqL);
/* restore each HW sequence of mac id to report fifo */
for (index = 0; index < macid_ctl->num && index < NUM_STA; index++) {
if (rtw_macid_is_used(macid_ctl, index)) {
rtw_write16(padapter, 0x140, 0x662 | ((index & BIT5)>>5));
shcut_addr = 0x8000;
shcut_addr = (shcut_addr | ((index&0x1f)<<7) | (10<<2)) + 1;
rtw_write16(padapter, shcut_addr, hw_seq[index]);
/* RTW_INFO("mac_id:%d is used, hw_seq[index]=%d\n", index, hw_seq[index]); */
}
}
}
u8 SetHwReg8814A(PADAPTER padapter, u8 variable, u8 *pval)
{
PHAL_DATA_TYPE pHalData;
struct dm_struct* podmpriv;
u8 ret = _SUCCESS;
u8 val8;
u16 val16;
u32 val32;
pHalData = GET_HAL_DATA(padapter);
podmpriv = &pHalData->odmpriv;
switch (variable)
{
case HW_VAR_MEDIA_STATUS:
val8 = rtw_read8(padapter, MSR) & 0x0c;
val8 |= *pval;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(padapter, variable, pval);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(padapter, variable, pval);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(padapter, variable, pval);
break;
case HW_VAR_BASIC_RATE:
{
struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
u16 rrsr_5g_force_mask = (RRSR_6M);
u16 rrsr_5g_allow_mask = (RRSR_OFDM_RATES);
HalSetBrateCfg(padapter, pval, &BrateCfg);
input_b = BrateCfg;
/* apply force and allow mask */
if(pHalData->current_band_type == BAND_ON_2_4G)
{
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
}
else // 5G
{
BrateCfg |= rrsr_5g_force_mask;
BrateCfg &= rrsr_5g_allow_mask;
}
masked = BrateCfg;
/* IOT consideration */
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
if((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
ioted = BrateCfg;
pHalData->BasicRateSet = BrateCfg;
RTW_INFO("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
// Set RRSR rate table.
rtw_write16(padapter, REG_RRSR, BrateCfg);
rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(padapter, REG_TXPAUSE, *pval);
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(padapter, variable, pval);
break;
case HW_VAR_CORRECT_TSF:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_correct_tsf(padapter, variable, pval);
#else //CONFIG_CONCURRENT_MODE
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(padapter, REG_TXPAUSE, (rtw_read8(padapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(padapter);
}
//disable related TSF function
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)&(~BIT(3)));
//select port0 tsf
rtw_write8(padapter, REG_BCN_INTERVAL+3, rtw_read8(padapter, REG_BCN_INTERVAL+3)&0x8f);
rtw_write32(padapter, REG_TSFTR, tsf);
rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)|BIT(3));
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(padapter, REG_TXPAUSE, (rtw_read8(padapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(padapter);
}
}
#endif //CONFIG_CONCURRENT_MODE
break;
case HW_VAR_MLME_DISCONNECT:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_disconnect(padapter, variable, pval);
#else
{
// Set RCR to not to receive data frame when NO LINK state
// val32 = rtw_read32(padapter, REG_RCR);
// val32 &= ~RCR_ADF;
// rtw_write32(padapter, REG_RCR, val32);
// reject all data frames
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
// reset TSF
val8 = BIT(0) | BIT(1);
rtw_write8(padapter, REG_DUAL_TSF_RST, val8);
// disable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
#endif
break;
case HW_VAR_MLME_SITESURVEY:
hw_var_set_mlme_sitesurvey(padapter, variable, pval);
#ifdef CONFIG_BT_COEXIST
if (_TRUE == pHalData->EEPROMBluetoothCoexist)
rtw_btcoex_ScanNotify(padapter, *pval?_TRUE:_FALSE);
#endif
break;
case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_join(padapter, variable, pval);
