1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2025-01-15 11:04:46 +00:00
rtl8812au/core/rtw_security.c
2017-04-15 11:46:31 +03:00

3198 lines
89 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTW_SECURITY_C_
#include <drv_types.h>
static const char *_security_type_str[] = {
"N/A",
"WEP40",
"TKIP",
"TKIP_WM",
"AES",
"WEP104",
"SMS4",
"WEP_WPA",
"BIP",
};
const char *security_type_str(u8 value)
{
#ifdef CONFIG_IEEE80211W
if (value <= _BIP_)
#else
if (value <= _WEP_WPA_MIXED_)
#endif
return _security_type_str[value];
return NULL;
}
#ifdef DBG_SW_SEC_CNT
#define WEP_SW_ENC_CNT_INC(sec, ra) do {\
if (is_broadcast_mac_addr(ra)) \
sec->wep_sw_enc_cnt_bc++; \
else if (is_multicast_mac_addr(ra)) \
sec->wep_sw_enc_cnt_mc++; \
else \
sec->wep_sw_enc_cnt_uc++; \
} while (0)
#define WEP_SW_DEC_CNT_INC(sec, ra) do {\
if (is_broadcast_mac_addr(ra)) \
sec->wep_sw_dec_cnt_bc++; \
else if (is_multicast_mac_addr(ra)) \
sec->wep_sw_dec_cnt_mc++; \
else \
sec->wep_sw_dec_cnt_uc++; \
} while (0)
#define TKIP_SW_ENC_CNT_INC(sec, ra) do {\
if (is_broadcast_mac_addr(ra)) \
sec->tkip_sw_enc_cnt_bc++; \
else if (is_multicast_mac_addr(ra)) \
sec->tkip_sw_enc_cnt_mc++; \
else \
sec->tkip_sw_enc_cnt_uc++; \
} while (0)
#define TKIP_SW_DEC_CNT_INC(sec, ra) do {\
if (is_broadcast_mac_addr(ra)) \
sec->tkip_sw_dec_cnt_bc++; \
else if (is_multicast_mac_addr(ra)) \
sec->tkip_sw_dec_cnt_mc++; \
else \
sec->tkip_sw_dec_cnt_uc++; \
} while (0)
#define AES_SW_ENC_CNT_INC(sec, ra) do {\
if (is_broadcast_mac_addr(ra)) \
sec->aes_sw_enc_cnt_bc++; \
else if (is_multicast_mac_addr(ra)) \
sec->aes_sw_enc_cnt_mc++; \
else \
sec->aes_sw_enc_cnt_uc++; \
} while (0)
#define AES_SW_DEC_CNT_INC(sec, ra) do {\
if (is_broadcast_mac_addr(ra)) \
sec->aes_sw_dec_cnt_bc++; \
else if (is_multicast_mac_addr(ra)) \
sec->aes_sw_dec_cnt_mc++; \
else \
sec->aes_sw_dec_cnt_uc++; \
} while (0)
#else
#define WEP_SW_ENC_CNT_INC(sec, ra)
#define WEP_SW_DEC_CNT_INC(sec, ra)
#define TKIP_SW_ENC_CNT_INC(sec, ra)
#define TKIP_SW_DEC_CNT_INC(sec, ra)
#define AES_SW_ENC_CNT_INC(sec, ra)
#define AES_SW_DEC_CNT_INC(sec, ra)
#endif /* DBG_SW_SEC_CNT */
/* *****WEP related***** */
#define CRC32_POLY 0x04c11db7
struct arc4context {
u32 x;
u32 y;
u8 state[256];
};
static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
{
u32 t, u;
u32 keyindex;
u32 stateindex;
u8 *state;
u32 counter;
state = parc4ctx->state;
parc4ctx->x = 0;
parc4ctx->y = 0;
for (counter = 0; counter < 256; counter++)
state[counter] = (u8)counter;
keyindex = 0;
stateindex = 0;
for (counter = 0; counter < 256; counter++) {
t = state[counter];
stateindex = (stateindex + key[keyindex] + t) & 0xff;
u = state[stateindex];
state[stateindex] = (u8)t;
state[counter] = (u8)u;
if (++keyindex >= key_len)
keyindex = 0;
}
}
static u32 arcfour_byte(struct arc4context *parc4ctx)
{
u32 x;
u32 y;
u32 sx, sy;
u8 *state;
state = parc4ctx->state;
x = (parc4ctx->x + 1) & 0xff;
sx = state[x];
y = (sx + parc4ctx->y) & 0xff;
sy = state[y];
parc4ctx->x = x;
parc4ctx->y = y;
state[y] = (u8)sx;
state[x] = (u8)sy;
return state[(sx + sy) & 0xff];
}
static void arcfour_encrypt(struct arc4context *parc4ctx,
u8 *dest,
u8 *src,
u32 len)
{
u32 i;
for (i = 0; i < len; i++)
dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
}
static sint bcrc32initialized = 0;
static u32 crc32_table[256];
static u8 crc32_reverseBit(u8 data)
{
return (u8)((data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3) & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) | ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((
data >> 7) & 0x01) ;
}
static void crc32_init(void)
{
if (bcrc32initialized == 1)
goto exit;
else {
sint i, j;
u32 c;
u8 *p = (u8 *)&c, *p1;
u8 k;
c = 0x12340000;
for (i = 0; i < 256; ++i) {
k = crc32_reverseBit((u8)i);
for (c = ((u32)k) << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY : (c << 1);
p1 = (u8 *)&crc32_table[i];
p1[0] = crc32_reverseBit(p[3]);
p1[1] = crc32_reverseBit(p[2]);
p1[2] = crc32_reverseBit(p[1]);
p1[3] = crc32_reverseBit(p[0]);
}
bcrc32initialized = 1;
}
exit:
return;
}
static u32 getcrc32(u8 *buf, sint len)
{
u8 *p;
u32 crc;
if (bcrc32initialized == 0)
crc32_init();
crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
for (p = buf; len > 0; ++p, --len)
crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
return ~crc; /* transmit complement, per CRC-32 spec */
}
/*
Need to consider the fragment situation
*/
void rtw_wep_encrypt(_adapter *padapter, u8 *pxmitframe)
{
/* exclude ICV */
unsigned char crc[4];
struct arc4context mycontext;
sint curfragnum, length;
u32 keylength;
u8 *pframe, *payload, *iv; /* ,*wepkey */
u8 wepkey[16];
u8 hw_hdr_offset = 0;
struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
return;
#ifdef CONFIG_USB_TX_AGGREGATION
hw_hdr_offset = TXDESC_SIZE +
(((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ);
#else
#ifdef CONFIG_TX_EARLY_MODE
hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE;
#else
hw_hdr_offset = TXDESC_OFFSET;
#endif
#endif
pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;
/* start to encrypt each fragment */
if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) {
keylength = psecuritypriv->dot11DefKeylen[psecuritypriv->dot11PrivacyKeyIndex];
for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
iv = pframe + pattrib->hdrlen;
_rtw_memcpy(&wepkey[0], iv, 3);
_rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0], keylength);
payload = pframe + pattrib->iv_len + pattrib->hdrlen;
if ((curfragnum + 1) == pattrib->nr_frags) {
/* the last fragment */
length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len;
*((u32 *)crc) = cpu_to_le32(getcrc32(payload, length));
arcfour_init(&mycontext, wepkey, 3 + keylength);
arcfour_encrypt(&mycontext, payload, payload, length);
arcfour_encrypt(&mycontext, payload + length, crc, 4);
} else {
length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len ;
*((u32 *)crc) = cpu_to_le32(getcrc32(payload, length));
arcfour_init(&mycontext, wepkey, 3 + keylength);
arcfour_encrypt(&mycontext, payload, payload, length);
arcfour_encrypt(&mycontext, payload + length, crc, 4);
pframe += pxmitpriv->frag_len;
