1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-15 02:15:44 +00:00
rtl8812au/os_dep/osdep_service.c

3160 lines
62 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _OSDEP_SERVICE_C_
#include <drv_types.h>
#define RT_TAG '1178'
#ifdef DBG_MEMORY_LEAK
#ifdef PLATFORM_LINUX
atomic_t _malloc_cnt = ATOMIC_INIT(0);
atomic_t _malloc_size = ATOMIC_INIT(0);
#endif
#endif /* DBG_MEMORY_LEAK */
#if defined(PLATFORM_LINUX)
/*
* Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE
* @return: one of RTW_STATUS_CODE
*/
inline int RTW_STATUS_CODE(int error_code)
{
if (error_code >= 0)
return _SUCCESS;
switch (error_code) {
/* case -ETIMEDOUT: */
/* return RTW_STATUS_TIMEDOUT; */
default:
return _FAIL;
}
}
#else
inline int RTW_STATUS_CODE(int error_code)
{
return error_code;
}
#endif
u32 rtw_atoi(u8 *s)
{
int num = 0, flag = 0;
int i;
for (i = 0; i <= strlen(s); i++) {
if (s[i] >= '0' && s[i] <= '9')
num = num * 10 + s[i] - '0';
else if (s[0] == '-' && i == 0)
flag = 1;
else
break;
}
if (flag == 1)
num = num * -1;
return num;
}
inline void *_rtw_vmalloc(u32 sz)
{
void *pbuf;
#ifdef PLATFORM_LINUX
pbuf = vmalloc(sz);
#endif
#ifdef PLATFORM_FREEBSD
pbuf = malloc(sz, M_DEVBUF, M_NOWAIT);
#endif
#ifdef PLATFORM_WINDOWS
NdisAllocateMemoryWithTag(&pbuf, sz, RT_TAG);
#endif
#ifdef DBG_MEMORY_LEAK
#ifdef PLATFORM_LINUX
if (pbuf != NULL) {
atomic_inc(&_malloc_cnt);
atomic_add(sz, &_malloc_size);
}
#endif
#endif /* DBG_MEMORY_LEAK */
return pbuf;
}
inline void *_rtw_zvmalloc(u32 sz)
{
void *pbuf;
#ifdef PLATFORM_LINUX
pbuf = _rtw_vmalloc(sz);
if (pbuf != NULL)
memset(pbuf, 0, sz);
#endif
#ifdef PLATFORM_FREEBSD
pbuf = malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT);
#endif
#ifdef PLATFORM_WINDOWS
NdisAllocateMemoryWithTag(&pbuf, sz, RT_TAG);
if (pbuf != NULL)
NdisFillMemory(pbuf, sz, 0);
#endif
return pbuf;
}
inline void _rtw_vmfree(void *pbuf, u32 sz)
{
#ifdef PLATFORM_LINUX
vfree(pbuf);
#endif
#ifdef PLATFORM_FREEBSD
free(pbuf, M_DEVBUF);
#endif
#ifdef PLATFORM_WINDOWS
NdisFreeMemory(pbuf, sz, 0);
#endif
#ifdef DBG_MEMORY_LEAK
#ifdef PLATFORM_LINUX
atomic_dec(&_malloc_cnt);
atomic_sub(sz, &_malloc_size);
#endif
#endif /* DBG_MEMORY_LEAK */
}
void *_rtw_malloc(u32 sz)
{
void *pbuf = NULL;
#ifdef PLATFORM_LINUX
#ifdef RTK_DMP_PLATFORM
if (sz > 0x4000)
pbuf = dvr_malloc(sz);
else
#endif
pbuf = kmalloc(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif
#ifdef PLATFORM_FREEBSD
pbuf = malloc(sz, M_DEVBUF, M_NOWAIT);
#endif
#ifdef PLATFORM_WINDOWS
NdisAllocateMemoryWithTag(&pbuf, sz, RT_TAG);
#endif
#ifdef DBG_MEMORY_LEAK
#ifdef PLATFORM_LINUX
if (pbuf != NULL) {
atomic_inc(&_malloc_cnt);
atomic_add(sz, &_malloc_size);
}
#endif
#endif /* DBG_MEMORY_LEAK */
return pbuf;
}
void *_rtw_zmalloc(u32 sz)
{
#ifdef PLATFORM_FREEBSD
return malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT);
#else /* PLATFORM_FREEBSD */
void *pbuf = _rtw_malloc(sz);
if (pbuf != NULL) {
#ifdef PLATFORM_LINUX
memset(pbuf, 0, sz);
#endif
#ifdef PLATFORM_WINDOWS
NdisFillMemory(pbuf, sz, 0);
#endif
}
return pbuf;
#endif /* PLATFORM_FREEBSD */
}
void _rtw_mfree(void *pbuf, u32 sz)
{
#ifdef PLATFORM_LINUX
#ifdef RTK_DMP_PLATFORM
if (sz > 0x4000)
dvr_free(pbuf);
else
#endif
kfree(pbuf);
#endif
#ifdef PLATFORM_FREEBSD
free(pbuf, M_DEVBUF);
#endif
#ifdef PLATFORM_WINDOWS
NdisFreeMemory(pbuf, sz, 0);
#endif
#ifdef DBG_MEMORY_LEAK
#ifdef PLATFORM_LINUX
atomic_dec(&_malloc_cnt);
atomic_sub(sz, &_malloc_size);
#endif
#endif /* DBG_MEMORY_LEAK */
}
#ifdef PLATFORM_FREEBSD
/* review again */
struct sk_buff *dev_alloc_skb(unsigned int size)
{
struct sk_buff *skb = NULL;
u8 *data = NULL;
/* skb = _rtw_zmalloc(sizeof(struct sk_buff)); */ /* for skb->len, etc. */
skb = _rtw_malloc(sizeof(struct sk_buff));
if (!skb)
goto out;
data = _rtw_malloc(size);
if (!data)
goto nodata;
skb->head = (unsigned char *)data;
skb->data = (unsigned char *)data;
skb->tail = (unsigned char *)data;
skb->end = (unsigned char *)data + size;
skb->len = 0;
/* printf("%s()-%d: skb=%p, skb->head = %p\n", __FUNCTION__, __LINE__, skb, skb->head); */
out:
return skb;
nodata:
_rtw_mfree(skb, sizeof(struct sk_buff));
skb = NULL;
goto out;
}
void dev_kfree_skb_any(struct sk_buff *skb)
{
/* printf("%s()-%d: skb->head = %p\n", __FUNCTION__, __LINE__, skb->head); */
if (skb->head)
_rtw_mfree(skb->head, 0);
/* printf("%s()-%d: skb = %p\n", __FUNCTION__, __LINE__, skb); */
if (skb)
_rtw_mfree(skb, 0);
}
struct sk_buff *skb_clone(const struct sk_buff *skb)
{
return NULL;
}
#endif /* PLATFORM_FREEBSD */
inline struct sk_buff *_rtw_skb_alloc(u32 sz)
{
#ifdef PLATFORM_LINUX
return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
return dev_alloc_skb(sz);
#endif /* PLATFORM_FREEBSD */
}
inline void _rtw_skb_free(struct sk_buff *skb)
{
dev_kfree_skb_any(skb);
}
inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
{
#ifdef PLATFORM_LINUX
return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
return NULL;
#endif /* PLATFORM_FREEBSD */
}
inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
{
#ifdef PLATFORM_LINUX
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
return skb_clone(skb);
#endif /* PLATFORM_FREEBSD */
}
inline struct sk_buff *_rtw_pskb_copy(struct sk_buff *skb)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
return pskb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#else
return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
return NULL;
#endif /* PLATFORM_FREEBSD */
}
inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb)
{
#if defined(PLATFORM_LINUX)
skb->dev = ndev;
return netif_rx(skb);
#elif defined(PLATFORM_FREEBSD)
return (*ndev->if_input)(ndev, skb);
#else
rtw_warn_on(1);
return -1;
#endif
}
#ifdef CONFIG_RTW_NAPI
inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb)
{
#if defined(PLATFORM_LINUX)
skb->dev = ndev;
return netif_receive_skb(skb);
#else
rtw_warn_on(1);
return -1;
#endif
}
#ifdef CONFIG_RTW_GRO
inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
{
#if defined(PLATFORM_LINUX)
return napi_gro_receive(napi, skb);
#else
rtw_warn_on(1);
return -1;
#endif
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
void _rtw_skb_queue_purge(struct sk_buff_head *list)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(list)) != NULL)
_rtw_skb_free(skb);
}
#ifdef CONFIG_USB_HCI
inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#else
return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#endif
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
return malloc(size, M_USBDEV, M_NOWAIT | M_ZERO);
#endif /* PLATFORM_FREEBSD */
}
inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
usb_free_coherent(dev, size, addr, dma);
#else
usb_buffer_free(dev, size, addr, dma);
#endif
#endif /* PLATFORM_LINUX */
#ifdef PLATFORM_FREEBSD
free(addr, M_USBDEV);
#endif /* PLATFORM_FREEBSD */
}
#endif /* CONFIG_USB_HCI */
#if defined(DBG_MEM_ALLOC)