#else // !CONFIG_CONCURRENT_MODE
{
u8 RetryLimit = RL_VAL_AP;
u8 type = *(u8*)pval;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
if (type == 0) // prepare to join
{
//enable to rx data frame.Accept all data frame
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = RL_VAL_AP;
}
}
else if (type == 1) //joinbss_event call back when join res < 0
{
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
}
else if (type == 2) //sta add event call back
{
//enable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
RetryLimit = RL_VAL_AP;
}
}
val16 = BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit);
rtw_write16(padapter, REG_RETRY_LIMIT, val16);
}
#endif // !CONFIG_CONCURRENT_MODE
#ifdef CONFIG_BT_COEXIST
if (_TRUE == pHalData->EEPROMBluetoothCoexist)
{
switch (*pval)
{
case 0:
// prepare to join
rtw_btcoex_ConnectNotify(padapter, _TRUE);
break;
case 1:
// joinbss_event callback when join res < 0
rtw_btcoex_ConnectNotify(padapter, _FALSE);
break;
case 2:
// sta add event callback
// rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT);
break;
}
}
#endif
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(padapter, REG_BCN_INTERVAL, *(u16*)pval);
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
{
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
u16 bcn_interval;
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
bcn_interval = *((u16*)pval);
if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
{
RTW_INFO("%s==> bcn_interval:%d, eraly_int:%d\n", __FUNCTION__, bcn_interval, bcn_interval>>1);
rtw_write8(padapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio
}
}
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
break;
case HW_VAR_SLOT_TIME:
rtw_write8(padapter, REG_SLOT, *pval);
break;
case HW_VAR_RESP_SIFS:
// SIFS_Timer = 0x0a0a0808;
// RESP_SIFS for CCK
rtw_write8(padapter, REG_RESP_SIFS_CCK, pval[0]); // SIFS_T2T_CCK (0x08)
rtw_write8(padapter, REG_RESP_SIFS_CCK+1, pval[1]); //SIFS_R2T_CCK(0x08)
// RESP_SIFS for OFDM
rtw_write8(padapter, REG_RESP_SIFS_OFDM, pval[2]); //SIFS_T2T_OFDM (0x0a)
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, pval[3]); //SIFS_R2T_OFDM(0x0a)
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 bShortPreamble = *pval;
// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
val8 = (pHalData->nCur40MhzPrimeSC) << 5;
if (bShortPreamble)
val8 |= 0x80;
rtw_write8(padapter, REG_RRSR+2, val8);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *pval;
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i=0; i<CAM_CONTENT_COUNT; i++)
{
// filled id in CAM config 2 byte
if (i == 0)
{
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
//ulContent |= CAM_VALID;
}
else
{
ulContent = 0;
}
// polling bit, and No Write enable, and address
ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
// write content 0 is equall to mark invalid
rtw_write32(padapter, WCAMI, ulContent); //rtw_mdelay_os(40);
rtw_write32(padapter, RWCAM, ulCommand); //rtw_mdelay_os(40);
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
val32 = BIT(31) | BIT(30);
rtw_write32(padapter, RWCAM, val32);
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(padapter, REG_EDCA_VO_PARAM, *(u32*)pval);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(padapter, REG_EDCA_VI_PARAM, *(u32*)pval);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->ac_param_be = *(u32*)pval;
rtw_write32(padapter, REG_EDCA_BE_PARAM, *(u32*)pval);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(padapter, REG_EDCA_BK_PARAM, *(u32*)pval);
break;
case HW_VAR_ACM_CTRL:
{
u8 acm_ctrl;
u8 AcmCtrl;