pframe = (u8 *)RND4((SIZE_PTR)(pframe));
}
}
WEP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra);
}
}
void rtw_wep_decrypt(_adapter *padapter, u8 *precvframe)
{
/* exclude ICV */
u8 crc[4];
struct arc4context mycontext;
sint length;
u32 keylength;
u8 *pframe, *payload, *iv, wepkey[16];
u8 keyindex;
struct rx_pkt_attrib *prxattrib = &(((union recv_frame *)precvframe)->u.hdr.attrib);
struct security_priv *psecuritypriv = &padapter->securitypriv;
pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
/* start to decrypt recvframe */
if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt == _WEP104_)) {
iv = pframe + prxattrib->hdrlen;
/* keyindex=(iv[3]&0x3); */
keyindex = prxattrib->key_index;
keylength = psecuritypriv->dot11DefKeylen[keyindex];
_rtw_memcpy(&wepkey[0], iv, 3);
/* _rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0],keylength); */
_rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[keyindex].skey[0], keylength);
length = ((union recv_frame *)precvframe)->u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len;
payload = pframe + prxattrib->iv_len + prxattrib->hdrlen;
/* decrypt payload include icv */
arcfour_init(&mycontext, wepkey, 3 + keylength);
arcfour_encrypt(&mycontext, payload, payload, length);
/* calculate icv and compare the icv */
*((u32 *)crc) = le32_to_cpu(getcrc32(payload, length - 4));
WEP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra);
}
return;
}
/* 3 =====TKIP related===== */
static u32 secmicgetuint32(u8 *p)
/* Convert from Byte[] to Us4Byte32 in a portable way */
{
s32 i;
u32 res = 0;
for (i = 0; i < 4; i++)
res |= ((u32)(*p++)) << (8 * i);
return res;
}
static void secmicputuint32(u8 *p, u32 val)
/* Convert from Us4Byte32 to Byte[] in a portable way */
{
long i;
for (i = 0; i < 4; i++) {
*p++ = (u8)(val & 0xff);
val >>= 8;
}
}
static void secmicclear(struct mic_data *pmicdata)
{
/* Reset the state to the empty message. */
pmicdata->L = pmicdata->K0;
pmicdata->R = pmicdata->K1;
pmicdata->nBytesInM = 0;
pmicdata->M = 0;
}
void rtw_secmicsetkey(struct mic_data *pmicdata, u8 *key)
{
/* Set the key */
pmicdata->K0 = secmicgetuint32(key);
pmicdata->K1 = secmicgetuint32(key + 4);
/* and reset the message */
secmicclear(pmicdata);
}
void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b)
{
/* Append the byte to our word-sized buffer */
pmicdata->M |= ((unsigned long)b) << (8 * pmicdata->nBytesInM);
pmicdata->nBytesInM++;
/* Process the word if it is full. */
if (pmicdata->nBytesInM >= 4) {
pmicdata->L ^= pmicdata->M;
pmicdata->R ^= ROL32(pmicdata->L, 17);
pmicdata->L += pmicdata->R;
pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8);
pmicdata->L += pmicdata->R;
pmicdata->R ^= ROL32(pmicdata->L, 3);
pmicdata->L += pmicdata->R;
pmicdata->R ^= ROR32(pmicdata->L, 2);
pmicdata->L += pmicdata->R;
/* Clear the buffer */
pmicdata->M = 0;
pmicdata->nBytesInM = 0;
}
}
void rtw_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes)
{
/* This is simple */
while (nbytes > 0) {
rtw_secmicappendbyte(pmicdata, *src++);
nbytes--;
}
}
void rtw_secgetmic(struct mic_data *pmicdata, u8 *dst)
{
/* Append the minimum padding */
rtw_secmicappendbyte(pmicdata, 0x5a);
rtw_secmicappendbyte(pmicdata, 0);
rtw_secmicappendbyte(pmicdata, 0);
rtw_secmicappendbyte(pmicdata, 0);
rtw_secmicappendbyte(pmicdata, 0);
/* and then zeroes until the length is a multiple of 4 */
while (pmicdata->nBytesInM != 0)
rtw_secmicappendbyte(pmicdata, 0);
/* The appendByte function has already computed the result. */
secmicputuint32(dst, pmicdata->L);
secmicputuint32(dst + 4, pmicdata->R);
/* Reset to the empty message. */
secmicclear(pmicdata);
}
void rtw_seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code, u8 pri)
{
struct mic_data micdata;
u8 priority[4] = {0x0, 0x0, 0x0, 0x0};
rtw_secmicsetkey(&micdata, key);
priority[0] = pri;
/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
if (header[1] & 1) { /* ToDS==1 */
rtw_secmicappend(&micdata, &header[16], 6); /* DA */
if (header[1] & 2) /* From Ds==1 */
rtw_secmicappend(&micdata, &header[24], 6);
else
rtw_secmicappend(&micdata, &header[10], 6);
} else { /* ToDS==0 */
rtw_secmicappend(&micdata, &header[4], 6); /* DA */
if (header[1] & 2) /* From Ds==1 */
rtw_secmicappend(&micdata, &header[16], 6);
else
rtw_secmicappend(&micdata, &header[10], 6);
}
rtw_secmicappend(&micdata, &priority[0], 4);
rtw_secmicappend(&micdata, data, data_len);
rtw_secgetmic(&micdata, mic_code);
}
/* macros for extraction/creation of unsigned char/unsigned short values */
#define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15))
#define Lo8(v16) ((u8)((v16) & 0x00FF))
#define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF))
#define Lo16(v32) ((u16)((v32) & 0xFFFF))
#define Hi16(v32) ((u16)(((v32) >> 16) & 0xFFFF))
#define Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8))
/* select the Nth 16-bit word of the temporal key unsigned char array TK[] */
#define TK16(N) Mk16(tk[2*(N)+1], tk[2*(N)])
/* S-box lookup: 16 bits --> 16 bits */
#define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)])
/* fixed algorithm "parameters" */
#define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */
#define TA_SIZE 6 /* 48-bit transmitter address */
#define TK_SIZE 16 /* 128-bit temporal key */
#define P1K_SIZE 10 /* 80-bit Phase1 key */
#define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */
/* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
static const unsigned short Sbox1[2][256] = /* Sbox for hash (can be in ROM) */
{ {
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
},
{ /* second half of table is unsigned char-reversed version of first! */
0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
}
};
/*
**********************************************************************
* Routine: Phase 1 -- generate P1K, given TA, TK, IV32
*
* Inputs:
* tk[] = temporal key [128 bits]
* ta[] = transmitter's MAC address [ 48 bits]
* iv32 = upper 32 bits of IV [ 32 bits]
* Output:
* p1k[] = Phase 1 key [ 80 bits]
*
* Note:
* This function only needs to be called every 2**16 packets,
* although in theory it could be called every packet.