struct rtw_mem_stat {
ATOMIC_T alloc; /* the memory bytes we allocate currently */
ATOMIC_T peak; /* the peak memory bytes we allocate */
ATOMIC_T alloc_cnt; /* the alloc count for alloc currently */
ATOMIC_T alloc_err_cnt; /* the error times we fail to allocate memory */
};
struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)];
#ifdef RTW_MEM_FUNC_STAT
struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)];
#endif
char *MSTAT_TYPE_str[] = {
"VIR",
"PHY",
"SKB",
"USB",
};
#ifdef RTW_MEM_FUNC_STAT
char *MSTAT_FUNC_str[] = {
"UNSP",
"IO",
"TXIO",
"RXIO",
"TX",
"RX",
};
#endif
void rtw_mstat_dump(void *sel)
{
int i;
int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)];
#ifdef RTW_MEM_FUNC_STAT
int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)];
#endif
int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err;
int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err;
for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) {
value_t[0][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc));
value_t[1][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].peak));
value_t[2][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_cnt));
value_t[3][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_err_cnt));
}
#ifdef RTW_MEM_FUNC_STAT
for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) {
value_f[0][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc));
value_f[1][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].peak));
value_f[2][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_cnt));
value_f[3][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_err_cnt));
}
#endif
RTW_PRINT_SEL(sel, "===================== MSTAT =====================\n");
RTW_PRINT_SEL(sel, "%4s %10s %10s %10s %10s\n", "TAG", "alloc", "peak", "aloc_cnt", "err_cnt");
RTW_PRINT_SEL(sel, "-------------------------------------------------\n");
for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++)
RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_TYPE_str[i], value_t[0][i], value_t[1][i], value_t[2][i], value_t[3][i]);
#ifdef RTW_MEM_FUNC_STAT
RTW_PRINT_SEL(sel, "-------------------------------------------------\n");
for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++)
RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_FUNC_str[i], value_f[0][i], value_f[1][i], value_f[2][i], value_f[3][i]);
#endif
}
void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz)
{
static systime update_time = 0;
int peak, alloc;
int i;
/* initialization */
if (!update_time) {
for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) {
ATOMIC_SET(&(rtw_mem_type_stat[i].alloc), 0);
ATOMIC_SET(&(rtw_mem_type_stat[i].peak), 0);
ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_cnt), 0);
ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_err_cnt), 0);
}
#ifdef RTW_MEM_FUNC_STAT
for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) {
ATOMIC_SET(&(rtw_mem_func_stat[i].alloc), 0);
ATOMIC_SET(&(rtw_mem_func_stat[i].peak), 0);
ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_cnt), 0);
ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_err_cnt), 0);
}
#endif
}
switch (status) {
case MSTAT_ALLOC_SUCCESS:
ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt));
alloc = ATOMIC_ADD_RETURN(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz);
peak = ATOMIC_READ(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak));
if (peak < alloc)
ATOMIC_SET(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak), alloc);
#ifdef RTW_MEM_FUNC_STAT
ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt));
alloc = ATOMIC_ADD_RETURN(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz);
peak = ATOMIC_READ(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak));
if (peak < alloc)
ATOMIC_SET(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak), alloc);
#endif
break;
case MSTAT_ALLOC_FAIL:
ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_err_cnt));
#ifdef RTW_MEM_FUNC_STAT
ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_err_cnt));
#endif
break;
case MSTAT_FREE:
ATOMIC_DEC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt));
ATOMIC_SUB(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz);
#ifdef RTW_MEM_FUNC_STAT
ATOMIC_DEC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt));
ATOMIC_SUB(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz);
#endif
break;
};
/* if (rtw_get_passing_time_ms(update_time) > 5000) { */
/* rtw_mstat_dump(RTW_DBGDUMP); */
update_time = rtw_get_current_time();
/* } */
}
#ifndef SIZE_MAX
#define SIZE_MAX (~(size_t)0)
#endif
struct mstat_sniff_rule {
enum mstat_f flags;
size_t lb;
size_t hb;
};
struct mstat_sniff_rule mstat_sniff_rules[] = {
{MSTAT_TYPE_PHY, 4097, SIZE_MAX},
};
int mstat_sniff_rule_num = sizeof(mstat_sniff_rules) / sizeof(struct mstat_sniff_rule);
bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size)
{
int i;
for (i = 0; i < mstat_sniff_rule_num; i++) {
if (mstat_sniff_rules[i].flags == flags
&& mstat_sniff_rules[i].lb <= size
&& mstat_sniff_rules[i].hb >= size)
return _TRUE;
}
return _FALSE;
}
inline void *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
void *p;
if (match_mstat_sniff_rules(flags, sz))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
p = _rtw_vmalloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline void *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
void *p;
if (match_mstat_sniff_rules(flags, sz))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
p = _rtw_zvmalloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline void dbg_rtw_vmfree(void *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
{
if (match_mstat_sniff_rules(flags, sz))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
_rtw_vmfree((pbuf), (sz));
rtw_mstat_update(
flags
, MSTAT_FREE
, sz
);
}
inline void *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
void *p;
if (match_mstat_sniff_rules(flags, sz))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
p = _rtw_malloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline void *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
void *p;
if (match_mstat_sniff_rules(flags, sz))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
p = _rtw_zmalloc((sz));
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, sz
);
return p;
}
inline void dbg_rtw_mfree(void *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
{
if (match_mstat_sniff_rules(flags, sz))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
_rtw_mfree((pbuf), (sz));
rtw_mstat_update(
flags
, MSTAT_FREE
, sz
);
}
inline struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line)
{
struct sk_buff *skb;
unsigned int truesize = 0;
skb = _rtw_skb_alloc(size);
if (skb)
truesize = skb->truesize;
if (!skb || truesize < size || match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, size, skb, truesize);