acm_ctrl = *(u8*)pval;
AcmCtrl = rtw_read8(padapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
rtw_write8(padapter, REG_ACMHWCTRL, AcmCtrl );
}
break;
case HW_VAR_AMPDU_FACTOR:
{
u32 AMPDULen = *(u8*)pval;
RTW_INFO("SetHwReg8814AU(): HW_VAR_AMPDU_FACTOR %x\n" ,AMPDULen);
if(AMPDULen < VHT_AGG_SIZE_256K)
AMPDULen = (0x2000 << (*((u8*)pval))) -1;
else
AMPDULen = 0x3ffff;
rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8814A, AMPDULen);
//RTW_INFO("SetHwReg8814AU(): HW_VAR_AMPDU_FACTOR %x\n" ,AMPDULen);
}
break;
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = *pval;
rtl8814_set_FwPwrMode_cmd(padapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8814_set_FwJoinBssReport_cmd(padapter, *pval);
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8814_set_p2p_ps_offload_cmd(padapter, *pval);
break;
#endif // CONFIG_P2P_PS
#ifdef CONFIG_SW_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_LINK:
//SwAntDivRestAfterLink8192C(padapter);
ODM_SwAntDivRestAfterLink(podmpriv);
break;
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = *pval;
u8 Ant;
//switch antenna to Optimum_antenna
//RTW_INFO("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
if (pHalData->CurAntenna != Optimum_antenna)
{
Ant = (Optimum_antenna==2) ? MAIN_ANT : AUX_ANT;
ODM_UpdateRxIdleAnt(podmpriv, Ant);
pHalData->CurAntenna = Optimum_antenna;
//RTW_INFO("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
}
}
break;
#endif //CONFIG_SW_ANTENNA_DIVERSITY
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *pval;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *(u16*)pval;
break;
#if 0
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *pval;
#endif //HAL_EFUSE_MEMORY
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *(u16*)pval;
#else //HAL_EFUSE_MEMORY
BTEfuseUsedBytes = *(u16*)pval;
#endif //HAL_EFUSE_MEMORY
break;
#endif //0
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv;
u8 trycnt = 100;
pwrpriv = adapter_to_pwrctl(padapter);
// pause tx
rtw_write8(padapter, REG_TXPAUSE, 0xff);
// keep sn
rtw_store_all_sta_hwseq(padapter);
if (pwrpriv->bkeepfwalive != _TRUE)
{
// RX DMA stop
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(padapter, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (val32)
break;
} while (--trycnt);
if (trycnt == 0)
{
RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
}
//RQPN Load 0
rtw_write16(padapter, REG_RQPN_NPQ, 0x0);
rtw_write32(padapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(10);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
rtw_restore_all_sta_hwseq(padapter);
break;
case HW_VAR_CHECK_TXBUF:
{
u8 retry_limit;
u32 reg_230 = 0, reg_234 = 0, reg_238 = 0, reg_23c = 0, reg_240 = 0;
u32 init_reg_230 = 0, init_reg_234 = 0, init_reg_238 = 0, init_reg_23c = 0, init_reg_240 = 0;
systime start = rtw_get_current_time();
u32 pass_ms;
int i = 0;
retry_limit = 0x01;
val16 = BIT_SRL(retry_limit) | BIT_LRL(retry_limit);
rtw_write16(padapter, REG_RETRY_LIMIT, val16);
while (rtw_get_passing_time_ms(start) < 2000
&& !RTW_CANNOT_RUN(padapter)
) {
reg_230 = rtw_read32(padapter, REG_FIFOPAGE_INFO_1_8814A);
reg_234 = rtw_read32(padapter, REG_FIFOPAGE_INFO_2_8814A);
reg_238 = rtw_read32(padapter, REG_FIFOPAGE_INFO_3_8814A);
reg_23c = rtw_read32(padapter, REG_FIFOPAGE_INFO_4_8814A);
reg_240 = rtw_read32(padapter, REG_FIFOPAGE_INFO_5_8814A);
if (i == 0) {
init_reg_230 = reg_230;
init_reg_234 = reg_234;
init_reg_238 = reg_238;
init_reg_23c = reg_23c;
init_reg_240 = reg_240;
}
i++;
if ((((reg_230 & 0x0c) != ((reg_230>>16) & 0x0c)) || ((reg_234 & 0x0c) != ((reg_234>>16) & 0x0c))