*
**********************************************************************
*/
static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
{
sint i;
/* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */
p1k[0] = Lo16(iv32);
p1k[1] = Hi16(iv32);
p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
p1k[3] = Mk16(ta[3], ta[2]);
p1k[4] = Mk16(ta[5], ta[4]);
/* Now compute an unbalanced Feistel cipher with 80-bit block */
/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
for (i = 0; i < PHASE1_LOOP_CNT ; i++) {
/* Each add operation here is mod 2**16 */
p1k[0] += _S_(p1k[4] ^ TK16((i & 1) + 0));
p1k[1] += _S_(p1k[0] ^ TK16((i & 1) + 2));
p1k[2] += _S_(p1k[1] ^ TK16((i & 1) + 4));
p1k[3] += _S_(p1k[2] ^ TK16((i & 1) + 6));
p1k[4] += _S_(p1k[3] ^ TK16((i & 1) + 0));
p1k[4] += (unsigned short)i; /* avoid "slide attacks" */
}
}
/*
**********************************************************************
* Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
*
* Inputs:
* tk[] = Temporal key [128 bits]
* p1k[] = Phase 1 output key [ 80 bits]
* iv16 = low 16 bits of IV counter [ 16 bits]
* Output:
* rc4key[] = the key used to encrypt the packet [128 bits]
*
* Note:
* The value {TA,IV32,IV16} for Phase1/Phase2 must be unique
* across all packets using the same key TK value. Then, for a
* given value of TK[], this TKIP48 construction guarantees that
* the final RC4KEY value is unique across all packets.
*
* Suggested implementation optimization: if PPK[] is "overlaid"
* appropriately on RC4KEY[], there is no need for the final
* for loop below that copies the PPK[] result into RC4KEY[].
*
**********************************************************************
*/
static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
{
sint i;
u16 PPK[6]; /* temporary key for mixing */
/* Note: all adds in the PPK[] equations below are mod 2**16 */
for (i = 0; i < 5; i++)
PPK[i] = p1k[i]; /* first, copy P1K to PPK */
PPK[5] = p1k[4] + iv16; /* next, add in IV16 */
/* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */
PPK[1] += _S_(PPK[0] ^ TK16(1));
PPK[2] += _S_(PPK[1] ^ TK16(2));
PPK[3] += _S_(PPK[2] ^ TK16(3));
PPK[4] += _S_(PPK[3] ^ TK16(4));
PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */
/* Final sweep: bijective, "linear". Rotates kill LSB correlations */
PPK[0] += RotR1(PPK[5] ^ TK16(6));
PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */
PPK[2] += RotR1(PPK[1]);
PPK[3] += RotR1(PPK[2]);
PPK[4] += RotR1(PPK[3]);
PPK[5] += RotR1(PPK[4]);
/* Note: At this point, for a given key TK[0..15], the 96-bit output */
/* value PPK[0..5] is guaranteed to be unique, as a function */
/* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */
/* is now a keyed permutation of {TA,IV32,IV16}. */
/* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */
rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */
rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */
rc4key[2] = Lo8(iv16);
rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */
for (i = 0; i < 6; i++) {
rc4key[4 + 2 * i] = Lo8(PPK[i]);
rc4key[5 + 2 * i] = Hi8(PPK[i]);
}
}
/* The hlen isn't include the IV */
u32 rtw_tkip_encrypt(_adapter *padapter, u8 *pxmitframe)
{
/* exclude ICV */
u16 pnl;
u32 pnh;
u8 rc4key[16];
u8 ttkey[16];
u8 crc[4];
u8 hw_hdr_offset = 0;
struct arc4context mycontext;
sint curfragnum, length;
u32 prwskeylen;
u8 *pframe, *payload, *iv, *prwskey;
union pn48 dot11txpn;
/* struct sta_info *stainfo; */
struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
u32 res = _SUCCESS;
if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
return _FAIL;
#ifdef CONFIG_USB_TX_AGGREGATION
hw_hdr_offset = TXDESC_SIZE +
(((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ);
#else
#ifdef CONFIG_TX_EARLY_MODE
hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE;
#else
hw_hdr_offset = TXDESC_OFFSET;
#endif
#endif
pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;
/* 4 start to encrypt each fragment */
if (pattrib->encrypt == _TKIP_) {
/*
if(pattrib->psta)
{
stainfo = pattrib->psta;
}
else
{
RTW_INFO("%s, call rtw_get_stainfo()\n", __func__);
stainfo=rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0] );
}
*/
/* if (stainfo!=NULL) */
{
/*
if(!(stainfo->state &_FW_LINKED))
{
RTW_INFO("%s, psta->state(0x%x) != _FW_LINKED\n", __func__, stainfo->state);
return _FAIL;
}
*/
if (IS_MCAST(pattrib->ra))
prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
else {
/* prwskey=&stainfo->dot118021x_UncstKey.skey[0]; */
prwskey = pattrib->dot118021x_UncstKey.skey;
}
prwskeylen = 16;
for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
iv = pframe + pattrib->hdrlen;
payload = pframe + pattrib->iv_len + pattrib->hdrlen;
GET_TKIP_PN(iv, dot11txpn);
pnl = (u16)(dot11txpn.val);
pnh = (u32)(dot11txpn.val >> 16);
phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh);
phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl);
if ((curfragnum + 1) == pattrib->nr_frags) { /* 4 the last fragment */
length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len;
*((u32 *)crc) = cpu_to_le32(getcrc32(payload, length)); /* modified by Amy*/
arcfour_init(&mycontext, rc4key, 16);
arcfour_encrypt(&mycontext, payload, payload, length);
arcfour_encrypt(&mycontext, payload + length, crc, 4);
} else {
length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len ;
*((u32 *)crc) = cpu_to_le32(getcrc32(payload, length)); /* modified by Amy*/
arcfour_init(&mycontext, rc4key, 16);
arcfour_encrypt(&mycontext, payload, payload, length);
arcfour_encrypt(&mycontext, payload + length, crc, 4);
pframe += pxmitpriv->frag_len;
pframe = (u8 *)RND4((SIZE_PTR)(pframe));
}
}
TKIP_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra);
}
/*
else{
RTW_INFO("%s, psta==NUL\n", __func__);
res=_FAIL;
}
*/
}
return res;
}
/* The hlen isn't include the IV */
u32 rtw_tkip_decrypt(_adapter *padapter, u8 *precvframe)
{
/* exclude ICV */
u16 pnl;
u32 pnh;
u8 rc4key[16];
u8 ttkey[16];
u8 crc[4];
struct arc4context mycontext;
sint length;
u32 prwskeylen;