rtw_mstat_update(
flags
, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, truesize
);
return skb;
}
inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
unsigned int truesize = skb->truesize;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
_rtw_skb_free(skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
}
inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb_cp;
unsigned int truesize = skb->truesize;
unsigned int cp_truesize = 0;
skb_cp = _rtw_skb_copy(skb);
if (skb_cp)
cp_truesize = skb_cp->truesize;
if (!skb_cp || cp_truesize < truesize || match_mstat_sniff_rules(flags, cp_truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cp, cp_truesize);
rtw_mstat_update(
flags
, skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, cp_truesize
);
return skb_cp;
}
inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
{
struct sk_buff *skb_cl;
unsigned int truesize = skb->truesize;
unsigned int cl_truesize = 0;
skb_cl = _rtw_skb_clone(skb);
if (skb_cl)
cl_truesize = skb_cl->truesize;
if (!skb_cl || cl_truesize < truesize || match_mstat_sniff_rules(flags, cl_truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cl, cl_truesize);
rtw_mstat_update(
flags
, skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, cl_truesize
);
return skb_cl;
}
inline int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
int ret;
unsigned int truesize = skb->truesize;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
ret = _rtw_netif_rx(ndev, skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
return ret;
}
#ifdef CONFIG_RTW_NAPI
inline int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
int ret;
unsigned int truesize = skb->truesize;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
ret = _rtw_netif_receive_skb(ndev, skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
return ret;
}
#ifdef CONFIG_RTW_GRO
inline gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
int ret;
unsigned int truesize = skb->truesize;
if (match_mstat_sniff_rules(flags, truesize))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
ret = _rtw_napi_gro_receive(napi, skb);
rtw_mstat_update(
flags
, MSTAT_FREE
, truesize
);
return ret;
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(list)) != NULL)
dbg_rtw_skb_free(skb, flags, func, line);
}
#ifdef CONFIG_USB_HCI
inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line)
{
void *p;
if (match_mstat_sniff_rules(flags, size))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __FUNCTION__, size);
p = _rtw_usb_buffer_alloc(dev, size, dma);
rtw_mstat_update(
flags
, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
, size
);
return p;
}
inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line)
{
if (match_mstat_sniff_rules(flags, size))
RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __FUNCTION__, size);
_rtw_usb_buffer_free(dev, size, addr, dma);
rtw_mstat_update(
flags
, MSTAT_FREE
, size
);
}
#endif /* CONFIG_USB_HCI */
#endif /* defined(DBG_MEM_ALLOC) */
void *rtw_malloc2d(int h, int w, size_t size)
{
int j;
void **a = (void **) rtw_zmalloc(h * sizeof(void *) + h * w * size);
if (a == NULL) {
RTW_INFO("%s: alloc memory fail!\n", __FUNCTION__);
return NULL;
}
for (j = 0; j < h; j++)
a[j] = ((char *)(a + h)) + j * w * size;
return a;
}
void rtw_mfree2d(void *pbuf, int h, int w, int size)
{
rtw_mfree((u8 *)pbuf, h * sizeof(void *) + w * h * size);
}
inline void rtw_os_pkt_free(_pkt *pkt)
{
#if defined(PLATFORM_LINUX)
rtw_skb_free(pkt);
#elif defined(PLATFORM_FREEBSD)
m_freem(pkt);
#else
#error "TBD\n"
#endif
}
inline _pkt *rtw_os_pkt_copy(_pkt *pkt)
{
#if defined(PLATFORM_LINUX)
return rtw_skb_copy(pkt);
#elif defined(PLATFORM_FREEBSD)
return m_dup(pkt, M_NOWAIT);
#else
#error "TBD\n"
#endif
}
inline void *rtw_os_pkt_data(_pkt *pkt)
{
#if defined(PLATFORM_LINUX)
return pkt->data;
#elif defined(PLATFORM_FREEBSD)
return pkt->m_data;
#else
#error "TBD\n"
#endif
}
inline u32 rtw_os_pkt_len(_pkt *pkt)
{
#if defined(PLATFORM_LINUX)
return pkt->len;
#elif defined(PLATFORM_FREEBSD)
return pkt->m_pkthdr.len;
#else
#error "TBD\n"
#endif
}
void _rtw_memcpy(void *dst, const void *src, u32 sz)
{
#if defined(PLATFORM_LINUX) || defined (PLATFORM_FREEBSD)
memcpy(dst, src, sz);
#endif
#ifdef PLATFORM_WINDOWS
NdisMoveMemory(dst, src, sz);
#endif
}
inline void _rtw_memmove(void *dst, const void *src, u32 sz)
{
#if defined(PLATFORM_LINUX)
memmove(dst, src, sz);
#else
#error "TBD\n"
#endif
}
int _rtw_memcmp(const void *dst, const void *src, u32 sz)
{
#if defined(PLATFORM_LINUX) || defined (PLATFORM_FREEBSD)
/* under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0 */
if (!(memcmp(dst, src, sz)))
return _TRUE;
else
return _FALSE;
#endif
#ifdef PLATFORM_WINDOWS
/* under Windows, the return value of NdisEqualMemory for two same mem. chunk is 1 */
if (NdisEqualMemory(dst, src, sz))
return _TRUE;
else
return _FALSE;
#endif
}
void _rtw_memset(void *pbuf, int c, u32 sz)
{
#if defined(PLATFORM_LINUX) || defined (PLATFORM_FREEBSD)
memset(pbuf, c, sz);
#endif
#ifdef PLATFORM_WINDOWS
#if 0
NdisZeroMemory(pbuf, sz);
if (c != 0)
memset(pbuf, c, sz);
#else
NdisFillMemory(pbuf, sz, c);
#endif
#endif
}
#ifdef PLATFORM_FREEBSD
static inline void __list_add(_list *pnew, _list *pprev, _list *pnext)
{
pnext->prev = pnew;
pnew->next = pnext;
pnew->prev = pprev;
pprev->next = pnew;
}
#endif /* PLATFORM_FREEBSD */
void _rtw_init_listhead(_list *list)
{
#ifdef PLATFORM_LINUX
INIT_LIST_HEAD(list);
#endif
#ifdef PLATFORM_FREEBSD
list->next = list;
list->prev = list;
#endif
#ifdef PLATFORM_WINDOWS
NdisInitializeListHead(list);
#endif
}
/*
For the following list_xxx operations,
caller must guarantee the atomic context.
Otherwise, there will be racing condition.
*/
u32 rtw_is_list_empty(_list *phead)
{
#ifdef PLATFORM_LINUX
if (list_empty(phead))
return _TRUE;
else
return _FALSE;
#endif
#ifdef PLATFORM_FREEBSD
if (phead->next == phead)
return _TRUE;
else
return _FALSE;
#endif
#ifdef PLATFORM_WINDOWS
if (IsListEmpty(phead))
return _TRUE;
else
return _FALSE;
#endif
}
void rtw_list_insert_head(_list *plist, _list *phead)
{
#ifdef PLATFORM_LINUX
list_add(plist, phead);
#endif
#ifdef PLATFORM_FREEBSD
__list_add(plist, phead, phead->next);
#endif
#ifdef PLATFORM_WINDOWS
InsertHeadList(phead, plist);
#endif
}
void rtw_list_insert_tail(_list *plist, _list *phead)
{
#ifdef PLATFORM_LINUX
list_add_tail(plist, phead);
#endif
#ifdef PLATFORM_FREEBSD
__list_add(plist, phead->prev, phead);
#endif
#ifdef PLATFORM_WINDOWS
InsertTailList(phead, plist);
#endif
}
inline void rtw_list_splice(_list *list, _list *head)
{
#ifdef PLATFORM_LINUX
list_splice(list, head);
#else
#error "TBD\n"
#endif
}
inline void rtw_list_splice_init(_list *list, _list *head)
{
#ifdef PLATFORM_LINUX
list_splice_init(list, head);
#else
#error "TBD\n"
#endif
}