|| ((reg_238 & 0x0c) != ((reg_238>>16) & 0x0c)) || ((reg_23c & 0x0c) != ((reg_23c>>16) & 0x0c))
|| ((reg_240 & 0x0c) != ((reg_240>>16) & 0x0c)))) {
/* RTW_INFO("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x230=0x%08x, 0x234=0x%08x 0x238=0x%08x,"
" 0x23c=0x%08x, 0x240=0x%08x (%d)\n"
, __FUNCTION__, reg_230, reg_234, reg_238, reg_23c, reg_240, i); */
rtw_msleep_os(10);
} else {
break;
}
}
pass_ms = rtw_get_passing_time_ms(start);
if (RTW_CANNOT_RUN(padapter)) {
RTW_INFO("bDriverStopped or bSurpriseRemoved\n");
} else if (pass_ms >= 2000 || (((reg_230 & 0x0c) != ((reg_230>>16) & 0x0c)) || ((reg_234 & 0x0c) != ((reg_234>>16) & 0x0c))
|| ((reg_238 & 0x0c) != ((reg_238>>16) & 0x0c)) || ((reg_23c & 0x0c) != ((reg_23c>>16) & 0x0c))
|| ((reg_240 & 0x0c) != ((reg_240>>16) & 0x0c)))) {
RTW_ERR("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __func__, i, pass_ms);
RTW_ERR("%s:(HW_VAR_CHECK_TXBUF) 0x230=0x%08x, 0x234=0x%08x 0x238=0x%08x, 0x23c=0x%08x, 0x240=0x%08x (0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x)\n", __func__, reg_230, reg_234, reg_238, reg_23c, reg_240
, init_reg_230, init_reg_234, init_reg_238, init_reg_23c, init_reg_240);
//rtw_warn_on(1);
} else {
RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
}
retry_limit = RL_VAL_STA;
val16 = BIT_SRL(retry_limit) | BIT_LRL(retry_limit);
rtw_write16(padapter, REG_RETRY_LIMIT, val16);
}
break;
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *pval;
RTW_INFO("%s: bMacPwrCtrlOn=%d\n", __FUNCTION__, pHalData->bMacPwrCtrlOn);
break;
case HW_VAR_NAV_UPPER:
{
u32 usNavUpper = *((u32*)pval);
if (usNavUpper > HAL_NAV_UPPER_UNIT * 0xFF)
{
RTW_INFO("%s: [HW_VAR_NAV_UPPER] set value(0x%08X us) is larger than (%d * 0xFF)!\n",
__FUNCTION__, usNavUpper, HAL_NAV_UPPER_UNIT);
break;
}
// The value of ((usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT)
// is getting the upper integer.
//usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT;
rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
/* BCN_VALID, BIT31 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear, Clear by sw */
val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+3);
val8 |= BIT(7);
rtw_write8(padapter, REG_FIFOPAGE_CTRL_2_8814A+3, val8);
}
else
#endif
{
/* BCN_VALID, BIT15 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear, Clear by sw */
val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+1);
val8 |= BIT(7);
rtw_write8(padapter, REG_FIFOPAGE_CTRL_2_8814A+1, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
#if 0 /* for MBSSID, so far we don't need this */
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->iface_type == IFACE_PORT1)
{
// SW_BCN_SEL - Port1
val8 = rtw_read8(padapter, REG_AUTO_LLT_8814A);
val8 |= BIT(2);
rtw_write8(padapter, REG_AUTO_LLT_8814A, val8);
}
else
#endif //CONFIG_CONCURRENT_MODE
{
/* SW_BCN_SEL - Port0 , BIT_r_EN_BCN_SW_HEAD_SEL */
val8 = rtw_read8(padapter, REG_AUTO_LLT_8814A);
val8 &= ~BIT(2);
rtw_write8(padapter, REG_AUTO_LLT_8814A, val8);
}
#endif /* for MBSSID, so far we don't need this */
break;
case HW_VAR_WIRELESS_MODE:
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u8 R2T_SIFS = 0, SIFS_Timer = 0;
u8 wireless_mode = *pval;
if ((wireless_mode == WIRELESS_11BG) || (wireless_mode == WIRELESS_11G))
SIFS_Timer = 0xa;
else
SIFS_Timer = 0xe;
// SIFS for OFDM Data ACK
rtw_write8(padapter, REG_SIFS_CTX+1, SIFS_Timer);
// SIFS for OFDM consecutive tx like CTS data!
rtw_write8(padapter, REG_SIFS_TRX+1, SIFS_Timer);
rtw_write8(padapter,REG_SPEC_SIFS+1, SIFS_Timer);
rtw_write8(padapter,REG_MAC_SPEC_SIFS+1, SIFS_Timer);
// 20100719 Joseph: Revise SIFS setting due to Hardware register definition change.