u8 *pframe, *payload, *iv, *prwskey;
union pn48 dot11txpn;
struct sta_info *stainfo;
struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
struct security_priv *psecuritypriv = &padapter->securitypriv;
/* struct recv_priv *precvpriv=&padapter->recvpriv; */
u32 res = _SUCCESS;
pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
/* 4 start to decrypt recvframe */
if (prxattrib->encrypt == _TKIP_) {
stainfo = rtw_get_stainfo(&padapter->stapriv , &prxattrib->ta[0]);
if (stainfo != NULL) {
if (IS_MCAST(prxattrib->ra)) {
static u32 start = 0;
static u32 no_gkey_bc_cnt = 0;
static u32 no_gkey_mc_cnt = 0;
if (psecuritypriv->binstallGrpkey == _FALSE) {
res = _FAIL;
if (start == 0)
start = rtw_get_current_time();
if (is_broadcast_mac_addr(prxattrib->ra))
no_gkey_bc_cnt++;
else
no_gkey_mc_cnt++;
if (rtw_get_passing_time_ms(start) > 1000) {
if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
RTW_PRINT(FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
}
start = rtw_get_current_time();
no_gkey_bc_cnt = 0;
no_gkey_mc_cnt = 0;
}
goto exit;
}
if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
RTW_PRINT(FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
}
start = 0;
no_gkey_bc_cnt = 0;
no_gkey_mc_cnt = 0;
/* RTW_INFO("rx bc/mc packets, to perform sw rtw_tkip_decrypt\n"); */
/* prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; */
prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey;
prwskeylen = 16;
} else {
prwskey = &stainfo->dot118021x_UncstKey.skey[0];
prwskeylen = 16;
}
iv = pframe + prxattrib->hdrlen;
payload = pframe + prxattrib->iv_len + prxattrib->hdrlen;
length = ((union recv_frame *)precvframe)->u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len;
GET_TKIP_PN(iv, dot11txpn);
pnl = (u16)(dot11txpn.val);
pnh = (u32)(dot11txpn.val >> 16);
phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0], pnh);
phase2(&rc4key[0], prwskey, (unsigned short *)&ttkey[0], pnl);
/* 4 decrypt payload include icv */
arcfour_init(&mycontext, rc4key, 16);
arcfour_encrypt(&mycontext, payload, payload, length);
*((u32 *)crc) = le32_to_cpu(getcrc32(payload, length - 4));
if (crc[3] != payload[length - 1] || crc[2] != payload[length - 2] || crc[1] != payload[length - 3] || crc[0] != payload[length - 4]) {
res = _FAIL;
}
TKIP_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra);
} else {
res = _FAIL;
}
}
exit:
return res;
}
/* 3 =====AES related===== */
#define MAX_MSG_SIZE 2048
/*****************************/
/******** SBOX Table *********/
/*****************************/
static u8 sbox_table[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
/*****************************/
/**** Function Prototypes ****/
/*****************************/
static void bitwise_xor(u8 *ina, u8 *inb, u8 *out);
static void construct_mic_iv(
u8 *mic_header1,
sint qc_exists,
sint a4_exists,
u8 *mpdu,
uint payload_length,
u8 *pn_vector,
uint frtype);/* add for CONFIG_IEEE80211W, none 11w also can use */
static void construct_mic_header1(
u8 *mic_header1,
sint header_length,
u8 *mpdu,
uint frtype);/* add for CONFIG_IEEE80211W, none 11w also can use */
static void construct_mic_header2(
u8 *mic_header2,
u8 *mpdu,
sint a4_exists,
sint qc_exists);
static void construct_ctr_preload(
u8 *ctr_preload,
sint a4_exists,
sint qc_exists,
u8 *mpdu,
u8 *pn_vector,
sint c,
uint frtype);/* add for CONFIG_IEEE80211W, none 11w also can use */
static void xor_128(u8 *a, u8 *b, u8 *out);
static void xor_32(u8 *a, u8 *b, u8 *out);
static u8 sbox(u8 a);
static void next_key(u8 *key, sint round);
static void byte_sub(u8 *in, u8 *out);
static void shift_row(u8 *in, u8 *out);
static void mix_column(u8 *in, u8 *out);
#ifndef PLATFORM_FREEBSD
static void add_round_key(u8 *shiftrow_in,
u8 *mcol_in,
u8 *block_in,
sint round,
u8 *out);
#endif /* PLATFORM_FREEBSD */
static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext);
/****************************************/
/* aes128k128d() */
/* Performs a 128 bit AES encrypt with */
/* 128 bit data. */
/****************************************/
static void xor_128(u8 *a, u8 *b, u8 *out)
{
sint i;
for (i = 0; i < 16; i++)
out[i] = a[i] ^ b[i];
}
static void xor_32(u8 *a, u8 *b, u8 *out)
{
sint i;
for (i = 0; i < 4; i++)
out[i] = a[i] ^ b[i];
}
static u8 sbox(u8 a)
{
return sbox_table[(sint)a];
}
static void next_key(u8 *key, sint round)
{
u8 rcon;
u8 sbox_key[4];
u8 rcon_table[12] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1b, 0x36, 0x36, 0x36
};
sbox_key[0] = sbox(key[13]);
sbox_key[1] = sbox(key[14]);
sbox_key[2] = sbox(key[15]);
sbox_key[3] = sbox(key[12]);
rcon = rcon_table[round];
xor_32(&key[0], sbox_key, &key[0]);
key[0] = key[0] ^ rcon;
xor_32(&key[4], &key[0], &key[4]);
xor_32(&key[8], &key[4], &key[8]);
xor_32(&key[12], &key[8], &key[12]);
}
static void byte_sub(u8 *in, u8 *out)
{
sint i;
for (i = 0; i < 16; i++)
out[i] = sbox(in[i]);
}
static void shift_row(u8 *in, u8 *out)
{
out[0] = in[0];
out[1] = in[5];
out[2] = in[10];
out[3] = in[15];
out[4] = in[4];
out[5] = in[9];
out[6] = in[14];
out[7] = in[3];
out[8] = in[8];
out[9] = in[13];
out[10] = in[2];
out[11] = in[7];
out[12] = in[12];
out[13] = in[1];
out[14] = in[6];
out[15] = in[11];
}
static void mix_column(u8 *in, u8 *out)
{
sint i;
u8 add1b[4];
u8 add1bf7[4];
u8 rotl[4];
u8 swap_halfs[4];
u8 andf7[4];
u8 rotr[4];
u8 temp[4];
u8 tempb[4];
for (i = 0 ; i < 4; i++) {
if ((in[i] & 0x80) == 0x80)
add1b[i] = 0x1b;
else
add1b[i] = 0x00;
}
swap_halfs[0] = in[2]; /* Swap halfs */
swap_halfs[1] = in[3];
swap_halfs[2] = in[0];
swap_halfs[3] = in[1];
rotl[0] = in[3]; /* Rotate left 8 bits */
rotl[1] = in[0];
rotl[2] = in[1];
rotl[3] = in[2];
andf7[0] = in[0] & 0x7f;
andf7[1] = in[1] & 0x7f;
andf7[2] = in[2] & 0x7f;
andf7[3] = in[3] & 0x7f;
for (i = 3; i > 0; i--) { /* logical shift left 1 bit */
andf7[i] = andf7[i] << 1;
if ((andf7[i - 1] & 0x80) == 0x80)
andf7[i] = (andf7[i] | 0x01);
}
andf7[0] = andf7[0] << 1;
andf7[0] = andf7[0] & 0xfe;
xor_32(add1b, andf7, add1bf7);
xor_32(in, add1bf7, rotr);