inline void rtw_list_splice_tail(_list *list, _list *head)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 27))
if (!list_empty(list))
__list_splice(list, head);
#else
list_splice_tail(list, head);
#endif
#else
#error "TBD\n"
#endif
}
inline void rtw_hlist_head_init(rtw_hlist_head *h)
{
#ifdef PLATFORM_LINUX
INIT_HLIST_HEAD(h);
#else
#error "TBD\n"
#endif
}
inline void rtw_hlist_add_head(rtw_hlist_node *n, rtw_hlist_head *h)
{
#ifdef PLATFORM_LINUX
hlist_add_head(n, h);
#else
#error "TBD\n"
#endif
}
inline void rtw_hlist_del(rtw_hlist_node *n)
{
#ifdef PLATFORM_LINUX
hlist_del(n);
#else
#error "TBD\n"
#endif
}
inline void rtw_hlist_add_head_rcu(rtw_hlist_node *n, rtw_hlist_head *h)
{
#ifdef PLATFORM_LINUX
hlist_add_head_rcu(n, h);
#else
#error "TBD\n"
#endif
}
inline void rtw_hlist_del_rcu(rtw_hlist_node *n)
{
#ifdef PLATFORM_LINUX
hlist_del_rcu(n);
#else
#error "TBD\n"
#endif
}
void rtw_init_timer(_timer *ptimer, void *padapter, void *pfunc, void *ctx)
{
_adapter *adapter = (_adapter *)padapter;
#ifdef PLATFORM_LINUX
_init_timer(ptimer, adapter->pnetdev, pfunc, ctx);
#endif
#ifdef PLATFORM_FREEBSD
_init_timer(ptimer, adapter->pifp, pfunc, ctx);
#endif
#ifdef PLATFORM_WINDOWS
_init_timer(ptimer, adapter->hndis_adapter, pfunc, ctx);
#endif
}
/*
Caller must check if the list is empty before calling rtw_list_delete
*/
void _rtw_init_sema(_sema *sema, int init_val)
{
#ifdef PLATFORM_LINUX
sema_init(sema, init_val);
#endif
#ifdef PLATFORM_FREEBSD
sema_init(sema, init_val, "rtw_drv");
#endif
#ifdef PLATFORM_OS_XP
KeInitializeSemaphore(sema, init_val, SEMA_UPBND); /* count=0; */
#endif
#ifdef PLATFORM_OS_CE
if (*sema == NULL)
*sema = CreateSemaphore(NULL, init_val, SEMA_UPBND, NULL);
#endif
}
void _rtw_free_sema(_sema *sema)
{
#ifdef PLATFORM_FREEBSD
sema_destroy(sema);
#endif
#ifdef PLATFORM_OS_CE
CloseHandle(*sema);
#endif
}
void _rtw_up_sema(_sema *sema)
{
#ifdef PLATFORM_LINUX
up(sema);
#endif
#ifdef PLATFORM_FREEBSD
sema_post(sema);
#endif
#ifdef PLATFORM_OS_XP
KeReleaseSemaphore(sema, IO_NETWORK_INCREMENT, 1, FALSE);
#endif
#ifdef PLATFORM_OS_CE
ReleaseSemaphore(*sema, 1, NULL);
#endif
}
u32 _rtw_down_sema(_sema *sema)
{
#ifdef PLATFORM_LINUX
if (down_interruptible(sema))
return _FAIL;
else
return _SUCCESS;
#endif
#ifdef PLATFORM_FREEBSD
sema_wait(sema);
return _SUCCESS;
#endif
#ifdef PLATFORM_OS_XP
if (STATUS_SUCCESS == KeWaitForSingleObject(sema, Executive, KernelMode, TRUE, NULL))
return _SUCCESS;
else
return _FAIL;
#endif
#ifdef PLATFORM_OS_CE
if (WAIT_OBJECT_0 == WaitForSingleObject(*sema, INFINITE))
return _SUCCESS;
else
return _FAIL;
#endif
}
inline void thread_exit(_completion *comp)
{
#ifdef PLATFORM_LINUX
complete_and_exit(comp, 0);
#endif
#ifdef PLATFORM_FREEBSD
printf("%s", "RTKTHREAD_exit");
#endif
#ifdef PLATFORM_OS_CE
ExitThread(STATUS_SUCCESS);
#endif
#ifdef PLATFORM_OS_XP
PsTerminateSystemThread(STATUS_SUCCESS);
#endif
}
inline void _rtw_init_completion(_completion *comp)
{
#ifdef PLATFORM_LINUX
init_completion(comp);
#endif
}
inline void _rtw_wait_for_comp_timeout(_completion *comp)
{
#ifdef PLATFORM_LINUX
wait_for_completion_timeout(comp, msecs_to_jiffies(3000));
#endif
}
inline void _rtw_wait_for_comp(_completion *comp)
{
#ifdef PLATFORM_LINUX
wait_for_completion(comp);
#endif
}
void _rtw_mutex_init(_mutex *pmutex)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
mutex_init(pmutex);
#else
init_MUTEX(pmutex);
#endif
#endif
#ifdef PLATFORM_FREEBSD
mtx_init(pmutex, "", NULL, MTX_DEF | MTX_RECURSE);
#endif
#ifdef PLATFORM_OS_XP
KeInitializeMutex(pmutex, 0);
#endif
#ifdef PLATFORM_OS_CE
*pmutex = CreateMutex(NULL, _FALSE, NULL);
#endif
}
void _rtw_mutex_free(_mutex *pmutex);
void _rtw_mutex_free(_mutex *pmutex)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
mutex_destroy(pmutex);
#else
#endif
#ifdef PLATFORM_FREEBSD
sema_destroy(pmutex);
#endif
#endif
#ifdef PLATFORM_OS_XP
#endif
#ifdef PLATFORM_OS_CE
#endif
}
void _rtw_spinlock_init(_lock *plock)
{
#ifdef PLATFORM_LINUX
spin_lock_init(plock);
#endif
#ifdef PLATFORM_FREEBSD
mtx_init(plock, "", NULL, MTX_DEF | MTX_RECURSE);
#endif
#ifdef PLATFORM_WINDOWS
NdisAllocateSpinLock(plock);
#endif
}
void _rtw_spinlock_free(_lock *plock)
{
#ifdef PLATFORM_FREEBSD
mtx_destroy(plock);
#endif
#ifdef PLATFORM_WINDOWS
NdisFreeSpinLock(plock);
#endif
}
#ifdef PLATFORM_FREEBSD
extern PADAPTER prtw_lock;
void rtw_mtx_lock(_lock *plock)
{
if (prtw_lock)
mtx_lock(&prtw_lock->glock);
else
printf("%s prtw_lock==NULL", __FUNCTION__);
}
void rtw_mtx_unlock(_lock *plock)
{
if (prtw_lock)
mtx_unlock(&prtw_lock->glock);
else
printf("%s prtw_lock==NULL", __FUNCTION__);
}
#endif /* PLATFORM_FREEBSD */
void _rtw_spinlock(_lock *plock)
{
#ifdef PLATFORM_LINUX
spin_lock(plock);
#endif
#ifdef PLATFORM_FREEBSD
mtx_lock(plock);
#endif
#ifdef PLATFORM_WINDOWS
NdisAcquireSpinLock(plock);
#endif
}
void _rtw_spinunlock(_lock *plock)
{
#ifdef PLATFORM_LINUX
spin_unlock(plock);
#endif
#ifdef PLATFORM_FREEBSD
mtx_unlock(plock);
#endif
#ifdef PLATFORM_WINDOWS
NdisReleaseSpinLock(plock);
#endif
}
void _rtw_spinlock_ex(_lock *plock)
{
#ifdef PLATFORM_LINUX
spin_lock(plock);
#endif
#ifdef PLATFORM_FREEBSD
mtx_lock(plock);
#endif
#ifdef PLATFORM_WINDOWS
NdisDprAcquireSpinLock(plock);
#endif
}
void _rtw_spinunlock_ex(_lock *plock)
{
#ifdef PLATFORM_LINUX
spin_unlock(plock);
#endif
#ifdef PLATFORM_FREEBSD
mtx_unlock(plock);
#endif
#ifdef PLATFORM_WINDOWS
NdisDprReleaseSpinLock(plock);
#endif
}
void _rtw_init_queue(_queue *pqueue)
{
_rtw_init_listhead(&(pqueue->queue));
_rtw_spinlock_init(&(pqueue->lock));
}
void _rtw_deinit_queue(_queue *pqueue)
{
_rtw_spinlock_free(&(pqueue->lock));
}
u32 _rtw_queue_empty(_queue *pqueue)
{
return rtw_is_list_empty(&(pqueue->queue));
}
u32 rtw_end_of_queue_search(_list *head, _list *plist)
{
if (head == plist)
return _TRUE;
else
return _FALSE;
}
systime _rtw_get_current_time(void)
{
#ifdef PLATFORM_LINUX
return jiffies;
#endif
#ifdef PLATFORM_FREEBSD
struct timeval tvp;
getmicrotime(&tvp);
return tvp.tv_sec;
#endif
#ifdef PLATFORM_WINDOWS
LARGE_INTEGER SystemTime;
NdisGetCurrentSystemTime(&SystemTime);
return SystemTime.LowPart;/* count of 100-nanosecond intervals */
#endif
}
inline u32 _rtw_systime_to_ms(systime stime)
{
#ifdef PLATFORM_LINUX
return jiffies_to_msecs(stime);
#endif
#ifdef PLATFORM_FREEBSD
return stime * 1000;
#endif
#ifdef PLATFORM_WINDOWS
return stime / 10000 ;
#endif
}
inline systime _rtw_ms_to_systime(u32 ms)
{
#ifdef PLATFORM_LINUX
return msecs_to_jiffies(ms);
#endif
#ifdef PLATFORM_FREEBSD
return ms / 1000;
#endif
#ifdef PLATFORM_WINDOWS
return ms * 10000 ;
#endif
}
inline systime _rtw_us_to_systime(u32 us)
{
#ifdef PLATFORM_LINUX
return usecs_to_jiffies(us);
#else
#error "TBD\n"
#endif
}
/* the input parameter start use the same unit as returned by rtw_get_current_time */
inline s32 _rtw_get_passing_time_ms(systime start)
{
return _rtw_systime_to_ms(_rtw_get_current_time() - start);