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, SIFS_Timer);
rtw_write8(padapter, REG_RESP_SIFS_OFDM, SIFS_Timer);
//
// Adjust R2T SIFS for IOT issue. Add by hpfan 2013.01.25
// Set R2T SIFS to 0x0a for Atheros IOT. Add by hpfan 2013.02.22
//
// Mac has 10 us delay so use 0xa value is enough.
R2T_SIFS = 0xa;
#ifdef CONFIG_80211AC_VHT
if (wireless_mode & WIRELESS_11_5AC &&
//MgntLinkStatusQuery(Adapter) &&
TEST_FLAG(pmlmepriv->vhtpriv.ldpc_cap, LDPC_VHT_ENABLE_RX) &&
TEST_FLAG(pmlmepriv->vhtpriv.stbc_cap, STBC_VHT_ENABLE_RX))
{
if (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_ATHEROS)
R2T_SIFS = 0x8;
else
R2T_SIFS = 0xa;
}
#endif //CONFIG_80211AC_VHT
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, R2T_SIFS);
}
break;
case HW_VAR_DO_IQK:
pHalData->bNeedIQK = _TRUE;
break;
case HW_VAR_DL_RSVD_PAGE:
#ifdef CONFIG_BT_COEXIST
if (pHalData->EEPROMBluetoothCoexist == 1)
{
if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE)
{
rtl8814a_download_BTCoex_AP_mode_rsvd_page(padapter);
}
}
#endif // CONFIG_BT_COEXIST
break;
#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 1) /*add by YuChen for PHYDM-TxBF AutoTest HW Timer*/
case HW_VAR_HW_REG_TIMER_INIT:
{
HAL_HW_TIMER_TYPE TimerType = (*(PHAL_HW_TIMER_TYPE)pval)>>16;
rtw_write8(padapter, 0x164, 1);
if (TimerType == HAL_TIMER_TXBF)
rtw_write32(padapter, 0x15C, (*(pu2Byte)pval));
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write32(padapter, 0x160, 0x05000190);
break;
}
case HW_VAR_HW_REG_TIMER_START:
{
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
if (TimerType == HAL_TIMER_TXBF)
rtw_write8(padapter, 0x15F, 0x5);
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write8(padapter, 0x163, 0x5);
break;
}
case HW_VAR_HW_REG_TIMER_RESTART:
{
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
if (TimerType == HAL_TIMER_TXBF) {
rtw_write8(padapter, 0x15F, 0x0);
rtw_write8(padapter, 0x15F, 0x5);
} else if (TimerType == HAL_TIMER_EARLYMODE) {
rtw_write8(padapter, 0x163, 0x0);
rtw_write8(padapter, 0x163, 0x5);
}
break;
}
case HW_VAR_HW_REG_TIMER_STOP:
{
HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
if (TimerType == HAL_TIMER_TXBF)
rtw_write8(padapter, 0x15F, 0);
else if (TimerType == HAL_TIMER_EARLYMODE)
rtw_write8(padapter, 0x163, 0x0);
break;
}
#endif/*#if (BEAMFORMING_SUPPORT == 1) - for PHYDM TxBF*/
#endif/*#ifdef CONFIG_BEAMFORMING*/
#ifdef CONFIG_GPIO_WAKEUP
case HW_SET_GPIO_WL_CTRL:
{
u8 enable = *pval;
u8 value = rtw_read8(padapter, 0x4e);
if (enable && (value & BIT(6))) {
value &= ~BIT(6);
rtw_write8(padapter, 0x4e, value);
} else if (enable == _FALSE){
value |= BIT(6);
rtw_write8(padapter, 0x4e, value);
}
RTW_INFO("%s: set WL control, 0x4E=0x%02X\n",
__func__, rtw_read8(padapter, 0x4e));
}
break;
#endif
default:
ret = SetHwReg(padapter, variable, pval);
break;
}
return ret;
}
struct qinfo_8814a {
u32 head:8;
u32 pkt_num:7;
u32 tail:8;
u32 ac:2;
u32 macid:7;
};
struct bcn_qinfo_8814a {
u16 head:8;
u16 pkt_num:8;
};
void dump_qinfo_8814a(void *sel, struct qinfo_8814a *info, const char *tag)
{
//if (info->pkt_num)
RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
);
}
void dump_bcn_qinfo_8814a(void *sel, struct bcn_qinfo_8814a *info, const char *tag)
{
//if (info->pkt_num)
RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num
);
}
void dump_mac_qinfo_8814a(void *sel, _adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q0_info, "Q0 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q1_info, "Q1 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q2_info, "Q2 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q3_info, "Q3 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q4_info, "Q4 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q5_info, "Q5 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q6_info, "Q6 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q7_info, "Q7 ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&mg_q_info, "MG ");
dump_qinfo_8814a(sel, (struct qinfo_8814a *)&hi_q_info, "HI ");
dump_bcn_qinfo_8814a(sel, (struct bcn_qinfo_8814a *)&bcn_q_info, "BCN ");
}
void GetHwReg8814A(PADAPTER padapter, u8 variable, u8 *pval)
{
PHAL_DATA_TYPE pHalData;
struct dm_struct* podmpriv;
u8 val8;
u16 val16;
u32 val32;
pHalData = GET_HAL_DATA(padapter);
podmpriv = &pHalData->odmpriv;
switch (variable)
{
case HW_VAR_TXPAUSE:
*pval = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1)
{
/* BCN_VALID, BIT31 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear */
val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+3);
*pval = (BIT(7) & val8) ? _TRUE:_FALSE;
}
else
#endif //CONFIG_CONCURRENT_MODE
{
/* BCN_VALID, BIT15 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear */
val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+1);
*pval = (BIT(7) & val8) ? _TRUE:_FALSE;
}
break;
case HW_VAR_FWLPS_RF_ON:
//When we halt NIC, we should check if FW LPS is leave.
if(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
{
// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
// because Fw is unload.
*pval = _TRUE;
}
else
{
u32 valRCR;
valRCR = rtw_read32(padapter, REG_RCR);
valRCR &= 0x00070000;
if(valRCR)
*pval = _FALSE;
else
*pval = _TRUE;
}
break;
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_CURRENT_ANTENNA:
*pval = pHalData->CurAntenna;
break;
#endif //CONFIG_ANTENNA_DIVERSITY
case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22.
*(u16*)pval = pHalData->EfuseUsedBytes;
break;
case HW_VAR_APFM_ON_MAC:
*pval = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*pval = (val16 & BIT(10)) ? _TRUE:_FALSE;
break;
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_8814a(pval, padapter);
break;
default:
GetHwReg(padapter, variable, pval);
break;
}
}
/*
* Description:
* Change default setting of specified variable.
*/
u8 SetHalDefVar8814A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable)
{
case HAL_DEF_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *((u16*)pval);
break;
case HAL_DEF_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *((u8*)pval);
break;
default:
bResult = SetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
/*
* Description:
* Query setting of specified variable.