temp[0] = rotr[0]; /* Rotate right 8 bits */
rotr[0] = rotr[1];
rotr[1] = rotr[2];
rotr[2] = rotr[3];
rotr[3] = temp[0];
xor_32(add1bf7, rotr, temp);
xor_32(swap_halfs, rotl, tempb);
xor_32(temp, tempb, out);
}
static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext)
{
sint round;
sint i;
u8 intermediatea[16];
u8 intermediateb[16];
u8 round_key[16];
for (i = 0; i < 16; i++)
round_key[i] = key[i];
for (round = 0; round < 11; round++) {
if (round == 0) {
xor_128(round_key, data, ciphertext);
next_key(round_key, round);
} else if (round == 10) {
byte_sub(ciphertext, intermediatea);
shift_row(intermediatea, intermediateb);
xor_128(intermediateb, round_key, ciphertext);
} else { /* 1 - 9 */
byte_sub(ciphertext, intermediatea);
shift_row(intermediatea, intermediateb);
mix_column(&intermediateb[0], &intermediatea[0]);
mix_column(&intermediateb[4], &intermediatea[4]);
mix_column(&intermediateb[8], &intermediatea[8]);
mix_column(&intermediateb[12], &intermediatea[12]);
xor_128(intermediatea, round_key, ciphertext);
next_key(round_key, round);
}
}
}
/************************************************/
/* construct_mic_iv() */
/* Builds the MIC IV from header fields and PN */
/* Baron think the function is construct CCM */
/* nonce */
/************************************************/
static void construct_mic_iv(
u8 *mic_iv,
sint qc_exists,
sint a4_exists,
u8 *mpdu,
uint payload_length,
u8 *pn_vector,
uint frtype/* add for CONFIG_IEEE80211W, none 11w also can use */
)
{
sint i;
mic_iv[0] = 0x59;
if (qc_exists && a4_exists)
mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */
if (qc_exists && !a4_exists)
mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */
if (!qc_exists)
mic_iv[1] = 0x00;
#ifdef CONFIG_IEEE80211W
/* 802.11w management frame should set management bit(4) */
if (frtype == WIFI_MGT_TYPE)
mic_iv[1] |= BIT(4);
#endif /* CONFIG_IEEE80211W */
for (i = 2; i < 8; i++)
mic_iv[i] = mpdu[i + 8]; /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */
#ifdef CONSISTENT_PN_ORDER
for (i = 8; i < 14; i++)
mic_iv[i] = pn_vector[i - 8]; /* mic_iv[8:13] = PN[0:5] */
#else
for (i = 8; i < 14; i++)
mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */
#endif
mic_iv[14] = (unsigned char)(payload_length / 256);
mic_iv[15] = (unsigned char)(payload_length % 256);
}
/************************************************/
/* construct_mic_header1() */
/* Builds the first MIC header block from */
/* header fields. */
/* Build AAD SC,A1,A2 */
/************************************************/
static void construct_mic_header1(
u8 *mic_header1,
sint header_length,
u8 *mpdu,
uint frtype/* add for CONFIG_IEEE80211W, none 11w also can use */
)
{
mic_header1[0] = (u8)((header_length - 2) / 256);
mic_header1[1] = (u8)((header_length - 2) % 256);
#ifdef CONFIG_IEEE80211W
/* 802.11w management frame don't AND subtype bits 4,5,6 of frame control field */
if (frtype == WIFI_MGT_TYPE)
mic_header1[2] = mpdu[0];
else
#endif /* CONFIG_IEEE80211W */
mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */
mic_header1[3] = mpdu[1] & 0xc7; /* Mute retry, more data and pwr mgt bits */
mic_header1[4] = mpdu[4]; /* A1 */
mic_header1[5] = mpdu[5];
mic_header1[6] = mpdu[6];
mic_header1[7] = mpdu[7];
mic_header1[8] = mpdu[8];
mic_header1[9] = mpdu[9];
mic_header1[10] = mpdu[10]; /* A2 */
mic_header1[11] = mpdu[11];
mic_header1[12] = mpdu[12];
mic_header1[13] = mpdu[13];
mic_header1[14] = mpdu[14];
mic_header1[15] = mpdu[15];
}
/************************************************/
/* construct_mic_header2() */
/* Builds the last MIC header block from */
/* header fields. */
/************************************************/
static void construct_mic_header2(
u8 *mic_header2,
u8 *mpdu,
sint a4_exists,
sint qc_exists
)
{
sint i;
for (i = 0; i < 16; i++)
mic_header2[i] = 0x00;
mic_header2[0] = mpdu[16]; /* A3 */
mic_header2[1] = mpdu[17];
mic_header2[2] = mpdu[18];
mic_header2[3] = mpdu[19];
mic_header2[4] = mpdu[20];
mic_header2[5] = mpdu[21];
/* mic_header2[6] = mpdu[22] & 0xf0; SC */
mic_header2[6] = 0x00;
mic_header2[7] = 0x00; /* mpdu[23]; */
if (!qc_exists && a4_exists) {
for (i = 0; i < 6; i++)
mic_header2[8 + i] = mpdu[24 + i]; /* A4 */
}
if (qc_exists && !a4_exists) {
mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */
mic_header2[9] = mpdu[25] & 0x00;
}
if (qc_exists && a4_exists) {
for (i = 0; i < 6; i++)
mic_header2[8 + i] = mpdu[24 + i]; /* A4 */
mic_header2[14] = mpdu[30] & 0x0f;
mic_header2[15] = mpdu[31] & 0x00;
}
}
/************************************************/
/* construct_mic_header2() */
/* Builds the last MIC header block from */
/* header fields. */
/* Baron think the function is construct CCM */
/* nonce */
/************************************************/
static void construct_ctr_preload(
u8 *ctr_preload,
sint a4_exists,
sint qc_exists,
u8 *mpdu,
u8 *pn_vector,
sint c,
uint frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
)
{
sint i = 0;
for (i = 0; i < 16; i++)
ctr_preload[i] = 0x00;
i = 0;
ctr_preload[0] = 0x01; /* flag */
if (qc_exists && a4_exists)
ctr_preload[1] = mpdu[30] & 0x0f; /* QoC_Control */
if (qc_exists && !a4_exists)
ctr_preload[1] = mpdu[24] & 0x0f;
#ifdef CONFIG_IEEE80211W
/* 802.11w management frame should set management bit(4) */
if (frtype == WIFI_MGT_TYPE)
ctr_preload[1] |= BIT(4);
#endif /* CONFIG_IEEE80211W */
for (i = 2; i < 8; i++)
ctr_preload[i] = mpdu[i + 8]; /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */
#ifdef CONSISTENT_PN_ORDER
for (i = 8; i < 14; i++)
ctr_preload[i] = pn_vector[i - 8]; /* ctr_preload[8:13] = PN[0:5] */
#else
for (i = 8; i < 14; i++)
ctr_preload[i] = pn_vector[13 - i]; /* ctr_preload[8:13] = PN[5:0] */
#endif
ctr_preload[14] = (unsigned char)(c / 256); /* Ctr */
ctr_preload[15] = (unsigned char)(c % 256);
}
/************************************/
/* bitwise_xor() */
/* A 128 bit, bitwise exclusive or */
/************************************/
static void bitwise_xor(u8 *ina, u8 *inb, u8 *out)
{
sint i;