}
inline s32 _rtw_get_remaining_time_ms(systime end)
{
return _rtw_systime_to_ms(end - _rtw_get_current_time());
}
inline s32 _rtw_get_time_interval_ms(systime start, systime end)
{
return _rtw_systime_to_ms(end - start);
}
inline bool _rtw_time_after(systime a, systime b)
{
#ifdef PLATFORM_LINUX
return time_after(a, b);
#else
#error "TBD\n"
#endif
}
void rtw_sleep_schedulable(int ms)
{
#ifdef PLATFORM_LINUX
u32 delta;
delta = (ms * HZ) / 1000; /* (ms) */
if (delta == 0) {
delta = 1;/* 1 ms */
}
set_current_state(TASK_INTERRUPTIBLE);
if (schedule_timeout(delta) != 0)
return ;
return;
#endif
#ifdef PLATFORM_FREEBSD
DELAY(ms * 1000);
return ;
#endif
#ifdef PLATFORM_WINDOWS
NdisMSleep(ms * 1000); /* (us)*1000=(ms) */
#endif
}
void rtw_msleep_os(int ms)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
if (ms < 20) {
unsigned long us = ms * 1000UL;
usleep_range(us, us + 1000UL);
} else
#endif
msleep((unsigned int)ms);
#endif
#ifdef PLATFORM_FREEBSD
/* Delay for delay microseconds */
DELAY(ms * 1000);
return ;
#endif
#ifdef PLATFORM_WINDOWS
NdisMSleep(ms * 1000); /* (us)*1000=(ms) */
#endif
}
void rtw_usleep_os(int us)
{
#ifdef PLATFORM_LINUX
/* msleep((unsigned int)us); */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
usleep_range(us, us + 1);
#else
if (1 < (us / 1000))
msleep(1);
else
msleep((us / 1000) + 1);
#endif
#endif
#ifdef PLATFORM_FREEBSD
/* Delay for delay microseconds */
DELAY(us);
return ;
#endif
#ifdef PLATFORM_WINDOWS
NdisMSleep(us); /* (us) */
#endif
}
#ifdef DBG_DELAY_OS
void _rtw_mdelay_os(int ms, const char *func, const int line)
{
#if 0
if (ms > 10)
RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms);
rtw_msleep_os(ms);
return;
#endif
RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms);
#if defined(PLATFORM_LINUX)
mdelay((unsigned long)ms);
#elif defined(PLATFORM_WINDOWS)
NdisStallExecution(ms * 1000); /* (us)*1000=(ms) */
#endif
}
void _rtw_udelay_os(int us, const char *func, const int line)
{
#if 0
if (us > 1000) {
RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, us);
rtw_usleep_os(us);
return;
}
#endif
RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, us);
#if defined(PLATFORM_LINUX)
udelay((unsigned long)us);
#elif defined(PLATFORM_WINDOWS)
NdisStallExecution(us); /* (us) */
#endif
}
#else
void rtw_mdelay_os(int ms)
{
#ifdef PLATFORM_LINUX
mdelay((unsigned long)ms);
#endif
#ifdef PLATFORM_FREEBSD
DELAY(ms * 1000);
return ;
#endif
#ifdef PLATFORM_WINDOWS
NdisStallExecution(ms * 1000); /* (us)*1000=(ms) */
#endif
}
void rtw_udelay_os(int us)
{
#ifdef PLATFORM_LINUX
udelay((unsigned long)us);
#endif
#ifdef PLATFORM_FREEBSD
/* Delay for delay microseconds */
DELAY(us);
return ;
#endif
#ifdef PLATFORM_WINDOWS
NdisStallExecution(us); /* (us) */
#endif
}
#endif
void rtw_yield_os(void)
{
#ifdef PLATFORM_LINUX
yield();
#endif
#ifdef PLATFORM_FREEBSD
yield();
#endif
#ifdef PLATFORM_WINDOWS
SwitchToThread();
#endif
}
bool rtw_macaddr_is_larger(const u8 *a, const u8 *b)
{
u32 va, vb;
va = be32_to_cpu(*((u32 *)a));
vb = be32_to_cpu(*((u32 *)b));
if (va > vb)
return 1;
else if (va < vb)
return 0;
return be16_to_cpu(*((u16 *)(a + 4))) > be16_to_cpu(*((u16 *)(b + 4)));
}
#define RTW_SUSPEND_LOCK_NAME "rtw_wifi"
#define RTW_SUSPEND_TRAFFIC_LOCK_NAME "rtw_wifi_traffic"
#define RTW_SUSPEND_RESUME_LOCK_NAME "rtw_wifi_resume"
#ifdef CONFIG_WAKELOCK
static struct wake_lock rtw_suspend_lock;
static struct wake_lock rtw_suspend_traffic_lock;
static struct wake_lock rtw_suspend_resume_lock;
#elif defined(CONFIG_ANDROID_POWER)
static android_suspend_lock_t rtw_suspend_lock = {
.name = RTW_SUSPEND_LOCK_NAME
};
static android_suspend_lock_t rtw_suspend_traffic_lock = {
.name = RTW_SUSPEND_TRAFFIC_LOCK_NAME
};
static android_suspend_lock_t rtw_suspend_resume_lock = {
.name = RTW_SUSPEND_RESUME_LOCK_NAME
};
#endif
inline void rtw_suspend_lock_init(void)
{
#ifdef CONFIG_WAKELOCK
wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME);
wake_lock_init(&rtw_suspend_traffic_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_TRAFFIC_LOCK_NAME);
wake_lock_init(&rtw_suspend_resume_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RESUME_LOCK_NAME);
#elif defined(CONFIG_ANDROID_POWER)
android_init_suspend_lock(&rtw_suspend_lock);
android_init_suspend_lock(&rtw_suspend_traffic_lock);
android_init_suspend_lock(&rtw_suspend_resume_lock);
#endif
}
inline void rtw_suspend_lock_uninit(void)
{
#ifdef CONFIG_WAKELOCK
wake_lock_destroy(&rtw_suspend_lock);
wake_lock_destroy(&rtw_suspend_traffic_lock);
wake_lock_destroy(&rtw_suspend_resume_lock);
#elif defined(CONFIG_ANDROID_POWER)
android_uninit_suspend_lock(&rtw_suspend_lock);
android_uninit_suspend_lock(&rtw_suspend_traffic_lock);
android_uninit_suspend_lock(&rtw_suspend_resume_lock);
#endif
}
inline void rtw_lock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
wake_lock(&rtw_suspend_lock);
#elif defined(CONFIG_ANDROID_POWER)
android_lock_suspend(&rtw_suspend_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_unlock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
wake_unlock(&rtw_suspend_lock);
#elif defined(CONFIG_ANDROID_POWER)
android_unlock_suspend(&rtw_suspend_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_resume_lock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
wake_lock(&rtw_suspend_resume_lock);
#elif defined(CONFIG_ANDROID_POWER)
android_lock_suspend(&rtw_suspend_resume_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_resume_unlock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
wake_unlock(&rtw_suspend_resume_lock);
#elif defined(CONFIG_ANDROID_POWER)
android_unlock_suspend(&rtw_suspend_resume_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_lock_suspend_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
wake_lock_timeout(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
android_lock_suspend_auto_expire(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms));
#endif
}
inline void rtw_lock_traffic_suspend_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
wake_lock_timeout(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
android_lock_suspend_auto_expire(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms));
#endif
/* RTW_INFO("traffic lock timeout:%d\n", timeout_ms); */
}
inline void rtw_set_bit(int nr, unsigned long *addr)
{
#ifdef PLATFORM_LINUX
set_bit(nr, addr);
#else
#error "TBD\n";
#endif
}
inline void rtw_clear_bit(int nr, unsigned long *addr)
{
#ifdef PLATFORM_LINUX
clear_bit(nr, addr);
#else
#error "TBD\n";
#endif
}
inline int rtw_test_and_clear_bit(int nr, unsigned long *addr)
{
#ifdef PLATFORM_LINUX
return test_and_clear_bit(nr, addr);
#else
#error "TBD\n";
#endif
}
inline void ATOMIC_SET(ATOMIC_T *v, int i)
{
#ifdef PLATFORM_LINUX
atomic_set(v, i);
#elif defined(PLATFORM_WINDOWS)
*v = i; /* other choice???? */
#elif defined(PLATFORM_FREEBSD)