*/
u8 GetHalDefVar8814A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable)
{
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_DEF_IS_SUPPORT_ANT_DIV:
*((u8*)pval) = (pHalData->AntDivCfg==0) ? _FALSE : _TRUE;
break;
#endif //CONFIG_ANTENNA_DIVERSITY
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_DEF_CURRENT_ANTENNA:
*((u8*)pval) = pHalData->CurAntenna;
break;
#endif //CONFIG_ANTENNA_DIVERSITY
case HAL_DEF_DRVINFO_SZ:
*((u32*)pval) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32*)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32*)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*((u32*)pval) = MAX_AMPDU_FACTOR_64K;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pval) = AMPDU_DENSITY_VALUE_4;
break;
case HAL_DEF_TX_LDPC:
*(u8*)pval = _TRUE;
break;
case HAL_DEF_RX_LDPC:
*(u8*)pval = _TRUE;
break;
case HAL_DEF_TX_STBC:
if (pHalData->rf_type == RF_1T2R || pHalData->rf_type == RF_1T1R)
*(u8 *)pval = 0;
else
*(u8 *)pval = 1;
break;
case HAL_DEF_RX_STBC:
*(u8*)pval = 4;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
if (pHalData->rf_type != RF_1T2R || pHalData->rf_type != RF_1T1R)/*1T?R not support mer*/
*((PBOOLEAN)pval) = _TRUE;
else
*((PBOOLEAN)pval) = _FALSE;
break;
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((PBOOLEAN)pval) = _TRUE;
break;
case HW_DEF_RA_INFO_DUMP:
#if 0
{
u8 mac_id = *(u8*)pval;
u32 cmd ;
u32 ra_info1, ra_info2;
u32 rate_mask1, rate_mask2;
u8 curr_tx_rate,curr_tx_sgi,hight_rate,lowest_rate;
RTW_INFO("============ RA status check Mac_id:%d ===================\n", mac_id);
cmd = 0x40000100 |mac_id;
rtw_write32(padapter,REG_HMEBOX_E2_E3_8812,cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter,REG_RSVD5_8812);
curr_tx_rate = ra_info1&0x7F;
curr_tx_sgi = (ra_info1>>7)&0x01;
RTW_INFO("[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d, PWRSTS = 0x%02x \n",
ra_info1,
HDATA_RATE(curr_tx_rate),
curr_tx_sgi,
(ra_info1>>8) & 0x07);
cmd = 0x40000400 | mac_id;
rtw_write32(padapter, REG_HMEBOX_E2_E3_8812,cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, REG_RSVD5_8812);
ra_info2 = rtw_read32(padapter, REG_RSVD6_8812);
rate_mask1 = rtw_read32(padapter,REG_RSVD7_8812);
rate_mask2 = rtw_read32(padapter,REG_RSVD8_8812);
hight_rate = ra_info2&0xFF;
lowest_rate = (ra_info2>>8) & 0xFF;
RTW_INFO("[ ra_info1:0x%08x ] =>RSSI=%d, BW_setting=0x%02x, DISRA=0x%02x, VHT_EN=0x%02x\n",
ra_info1,
ra_info1&0xFF,
(ra_info1>>8) & 0xFF,
(ra_info1>>16) & 0xFF,
(ra_info1>>24) & 0xFF);
RTW_INFO("[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2>>16) & 0xFF,
(ra_info2>>24) & 0xFF);
RTW_INFO("rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);
}
#else //0
RTW_INFO("%s,%d, 8814 need to fix \n", __FUNCTION__,__LINE__);
#endif //0
break;
case HAL_DEF_TX_PAGE_SIZE:
*(u32*)pval = PAGE_SIZE_128;
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!padapter->registrypriv.wifi_spec)
{
*(u16*)pval = TX_PAGE_BOUNDARY_8814A;
}
else
{
*(u16*)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8814A;
}
break;
case HAL_DEF_TX_PAGE_BOUNDARY_WOWLAN:
*(u16*)pval = TX_PAGE_BOUNDARY_WOWLAN_8814A;
break;
case HAL_DEF_EFUSE_BYTES:
*((u16*)(pval)) = pHalData->EfuseUsedBytes;
break;
case HAL_DEF_EFUSE_USAGE:
*((u32*)(pval)) = (pHalData->EfuseUsedPercentage<<16)|(pHalData->EfuseUsedBytes);
break;
case HAL_DEF_RX_DMA_SZ_WOW:
*((u32 *)pval) = RX_DMA_BOUNDARY_8814A + 1;
break;
case HAL_DEF_RX_DMA_SZ:
*((u32 *)pval) = RX_DMA_BOUNDARY_8814A + 1;
break;
case HAL_DEF_RX_PAGE_SIZE:
*((u32 *)pval) = 8;
break;
default:
bResult = GetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
#ifdef CONFIG_BT_COEXIST
void rtl8812a_combo_card_WifiOnlyHwInit(PADAPTER pdapter)
{
u8 u1Tmp;
RTW_INFO("%s !\n", __FUNCTION__);
if(IS_HARDWARE_TYPE_8812(pdapter))
{
//0x790[5:0]=0x5