for (i = 0; i < 16; i++)
out[i] = ina[i] ^ inb[i];
}
static sint aes_cipher(u8 *key, uint hdrlen,
u8 *pframe, uint plen)
{
/* static unsigned char message[MAX_MSG_SIZE]; */
uint qc_exists, a4_exists, i, j, payload_remainder,
num_blocks, payload_index;
u8 pn_vector[6];
u8 mic_iv[16];
u8 mic_header1[16];
u8 mic_header2[16];
u8 ctr_preload[16];
/* Intermediate Buffers */
u8 chain_buffer[16];
u8 aes_out[16];
u8 padded_buffer[16];
u8 mic[8];
/* uint offset = 0; */
uint frtype = GetFrameType(pframe);
uint frsubtype = GetFrameSubType(pframe);
frsubtype = frsubtype >> 4;
_rtw_memset((void *)mic_iv, 0, 16);
_rtw_memset((void *)mic_header1, 0, 16);
_rtw_memset((void *)mic_header2, 0, 16);
_rtw_memset((void *)ctr_preload, 0, 16);
_rtw_memset((void *)chain_buffer, 0, 16);
_rtw_memset((void *)aes_out, 0, 16);
_rtw_memset((void *)padded_buffer, 0, 16);
if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN))
a4_exists = 0;
else
a4_exists = 1;
if (
((frtype | frsubtype) == WIFI_DATA_CFACK) ||
((frtype | frsubtype) == WIFI_DATA_CFPOLL) ||
((frtype | frsubtype) == WIFI_DATA_CFACKPOLL)) {
qc_exists = 1;
if (hdrlen != WLAN_HDR_A3_QOS_LEN)
hdrlen += 2;
}
/* add for CONFIG_IEEE80211W, none 11w also can use */
else if ((frtype == WIFI_DATA) &&
((frsubtype == 0x08) ||
(frsubtype == 0x09) ||
(frsubtype == 0x0a) ||
(frsubtype == 0x0b))) {
if (hdrlen != WLAN_HDR_A3_QOS_LEN)
hdrlen += 2;
qc_exists = 1;
} else
qc_exists = 0;
pn_vector[0] = pframe[hdrlen];
pn_vector[1] = pframe[hdrlen + 1];
pn_vector[2] = pframe[hdrlen + 4];
pn_vector[3] = pframe[hdrlen + 5];
pn_vector[4] = pframe[hdrlen + 6];
pn_vector[5] = pframe[hdrlen + 7];
construct_mic_iv(
mic_iv,
qc_exists,
a4_exists,
pframe, /* message, */
plen,
pn_vector,
frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
);
construct_mic_header1(
mic_header1,
hdrlen,
pframe, /* message */
frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
);
construct_mic_header2(
mic_header2,
pframe, /* message, */
a4_exists,
qc_exists
);
payload_remainder = plen % 16;
num_blocks = plen / 16;
/* Find start of payload */
payload_index = (hdrlen + 8);
/* Calculate MIC */
aes128k128d(key, mic_iv, aes_out);
bitwise_xor(aes_out, mic_header1, chain_buffer);
aes128k128d(key, chain_buffer, aes_out);
bitwise_xor(aes_out, mic_header2, chain_buffer);
aes128k128d(key, chain_buffer, aes_out);
for (i = 0; i < num_blocks; i++) {
bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);/* bitwise_xor(aes_out, &message[payload_index], chain_buffer); */
payload_index += 16;
aes128k128d(key, chain_buffer, aes_out);
}
/* Add on the final payload block if it needs padding */
if (payload_remainder > 0) {
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < payload_remainder; j++) {
padded_buffer[j] = pframe[payload_index++];/* padded_buffer[j] = message[payload_index++]; */
}
bitwise_xor(aes_out, padded_buffer, chain_buffer);
aes128k128d(key, chain_buffer, aes_out);
}
for (j = 0 ; j < 8; j++)
mic[j] = aes_out[j];
/* Insert MIC into payload */
for (j = 0; j < 8; j++)
pframe[payload_index + j] = mic[j]; /* message[payload_index+j] = mic[j]; */
payload_index = hdrlen + 8;
for (i = 0; i < num_blocks; i++) {
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
pframe, /* message, */
pn_vector,
i + 1,
frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);/* bitwise_xor(aes_out, &message[payload_index], chain_buffer); */
for (j = 0; j < 16; j++)
pframe[payload_index++] = chain_buffer[j];/* for (j=0; j<16;j++) message[payload_index++] = chain_buffer[j]; */
}
if (payload_remainder > 0) { /* If there is a short final block, then pad it,*/
/* encrypt it and copy the unpadded part back */
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
pframe, /* message, */
pn_vector,
num_blocks + 1,
frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < payload_remainder; j++) {
padded_buffer[j] = pframe[payload_index + j]; /* padded_buffer[j] = message[payload_index+j]; */
}
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, padded_buffer, chain_buffer);
for (j = 0; j < payload_remainder; j++)
pframe[payload_index++] = chain_buffer[j];/* for (j=0; j<payload_remainder;j++) message[payload_index++] = chain_buffer[j]; */
}
/* Encrypt the MIC */
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
pframe, /* message, */
pn_vector,
0,
frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < 8; j++) {
padded_buffer[j] = pframe[j + hdrlen + 8 + plen]; /* padded_buffer[j] = message[j+hdrlen+8+plen]; */
}
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, padded_buffer, chain_buffer);
for (j = 0; j < 8; j++)
pframe[payload_index++] = chain_buffer[j];/* for (j=0; j<8;j++) message[payload_index++] = chain_buffer[j]; */
return _SUCCESS;
}
u32 rtw_aes_encrypt(_adapter *padapter, u8 *pxmitframe)
{
/* exclude ICV */
/*static*/
/* unsigned char message[MAX_MSG_SIZE]; */
/* Intermediate Buffers */
sint curfragnum, length;
u32 prwskeylen;
u8 *pframe, *prwskey; /* , *payload,*iv */
u8 hw_hdr_offset = 0;
/* struct sta_info *stainfo=NULL; */
struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
/* uint offset = 0; */
u32 res = _SUCCESS;
if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
return _FAIL;
#ifdef CONFIG_USB_TX_AGGREGATION
hw_hdr_offset = TXDESC_SIZE +
(((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ);
#else
#ifdef CONFIG_TX_EARLY_MODE
hw_hdr_offset = TXDESC_OFFSET + EARLY_MODE_INFO_SIZE;
#else
hw_hdr_offset = TXDESC_OFFSET;
#endif
#endif
pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;
/* 4 start to encrypt each fragment */
if ((pattrib->encrypt == _AES_)) {
/*
if(pattrib->psta)
{
stainfo = pattrib->psta;
}
else
{
RTW_INFO("%s, call rtw_get_stainfo()\n", __func__);
stainfo=rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0] );
}
*/
/* if (stainfo!=NULL) */
{
/*
if(!(stainfo->state &_FW_LINKED))
{
RTW_INFO("%s, psta->state(0x%x) != _FW_LINKED\n", __func__, stainfo->state);
return _FAIL;
}
*/
if (IS_MCAST(pattrib->ra))
prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
else {