atomic_set_int(v, i);
#endif
}
inline int ATOMIC_READ(ATOMIC_T *v)
{
#ifdef PLATFORM_LINUX
return atomic_read(v);
#elif defined(PLATFORM_WINDOWS)
return *v; /* other choice???? */
#elif defined(PLATFORM_FREEBSD)
return atomic_load_acq_32(v);
#endif
}
inline void ATOMIC_ADD(ATOMIC_T *v, int i)
{
#ifdef PLATFORM_LINUX
atomic_add(i, v);
#elif defined(PLATFORM_WINDOWS)
InterlockedAdd(v, i);
#elif defined(PLATFORM_FREEBSD)
atomic_add_int(v, i);
#endif
}
inline void ATOMIC_SUB(ATOMIC_T *v, int i)
{
#ifdef PLATFORM_LINUX
atomic_sub(i, v);
#elif defined(PLATFORM_WINDOWS)
InterlockedAdd(v, -i);
#elif defined(PLATFORM_FREEBSD)
atomic_subtract_int(v, i);
#endif
}
inline void ATOMIC_INC(ATOMIC_T *v)
{
#ifdef PLATFORM_LINUX
atomic_inc(v);
#elif defined(PLATFORM_WINDOWS)
InterlockedIncrement(v);
#elif defined(PLATFORM_FREEBSD)
atomic_add_int(v, 1);
#endif
}
inline void ATOMIC_DEC(ATOMIC_T *v)
{
#ifdef PLATFORM_LINUX
atomic_dec(v);
#elif defined(PLATFORM_WINDOWS)
InterlockedDecrement(v);
#elif defined(PLATFORM_FREEBSD)
atomic_subtract_int(v, 1);
#endif
}
inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
#ifdef PLATFORM_LINUX
return atomic_add_return(i, v);
#elif defined(PLATFORM_WINDOWS)
return InterlockedAdd(v, i);
#elif defined(PLATFORM_FREEBSD)
atomic_add_int(v, i);
return atomic_load_acq_32(v);
#endif
}
inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
#ifdef PLATFORM_LINUX
return atomic_sub_return(i, v);
#elif defined(PLATFORM_WINDOWS)
return InterlockedAdd(v, -i);
#elif defined(PLATFORM_FREEBSD)
atomic_subtract_int(v, i);
return atomic_load_acq_32(v);
#endif
}
inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
{
#ifdef PLATFORM_LINUX
return atomic_inc_return(v);
#elif defined(PLATFORM_WINDOWS)
return InterlockedIncrement(v);
#elif defined(PLATFORM_FREEBSD)
atomic_add_int(v, 1);
return atomic_load_acq_32(v);
#endif
}
inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
#ifdef PLATFORM_LINUX
return atomic_dec_return(v);
#elif defined(PLATFORM_WINDOWS)
return InterlockedDecrement(v);
#elif defined(PLATFORM_FREEBSD)
atomic_subtract_int(v, 1);
return atomic_load_acq_32(v);
#endif
}
inline bool ATOMIC_INC_UNLESS(ATOMIC_T *v, int u)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 15))
return atomic_add_unless(v, 1, u);
#else
/* only make sure not exceed after this function */
if (ATOMIC_INC_RETURN(v) > u) {
ATOMIC_DEC(v);
return 0;
}
return 1;
#endif
#else
#error "TBD\n"
#endif
}
#ifdef PLATFORM_LINUX
/*
* Open a file with the specific @param path, @param flag, @param mode
* @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success
* @param path the path of the file to open
* @param flag file operation flags, please refer to linux document
* @param mode please refer to linux document
* @return Linux specific error code
*/
static int openFile(struct file **fpp, const char *path, int flag, int mode)
{
struct file *fp;
fp = filp_open(path, flag, mode);
if (IS_ERR(fp)) {
*fpp = NULL;
return PTR_ERR(fp);
} else {
*fpp = fp;
return 0;
}
}
/*
* Close the file with the specific @param fp
* @param fp the pointer of struct file to close
* @return always 0
*/
static int closeFile(struct file *fp)
{
filp_close(fp, NULL);
return 0;
}
static int readFile(struct file *fp, char *buf, int len)
{
int rlen = 0, sum = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
if (!(fp->f_mode & FMODE_CAN_READ))
#else
if (!fp->f_op || !fp->f_op->read)
#endif
return -EPERM;
while (sum < len) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
rlen = kernel_read(fp, buf + sum, len - sum, &fp->f_pos);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
rlen = __vfs_read(fp, buf + sum, len - sum, &fp->f_pos);
#else
rlen = fp->f_op->read(fp, buf + sum, len - sum, &fp->f_pos);
#endif
if (rlen > 0)
sum += rlen;
else if (0 != rlen)
return rlen;
else
break;
}
return sum;
}
static int writeFile(struct file *fp, char *buf, int len)
{
int wlen = 0, sum = 0;
if (!fp->f_op || !fp->f_op->write)
return -EPERM;
while (sum < len) {
wlen = fp->f_op->write(fp, buf + sum, len - sum, &fp->f_pos);
if (wlen > 0)
sum += wlen;
else if (0 != wlen)
return wlen;
else
break;
}
return sum;
}
/*
* Test if the specifi @param path is a file and readable
* If readable, @param sz is got
* @param path the path of the file to test
* @return Linux specific error code
*/
static int isFileReadable(const char *path, u32 *sz)
{
struct file *fp;
int ret = 0;
mm_segment_t oldfs;
char buf;
fp = filp_open(path, O_RDONLY, 0);
if (IS_ERR(fp))
ret = PTR_ERR(fp);
else {
oldfs = get_fs();
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0))
set_fs(KERNEL_DS);
#else
set_fs(get_ds());
#endif
if (1 != readFile(fp, &buf, 1))
ret = PTR_ERR(fp);
if (ret == 0 && sz) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
*sz = i_size_read(fp->f_path.dentry->d_inode);
#else
*sz = i_size_read(fp->f_dentry->d_inode);
#endif
}
set_fs(oldfs);
filp_close(fp, NULL);
}
return ret;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read, or Linux specific error code
*/
static int retriveFromFile(const char *path, u8 *buf, u32 sz)
{
int ret = -1;
mm_segment_t oldfs;
struct file *fp;
if (path && buf) {
ret = openFile(&fp, path, O_RDONLY, 0);
if (0 == ret) {
RTW_INFO("%s openFile path:%s fp=%p\n", __FUNCTION__, path , fp);
oldfs = get_fs();
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0))
set_fs(KERNEL_DS);
#else
set_fs(get_ds());
#endif
ret = readFile(fp, buf, sz);
set_fs(oldfs);
closeFile(fp);
RTW_INFO("%s readFile, ret:%d\n", __FUNCTION__, ret);
} else
RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __FUNCTION__, path, ret);
} else {
RTW_INFO("%s NULL pointer\n", __FUNCTION__);
ret = -EINVAL;
}
return ret;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written, or Linux specific error code
*/
static int storeToFile(const char *path, u8 *buf, u32 sz)
{
int ret = 0;
mm_segment_t oldfs;
struct file *fp;
if (path && buf) {
ret = openFile(&fp, path, O_CREAT | O_WRONLY, 0666);
if (0 == ret) {
RTW_INFO("%s openFile path:%s fp=%p\n", __FUNCTION__, path , fp);
oldfs = get_fs();
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0))
set_fs(KERNEL_DS);
#else
set_fs(get_ds());
#endif
ret = writeFile(fp, buf, sz);
set_fs(oldfs);
closeFile(fp);
RTW_INFO("%s writeFile, ret:%d\n", __FUNCTION__, ret);
} else
RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __FUNCTION__, path, ret);
} else {
RTW_INFO("%s NULL pointer\n", __FUNCTION__);
ret = -EINVAL;
}
return ret;
}
#endif /* PLATFORM_LINUX */
/*
* Test if the specifi @param path is a file and readable
* @param path the path of the file to test
* @return _TRUE or _FALSE
*/
int rtw_is_file_readable(const char *path)
{
#ifdef PLATFORM_LINUX
if (isFileReadable(path, NULL) == 0)
return _TRUE;
else
return _FALSE;
#else
/* Todo... */
return _FALSE;
#endif
}
/*
* Test if the specifi @param path is a file and readable.