u1Tmp = rtw_read8(pdapter,0x790);
u1Tmp = (u1Tmp & 0xb0) | 0x05 ;
rtw_write8(pdapter,0x790,u1Tmp);
// PTA parameter
//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x6cc, 0x0);
//pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c8, 0xffffff);
//pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c4, 0x55555555);
//pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c0, 0x55555555);
rtw_write8(pdapter,0x6cc,0x0);
rtw_write32(pdapter,0x6c8,0xffffff);
rtw_write32(pdapter,0x6c4,0x55555555);
rtw_write32(pdapter,0x6c0,0x55555555);
// coex parameters
//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x778, 0x3);
rtw_write8(pdapter,0x778,0x3);
// enable counter statistics
//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x76e, 0xc);
rtw_write8(pdapter,0x76e,0xc);
// enable PTA
//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x40, 0x20);
rtw_write8(pdapter,0x40, 0x20);
// bt clock related
//u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x4);
//u1Tmp |= BIT7;
//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x4, u1Tmp);
u1Tmp = rtw_read8(pdapter,0x4);
u1Tmp |= BIT7;
rtw_write8(pdapter,0x4, u1Tmp);
// bt clock related
//u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x7);
//u1Tmp |= BIT1;
//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x7, u1Tmp);
u1Tmp = rtw_read8(pdapter,0x7);
u1Tmp |= BIT1;
rtw_write8(pdapter,0x7, u1Tmp);
}
}
#endif //CONFIG_BT_COEXIST
void rtl8814_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8814_init_dm_priv;
pHalFunc->dm_deinit = &rtl8814_deinit_dm_priv;
pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8814A;
pHalFunc->read_chip_version = read_chip_version_8814a;
// pHalFunc->set_bwmode_handler = &PHY_SetBWMode8814;
// pHalFunc->set_channel_handler = &PHY_SwChnl8814;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8814;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8814;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8814;
pHalFunc->set_tx_power_index_handler = &PHY_SetTxPowerIndex_8814A;
pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex8814A;
pHalFunc->hal_dm_watchdog = &rtl8814_HalDmWatchDog;
// pHalFunc->Add_RateATid = &rtl8814_Add_RateATid;
pHalFunc->run_thread= &rtl8814_start_thread;
pHalFunc->cancel_thread= &rtl8814_stop_thread;
#ifdef CONFIG_ANTENNA_DIVERSITY
pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8812;
pHalFunc->AntDivCompareHandler = &AntDivCompare8812;
#endif //CONFIG_ANTENNA_DIVERSITY
pHalFunc->read_bbreg = &PHY_QueryBBReg8814A;
pHalFunc->write_bbreg = &PHY_SetBBReg8814A;
pHalFunc->read_rfreg = &PHY_QueryRFReg8814A;
pHalFunc->write_rfreg = &PHY_SetRFReg8814A;
// Efuse related function
pHalFunc->EfusePowerSwitch = &rtl8814_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8814_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8814_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8814_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8814_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8814_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8814_Efuse_WordEnableDataWrite;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8814_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8814_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress= &sreset_inprogress;
#endif //DBG_CONFIG_ERROR_DETECT
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
pHalFunc->hal_notch_filter = &hal_notch_filter_8814;
pHalFunc->c2h_handler = c2h_handler_8814a;
pHalFunc->fill_h2c_cmd = &FillH2CCmd_8814;
pHalFunc->fill_fake_txdesc = &rtl8814a_fill_fake_txdesc;
#ifdef CONFIG_WOWLAN
pHalFunc->hal_set_wowlan_fw = &SetFwRelatedForWoWLAN8814;
#endif //CONFIG_WOWLAN
pHalFunc->fw_dl = &FirmwareDownload8814A;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8814;
}