/* prwskey=&stainfo->dot118021x_UncstKey.skey[0]; */
prwskey = pattrib->dot118021x_UncstKey.skey;
}
#ifdef CONFIG_TDLS
{
/* Swencryption */
struct sta_info *ptdls_sta;
ptdls_sta = rtw_get_stainfo(&padapter->stapriv , &pattrib->dst[0]);
if ((ptdls_sta != NULL) && (ptdls_sta->tdls_sta_state & TDLS_LINKED_STATE)) {
RTW_INFO("[%s] for tdls link\n", __FUNCTION__);
prwskey = &ptdls_sta->tpk.tk[0];
}
}
#endif /* CONFIG_TDLS */
prwskeylen = 16;
for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
if ((curfragnum + 1) == pattrib->nr_frags) { /* 4 the last fragment */
length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len;
aes_cipher(prwskey, pattrib->hdrlen, pframe, length);
} else {
length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len ;
aes_cipher(prwskey, pattrib->hdrlen, pframe, length);
pframe += pxmitpriv->frag_len;
pframe = (u8 *)RND4((SIZE_PTR)(pframe));
}
}
AES_SW_ENC_CNT_INC(psecuritypriv, pattrib->ra);
}
/*
else{
RTW_INFO("%s, psta==NUL\n", __func__);
res=_FAIL;
}
*/
}
return res;
}
static sint aes_decipher(u8 *key, uint hdrlen,
u8 *pframe, uint plen)
{
static u8 message[MAX_MSG_SIZE];
uint qc_exists, a4_exists, i, j, payload_remainder,
num_blocks, payload_index;
sint res = _SUCCESS;
u8 pn_vector[6];
u8 mic_iv[16];
u8 mic_header1[16];
u8 mic_header2[16];
u8 ctr_preload[16];
/* Intermediate Buffers */
u8 chain_buffer[16];
u8 aes_out[16];
u8 padded_buffer[16];
u8 mic[8];
/* uint offset = 0; */
uint frtype = GetFrameType(pframe);
uint frsubtype = GetFrameSubType(pframe);
frsubtype = frsubtype >> 4;
_rtw_memset((void *)mic_iv, 0, 16);
_rtw_memset((void *)mic_header1, 0, 16);
_rtw_memset((void *)mic_header2, 0, 16);
_rtw_memset((void *)ctr_preload, 0, 16);
_rtw_memset((void *)chain_buffer, 0, 16);
_rtw_memset((void *)aes_out, 0, 16);
_rtw_memset((void *)padded_buffer, 0, 16);
/* start to decrypt the payload */
num_blocks = (plen - 8) / 16; /* (plen including LLC, payload_length and mic ) */
payload_remainder = (plen - 8) % 16;
pn_vector[0] = pframe[hdrlen];
pn_vector[1] = pframe[hdrlen + 1];
pn_vector[2] = pframe[hdrlen + 4];
pn_vector[3] = pframe[hdrlen + 5];
pn_vector[4] = pframe[hdrlen + 6];
pn_vector[5] = pframe[hdrlen + 7];
if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN))
a4_exists = 0;
else
a4_exists = 1;
if (
((frtype | frsubtype) == WIFI_DATA_CFACK) ||
((frtype | frsubtype) == WIFI_DATA_CFPOLL) ||
((frtype | frsubtype) == WIFI_DATA_CFACKPOLL)) {
qc_exists = 1;
if (hdrlen != WLAN_HDR_A3_QOS_LEN)
hdrlen += 2;
} /* only for data packet . add for CONFIG_IEEE80211W, none 11w also can use */
else if ((frtype == WIFI_DATA) &&
((frsubtype == 0x08) ||
(frsubtype == 0x09) ||
(frsubtype == 0x0a) ||
(frsubtype == 0x0b))) {
if (hdrlen != WLAN_HDR_A3_QOS_LEN)
hdrlen += 2;
qc_exists = 1;
} else
qc_exists = 0;
/* now, decrypt pframe with hdrlen offset and plen long */
payload_index = hdrlen + 8; /* 8 is for extiv */
for (i = 0; i < num_blocks; i++) {
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
pframe,
pn_vector,
i + 1,
frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
);
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);
for (j = 0; j < 16; j++)
pframe[payload_index++] = chain_buffer[j];
}
if (payload_remainder > 0) { /* If there is a short final block, then pad it,*/
/* encrypt it and copy the unpadded part back */
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
pframe,
pn_vector,
num_blocks + 1,
frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
);
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < payload_remainder; j++)
padded_buffer[j] = pframe[payload_index + j];
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, padded_buffer, chain_buffer);
for (j = 0; j < payload_remainder; j++)
pframe[payload_index++] = chain_buffer[j];
}
/* start to calculate the mic */
if ((hdrlen + plen + 8) <= MAX_MSG_SIZE)
_rtw_memcpy((void *)message, pframe, (hdrlen + plen + 8)); /* 8 is for ext iv len */
pn_vector[0] = pframe[hdrlen];
pn_vector[1] = pframe[hdrlen + 1];
pn_vector[2] = pframe[hdrlen + 4];
pn_vector[3] = pframe[hdrlen + 5];
pn_vector[4] = pframe[hdrlen + 6];
pn_vector[5] = pframe[hdrlen + 7];
construct_mic_iv(
mic_iv,
qc_exists,
a4_exists,
message,
plen - 8,
pn_vector,
frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
);
construct_mic_header1(
mic_header1,
hdrlen,
message,
frtype /* add for CONFIG_IEEE80211W, none 11w also can use */
);
construct_mic_header2(
mic_header2,
message,
a4_exists,
qc_exists
);
payload_remainder = (plen - 8) % 16;
num_blocks = (plen - 8) / 16;
/* Find start of payload */
payload_index = (hdrlen + 8);
/* Calculate MIC */
aes128k128d(key, mic_iv, aes_out);
bitwise_xor(aes_out, mic_header1, chain_buffer);
aes128k128d(key, chain_buffer, aes_out);
bitwise_xor(aes_out, mic_header2, chain_buffer);
aes128k128d(key, chain_buffer, aes_out);
for (i = 0; i < num_blocks; i++) {
bitwise_xor(aes_out, &message[payload_index], chain_buffer);
payload_index += 16;
aes128k128d(key, chain_buffer, aes_out);
}
/* Add on the final payload block if it needs padding */
if (payload_remainder > 0) {
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < payload_remainder; j++)
padded_buffer[j] = message[payload_index++];
bitwise_xor(aes_out, padded_buffer, chain_buffer);
aes128k128d(key, chain_buffer, aes_out);
}
for (j = 0 ; j < 8; j++)
mic[j] = aes_out[j];
/* Insert MIC into payload */
for (j = 0; j < 8; j++)
message[payload_index + j] = mic[j];
payload_index = hdrlen + 8;
for (i = 0; i < num_blocks; i++) {
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
message,
pn_vector,
i + 1,
frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, &message[payload_index], chain_buffer);
for (j = 0; j < 16; j++)
message[payload_index++] = chain_buffer[j];
}
if (payload_remainder > 0) { /* If there is a short final block, then pad it,*/
/* encrypt it and copy the unpadded part back */
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
message,
pn_vector,
num_blocks + 1,
frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < payload_remainder; j++)