* If readable, @param sz is got
* @param path the path of the file to test
* @return _TRUE or _FALSE
*/
int rtw_is_file_readable_with_size(const char *path, u32 *sz)
{
#ifdef PLATFORM_LINUX
if (isFileReadable(path, sz) == 0)
return _TRUE;
else
return _FALSE;
#else
/* Todo... */
return _FALSE;
#endif
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read
*/
int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz)
{
#ifdef PLATFORM_LINUX
int ret = retriveFromFile(path, buf, sz);
return ret >= 0 ? ret : 0;
#else
/* Todo... */
return 0;
#endif
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written
*/
int rtw_store_to_file(const char *path, u8 *buf, u32 sz)
{
#ifdef PLATFORM_LINUX
int ret = storeToFile(path, buf, sz);
return ret >= 0 ? ret : 0;
#else
/* Todo... */
return 0;
#endif
}
#ifdef PLATFORM_LINUX
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv)
{
struct net_device *pnetdev;
struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
if (!pnetdev)
goto RETURN;
pnetdev->mtu = WLAN_MAX_ETHFRM_LEN;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0))
pnetdev->min_mtu = WLAN_MIN_ETHFRM_LEN;
pnetdev->max_mtu = WLAN_DATA_MAXLEN;
#endif
pnpi = netdev_priv(pnetdev);
pnpi->priv = old_priv;
pnpi->sizeof_priv = sizeof_priv;
RETURN:
return pnetdev;
}
struct net_device *rtw_alloc_etherdev(int sizeof_priv)
{
struct net_device *pnetdev;
struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
if (!pnetdev)
goto RETURN;
pnetdev->mtu = WLAN_MAX_ETHFRM_LEN;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0))
pnetdev->min_mtu = WLAN_MIN_ETHFRM_LEN;
pnetdev->max_mtu = WLAN_DATA_MAXLEN;
#endif
pnpi = netdev_priv(pnetdev);
pnpi->priv = rtw_zvmalloc(sizeof_priv);
if (!pnpi->priv) {
free_netdev(pnetdev);
pnetdev = NULL;
goto RETURN;
}
pnpi->sizeof_priv = sizeof_priv;
RETURN:
return pnetdev;
}
void rtw_free_netdev(struct net_device *netdev)
{
struct rtw_netdev_priv_indicator *pnpi;
if (!netdev)
goto RETURN;
pnpi = netdev_priv(netdev);
if (!pnpi->priv)
goto RETURN;
free_netdev(netdev);
RETURN:
return;
}
int rtw_change_ifname(_adapter *padapter, const char *ifname)
{
struct dvobj_priv *dvobj;
struct net_device *pnetdev;
struct net_device *cur_pnetdev;
struct rereg_nd_name_data *rereg_priv;
int ret;
u8 rtnl_lock_needed;
if (!padapter)
goto error;
dvobj = adapter_to_dvobj(padapter);
cur_pnetdev = padapter->pnetdev;
rereg_priv = &padapter->rereg_nd_name_priv;
/* free the old_pnetdev */
if (rereg_priv->old_pnetdev) {
free_netdev(rereg_priv->old_pnetdev);
rereg_priv->old_pnetdev = NULL;
}
rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj);
if (rtnl_lock_needed)
unregister_netdev(cur_pnetdev);
else
unregister_netdevice(cur_pnetdev);
rereg_priv->old_pnetdev = cur_pnetdev;
pnetdev = rtw_init_netdev(padapter);
if (!pnetdev) {
ret = -1;
goto error;
}
SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter)));
rtw_init_netdev_name(pnetdev, ifname);
_rtw_memcpy(pnetdev->dev_addr, adapter_mac_addr(padapter), ETH_ALEN);
if (rtnl_lock_needed)
ret = register_netdev(pnetdev);
else
ret = register_netdevice(pnetdev);
if (ret != 0) {
goto error;
}
return 0;
error:
return -1;
}
#endif
#ifdef PLATFORM_FREEBSD
/*
* Copy a buffer from userspace and write into kernel address
* space.
*
* This emulation just calls the FreeBSD copyin function (to
* copy data from user space buffer into a kernel space buffer)
* and is designed to be used with the above io_write_wrapper.
*
* This function should return the number of bytes not copied.
* I.e. success results in a zero value.
* Negative error values are not returned.
*/
unsigned long
copy_from_user(void *to, const void *from, unsigned long n)
{
if (copyin(from, to, n) != 0) {
/* Any errors will be treated as a failure
to copy any of the requested bytes */
return n;
}
return 0;
}
unsigned long
copy_to_user(void *to, const void *from, unsigned long n)
{
if (copyout(from, to, n) != 0) {
/* Any errors will be treated as a failure
to copy any of the requested bytes */
return n;
}
return 0;
}
/*
* The usb_register and usb_deregister functions are used to register
* usb drivers with the usb subsystem. In this compatibility layer
* emulation a list of drivers (struct usb_driver) is maintained
* and is used for probing/attaching etc.
*
* usb_register and usb_deregister simply call these functions.
*/
int
usb_register(struct usb_driver *driver)
{
rtw_usb_linux_register(driver);
return 0;
}
int
usb_deregister(struct usb_driver *driver)
{
rtw_usb_linux_deregister(driver);
return 0;
}
void module_init_exit_wrapper(void *arg)
{
int (*func)(void) = arg;
func();
return;
}
#endif /* PLATFORM_FREEBSD */
#ifdef CONFIG_PLATFORM_SPRD
#ifdef do_div
#undef do_div
#endif
#include <asm-generic/div64.h>
#endif
u64 rtw_modular64(u64 x, u64 y)
{
#ifdef PLATFORM_LINUX
return do_div(x, y);
#elif defined(PLATFORM_WINDOWS)
return x % y;
#elif defined(PLATFORM_FREEBSD)
return x % y;
#endif
}
u64 rtw_division64(u64 x, u64 y)
{
#ifdef PLATFORM_LINUX
do_div(x, y);
return x;
#elif defined(PLATFORM_WINDOWS)
return x / y;
#elif defined(PLATFORM_FREEBSD)
return x / y;
#endif
}
inline u32 rtw_random32(void)
{
#ifdef PLATFORM_LINUX
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
return prandom_u32();
#elif (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18))
u32 random_int;
get_random_bytes(&random_int , 4);
return random_int;
#else
return random32();
#endif
#elif defined(PLATFORM_WINDOWS)
#error "to be implemented\n"
#elif defined(PLATFORM_FREEBSD)
#error "to be implemented\n"
#endif
}
void rtw_buf_free(u8 **buf, u32 *buf_len)
{
u32 ori_len;
if (!buf || !buf_len)
return;
ori_len = *buf_len;
if (*buf) {
u32 tmp_buf_len = *buf_len;
*buf_len = 0;
rtw_mfree(*buf, tmp_buf_len);
*buf = NULL;
}
}
void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len)
{
u32 ori_len = 0, dup_len = 0;
u8 *ori = NULL;
u8 *dup = NULL;
if (!buf || !buf_len)
return;
if (!src || !src_len)
goto keep_ori;
/* duplicate src */
dup = rtw_malloc(src_len);
if (dup) {
dup_len = src_len;
_rtw_memcpy(dup, src, dup_len);
}
keep_ori:
ori = *buf;
ori_len = *buf_len;
/* replace buf with dup */
*buf_len = 0;
*buf = dup;
*buf_len = dup_len;
/* free ori */
if (ori && ori_len > 0)
rtw_mfree(ori, ori_len);
}
/**
* rtw_cbuf_full - test if cbuf is full
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: _TRUE if cbuf is full
*/
inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf)
{
return (cbuf->write == cbuf->read - 1) ? _TRUE : _FALSE;
}
/**
* rtw_cbuf_empty - test if cbuf is empty
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: _TRUE if cbuf is empty
*/
inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf)
{
return (cbuf->write == cbuf->read) ? _TRUE : _FALSE;
}
/**
* rtw_cbuf_push - push a pointer into cbuf
* @cbuf: pointer of struct rtw_cbuf
* @buf: pointer to push in
*
* Lock free operation, be careful of the use scheme
* Returns: _TRUE push success
*/
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf)
{
if (rtw_cbuf_full(cbuf))
return _FAIL;
if (0)
RTW_INFO("%s on %u\n", __func__, cbuf->write);
cbuf->bufs[cbuf->write] = buf;
cbuf->write = (cbuf->write + 1) % cbuf->size;
return _SUCCESS;
}
/**
* rtw_cbuf_pop - pop a pointer from cbuf
* @cbuf: pointer of struct rtw_cbuf
*
* Lock free operation, be careful of the use scheme
* Returns: pointer popped out
*/
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf)
{
void *buf;
if (rtw_cbuf_empty(cbuf))
return NULL;
if (0)
RTW_INFO("%s on %u\n", __func__, cbuf->read);
buf = cbuf->bufs[cbuf->read];
cbuf->read = (cbuf->read + 1) % cbuf->size;
return buf;
}
/**
* rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization
* @size: size of pointer
*
* Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure
*/
struct rtw_cbuf *rtw_cbuf_alloc(u32 size)
{
struct rtw_cbuf *cbuf;
cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void *) * size);
if (cbuf) {
cbuf->write = cbuf->read = 0;
cbuf->size = size;
}
return cbuf;
}
/**
* rtw_cbuf_free - free the given rtw_cbuf
* @cbuf: pointer of struct rtw_cbuf to free
*/
void rtw_cbuf_free(struct rtw_cbuf *cbuf)
{
rtw_mfree((u8 *)cbuf, sizeof(*cbuf) + sizeof(void *) * cbuf->size);
}
/**
* map_readN - read a range of map data
* @map: map to read
* @offset: start address to read
* @len: length to read
* @buf: pointer of buffer to store data read
*
* Returns: _SUCCESS or _FAIL
*/
int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf)
{
const struct map_seg_t *seg;
int ret = _FAIL;
int i;
if (len == 0) {
rtw_warn_on(1);
goto exit;
}
if (offset + len > map->len) {
rtw_warn_on(1);
goto exit;
}
_rtw_memset(buf, map->init_value, len);
for (i = 0; i < map->seg_num; i++) {
u8 *c_dst, *c_src;
u16 c_len;
seg = map->segs + i;
if (seg->sa + seg->len <= offset || seg->sa >= offset + len)
continue;
if (seg->sa >= offset) {
c_dst = buf + (seg->sa - offset);
c_src = seg->c;
if (seg->sa + seg->len <= offset + len)
c_len = seg->len;
else
c_len = offset + len - seg->sa;
} else {
c_dst = buf;
c_src = seg->c + (offset - seg->sa);
if (seg->sa + seg->len >= offset + len)
c_len = len;
else
c_len = seg->sa + seg->len - offset;
}
_rtw_memcpy(c_dst, c_src, c_len);
}
exit:
return ret;
}
/**
* map_read8 - read 1 byte of map data
* @map: map to read
* @offset: address to read
*
* Returns: value of data of specified offset. map.init_value if offset is out of range
*/
u8 map_read8(const struct map_t *map, u16 offset)
{
const struct map_seg_t *seg;
u8 val = map->init_value;
int i;
if (offset + 1 > map->len) {
rtw_warn_on(1);
goto exit;
}
for (i = 0; i < map->seg_num; i++) {
seg = map->segs + i;
if (seg->sa + seg->len <= offset || seg->sa >= offset + 1)
continue;
val = *(seg->c + offset - seg->sa);
break;
}
exit:
return val;
}
int rtw_blacklist_add(_queue *blist, const u8 *addr, u32 timeout_ms)
{
struct blacklist_ent *ent;
_list *list, *head;
u8 exist = _FALSE, timeout = _FALSE;
enter_critical_bh(&blist->lock);
head = &blist->queue;
list = get_next(head);
while (rtw_end_of_queue_search(head, list) == _FALSE) {
ent = LIST_CONTAINOR(list, struct blacklist_ent, list);
list = get_next(list);
if (_rtw_memcmp(ent->addr, addr, ETH_ALEN) == _TRUE) {
exist = _TRUE;
if (rtw_time_after(rtw_get_current_time(), ent->exp_time))
timeout = _TRUE;
ent->exp_time = rtw_get_current_time()
+ rtw_ms_to_systime(timeout_ms);
break;
}
if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) {
rtw_list_delete(&ent->list);
rtw_mfree(ent, sizeof(struct blacklist_ent));
}
}
if (exist == _FALSE) {
ent = rtw_malloc(sizeof(struct blacklist_ent));
if (ent) {
_rtw_memcpy(ent->addr, addr, ETH_ALEN);
ent->exp_time = rtw_get_current_time()
+ rtw_ms_to_systime(timeout_ms);
rtw_list_insert_tail(&ent->list, head);
}
}
exit_critical_bh(&blist->lock);
exit:
return (exist == _TRUE && timeout == _FALSE) ? RTW_ALREADY : (ent ? _SUCCESS : _FAIL);
}
int rtw_blacklist_del(_queue *blist, const u8 *addr)
{
struct blacklist_ent *ent = NULL;
_list *list, *head;
u8 exist = _FALSE;
enter_critical_bh(&blist->lock);
head = &blist->queue;
list = get_next(head);
while (rtw_end_of_queue_search(head, list) == _FALSE) {
ent = LIST_CONTAINOR(list, struct blacklist_ent, list);
list = get_next(list);
if (_rtw_memcmp(ent->addr, addr, ETH_ALEN) == _TRUE) {
rtw_list_delete(&ent->list);
rtw_mfree(ent, sizeof(struct blacklist_ent));
exist = _TRUE;
break;
}
if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) {
rtw_list_delete(&ent->list);
rtw_mfree(ent, sizeof(struct blacklist_ent));
}
}
exit_critical_bh(&blist->lock);
exit:
return exist == _TRUE ? _SUCCESS : RTW_ALREADY;
}
int rtw_blacklist_search(_queue *blist, const u8 *addr)
{
struct blacklist_ent *ent = NULL;
_list *list, *head;
u8 exist = _FALSE;
enter_critical_bh(&blist->lock);
head = &blist->queue;
list = get_next(head);
while (rtw_end_of_queue_search(head, list) == _FALSE) {
ent = LIST_CONTAINOR(list, struct blacklist_ent, list);
list = get_next(list);
if (_rtw_memcmp(ent->addr, addr, ETH_ALEN) == _TRUE) {
if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) {
rtw_list_delete(&ent->list);
rtw_mfree(ent, sizeof(struct blacklist_ent));
} else
exist = _TRUE;
break;
}
if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) {
rtw_list_delete(&ent->list);
rtw_mfree(ent, sizeof(struct blacklist_ent));
}
}
exit_critical_bh(&blist->lock);
exit:
return exist;
}
void rtw_blacklist_flush(_queue *blist)
{
struct blacklist_ent *ent;
_list *list, *head;
_list tmp;
_rtw_init_listhead(&tmp);
enter_critical_bh(&blist->lock);
rtw_list_splice_init(&blist->queue, &tmp);
exit_critical_bh(&blist->lock);
head = &tmp;
list = get_next(head);
while (rtw_end_of_queue_search(head, list) == _FALSE) {
ent = LIST_CONTAINOR(list, struct blacklist_ent, list);
list = get_next(list);
rtw_list_delete(&ent->list);
rtw_mfree(ent, sizeof(struct blacklist_ent));
}
}
void dump_blacklist(void *sel, _queue *blist, const char *title)
{
struct blacklist_ent *ent = NULL;
_list *list, *head;
enter_critical_bh(&blist->lock);
head = &blist->queue;
list = get_next(head);
if (rtw_end_of_queue_search(head, list) == _FALSE) {
if (title)
RTW_PRINT_SEL(sel, "%s:\n", title);
while (rtw_end_of_queue_search(head, list) == _FALSE) {
ent = LIST_CONTAINOR(list, struct blacklist_ent, list);
list = get_next(list);
if (rtw_time_after(rtw_get_current_time(), ent->exp_time))
RTW_PRINT_SEL(sel, MAC_FMT" expired\n", MAC_ARG(ent->addr));
else
RTW_PRINT_SEL(sel, MAC_FMT" %u\n", MAC_ARG(ent->addr)
, rtw_get_remaining_time_ms(ent->exp_time));
}
}
exit_critical_bh(&blist->lock);
}
/**
* is_null -
*
* Return TRUE if c is null character
* FALSE otherwise.
*/
inline BOOLEAN is_null(char c)
{
if (c == '\0')
return _TRUE;
else
return _FALSE;
}
inline BOOLEAN is_all_null(char *c, int len)
{
for (; len > 0; len--)
if (c[len - 1] != '\0')
return _FALSE;
return _TRUE;
}
/**
* is_eol -
*
* Return TRUE if c is represent for EOL (end of line)
* FALSE otherwise.
*/
inline BOOLEAN is_eol(char c)
{
if (c == '\r' || c == '\n')
return _TRUE;
else
return _FALSE;
}
/**
* is_space -
*
* Return TRUE if c is represent for space
* FALSE otherwise.
*/
inline BOOLEAN is_space(char c)
{
if (c == ' ' || c == '\t')
return _TRUE;
else
return _FALSE;
}
/**
* IsHexDigit -
*
* Return TRUE if chTmp is represent for hex digit
* FALSE otherwise.
*/
inline BOOLEAN IsHexDigit(char chTmp)
{
if ((chTmp >= '0' && chTmp <= '9') ||
(chTmp >= 'a' && chTmp <= 'f') ||
(chTmp >= 'A' && chTmp <= 'F'))
return _TRUE;
else
return _FALSE;
}
/**
* is_alpha -
*
* Return TRUE if chTmp is represent for alphabet
* FALSE otherwise.
*/
inline BOOLEAN is_alpha(char chTmp)
{
if ((chTmp >= 'a' && chTmp <= 'z') ||
(chTmp >= 'A' && chTmp <= 'Z'))
return _TRUE;
else
return _FALSE;
}
inline char alpha_to_upper(char c)
{
if ((c >= 'a' && c <= 'z'))
c = 'A' + (c - 'a');
return c;
}
int hex2num_i(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
return -1;
}
int hex2byte_i(const char *hex)
{
int a, b;
a = hex2num_i(*hex++);
if (a < 0)
return -1;
b = hex2num_i(*hex++);
if (b < 0)
return -1;
return (a << 4) | b;
}
int hexstr2bin(const char *hex, u8 *buf, size_t len)
{
size_t i;
int a;
const char *ipos = hex;
u8 *opos = buf;
for (i = 0; i < len; i++) {
a = hex2byte_i(ipos);
if (a < 0)
return -1;
*opos++ = a;
ipos += 2;
}
return 0;
}