padded_buffer[j] = message[payload_index + j];
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, padded_buffer, chain_buffer);
for (j = 0; j < payload_remainder; j++)
message[payload_index++] = chain_buffer[j];
}
/* Encrypt the MIC */
construct_ctr_preload(
ctr_preload,
a4_exists,
qc_exists,
message,
pn_vector,
0,
frtype); /* add for CONFIG_IEEE80211W, none 11w also can use */
for (j = 0; j < 16; j++)
padded_buffer[j] = 0x00;
for (j = 0; j < 8; j++)
padded_buffer[j] = message[j + hdrlen + 8 + plen - 8];
aes128k128d(key, ctr_preload, aes_out);
bitwise_xor(aes_out, padded_buffer, chain_buffer);
for (j = 0; j < 8; j++)
message[payload_index++] = chain_buffer[j];
/* compare the mic */
for (i = 0; i < 8; i++) {
if (pframe[hdrlen + 8 + plen - 8 + i] != message[hdrlen + 8 + plen - 8 + i]) {
RTW_INFO("aes_decipher:mic check error mic[%d]: pframe(%x) != message(%x)\n",
i, pframe[hdrlen + 8 + plen - 8 + i], message[hdrlen + 8 + plen - 8 + i]);
res = _FAIL;
}
}
return res;
}
u32 rtw_aes_decrypt(_adapter *padapter, u8 *precvframe)
{
/* exclude ICV */
/*static*/
/* unsigned char message[MAX_MSG_SIZE]; */
/* Intermediate Buffers */
sint length;
u32 prwskeylen;
u8 *pframe, *prwskey; /* , *payload,*iv */
struct sta_info *stainfo;
struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
struct security_priv *psecuritypriv = &padapter->securitypriv;
/* struct recv_priv *precvpriv=&padapter->recvpriv; */
u32 res = _SUCCESS;
pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
/* 4 start to encrypt each fragment */
if ((prxattrib->encrypt == _AES_)) {
stainfo = rtw_get_stainfo(&padapter->stapriv , &prxattrib->ta[0]);
if (stainfo != NULL) {
if (IS_MCAST(prxattrib->ra)) {
static u32 start = 0;
static u32 no_gkey_bc_cnt = 0;
static u32 no_gkey_mc_cnt = 0;
/* RTW_INFO("rx bc/mc packets, to perform sw rtw_aes_decrypt\n"); */
/* prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; */
if (psecuritypriv->binstallGrpkey == _FALSE) {
res = _FAIL;
if (start == 0)
start = rtw_get_current_time();
if (is_broadcast_mac_addr(prxattrib->ra))
no_gkey_bc_cnt++;
else
no_gkey_mc_cnt++;
if (rtw_get_passing_time_ms(start) > 1000) {
if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
RTW_PRINT(FUNC_ADPT_FMT" no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
}
start = rtw_get_current_time();
no_gkey_bc_cnt = 0;
no_gkey_mc_cnt = 0;
}
goto exit;
}
if (no_gkey_bc_cnt || no_gkey_mc_cnt) {
RTW_PRINT(FUNC_ADPT_FMT" gkey installed. no_gkey_bc_cnt:%u, no_gkey_mc_cnt:%u\n",
FUNC_ADPT_ARG(padapter), no_gkey_bc_cnt, no_gkey_mc_cnt);
}
start = 0;
no_gkey_bc_cnt = 0;
no_gkey_mc_cnt = 0;
prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey;
if (psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) {
RTW_DBG("not match packet_index=%d, install_index=%d\n"
, prxattrib->key_index, psecuritypriv->dot118021XGrpKeyid);
res = _FAIL;
goto exit;
}
} else
prwskey = &stainfo->dot118021x_UncstKey.skey[0];
length = ((union recv_frame *)precvframe)->u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len;
#if 0
/* add for CONFIG_IEEE80211W, debug */
if (0)
printk("@@@@@@@@@@@@@@@@@@ length=%d, prxattrib->hdrlen=%d, prxattrib->pkt_len=%d\n"
, length, prxattrib->hdrlen, prxattrib->pkt_len);
if (0) {
int no;
/* test print PSK */
printk("PSK key below:\n");
for (no = 0; no < 16; no++)
printk(" %02x ", prwskey[no]);
printk("\n");
}
if (0) {
int no;
/* test print PSK */
printk("frame:\n");
for (no = 0; no < prxattrib->pkt_len; no++)
printk(" %02x ", pframe[no]);
printk("\n");
}
#endif
res = aes_decipher(prwskey, prxattrib->hdrlen, pframe, length);
AES_SW_DEC_CNT_INC(psecuritypriv, prxattrib->ra);
} else {
res = _FAIL;
}
}
exit:
return res;
}
#ifdef CONFIG_IEEE80211W
u32 rtw_BIP_verify(_adapter *padapter, u8 *precvframe)
{
struct rx_pkt_attrib *pattrib = &((union recv_frame *)precvframe)->u.hdr.attrib;
u8 *pframe;
u8 *BIP_AAD, *p;
u32 res = _FAIL;
uint len, ori_len;
struct rtw_ieee80211_hdr *pwlanhdr;
u8 mic[16];
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
ori_len = pattrib->pkt_len - WLAN_HDR_A3_LEN + BIP_AAD_SIZE;
BIP_AAD = rtw_zmalloc(ori_len);
if (BIP_AAD == NULL) {
RTW_INFO("BIP AAD allocate fail\n");
return _FAIL;
}
/* PKT start */
pframe = (unsigned char *)((union recv_frame *)precvframe)->u.hdr.rx_data;
/* mapping to wlan header */
pwlanhdr = (struct rtw_ieee80211_hdr *)pframe;
/* save the frame body + MME */
_rtw_memcpy(BIP_AAD + BIP_AAD_SIZE, pframe + WLAN_HDR_A3_LEN, pattrib->pkt_len - WLAN_HDR_A3_LEN);
/* find MME IE pointer */
p = rtw_get_ie(BIP_AAD + BIP_AAD_SIZE, _MME_IE_, &len, pattrib->pkt_len - WLAN_HDR_A3_LEN);
/* Baron */
if (p) {
u16 keyid = 0;
u64 temp_ipn = 0;
/* save packet number */
_rtw_memcpy(&temp_ipn, p + 4, 6);
temp_ipn = le64_to_cpu(temp_ipn);
/* BIP packet number should bigger than previous BIP packet */
if (temp_ipn < pmlmeext->mgnt_80211w_IPN_rx) {
RTW_INFO("replay BIP packet\n");
goto BIP_exit;
}
/* copy key index */
_rtw_memcpy(&keyid, p + 2, 2);
keyid = le16_to_cpu(keyid);
if (keyid != padapter->securitypriv.dot11wBIPKeyid) {
RTW_INFO("BIP key index error!\n");
goto BIP_exit;
}
/* clear the MIC field of MME to zero */
_rtw_memset(p + 2 + len - 8, 0, 8);
/* conscruct AAD, copy frame control field */
_rtw_memcpy(BIP_AAD, &pwlanhdr->frame_ctl, 2);
ClearRetry(BIP_AAD);
ClearPwrMgt(BIP_AAD);
ClearMData(BIP_AAD);
/* conscruct AAD, copy address 1 to address 3 */
_rtw_memcpy(BIP_AAD + 2, pwlanhdr->addr1, 18);
if (omac1_aes_128(padapter->securitypriv.dot11wBIPKey[padapter->securitypriv.dot11wBIPKeyid].skey
, BIP_AAD, ori_len, mic))
goto BIP_exit;
#if 0
/* management packet content */
{
int pp;
RTW_INFO("pkt: ");
for (pp = 0; pp < pattrib->pkt_len; pp++)
printk(" %02x ", pframe[pp]);
RTW_INFO("\n");
/* BIP AAD + management frame body + MME(MIC is zero) */
RTW_INFO("AAD+PKT: ");
for (pp = 0; pp < ori_len; pp++)
RTW_INFO(" %02x ", BIP_AAD[pp]);
RTW_INFO("\n");
/* show the MIC result */
RTW_INFO("mic: ");
for (pp = 0; pp < 16; pp++)
RTW_INFO(" %02x ", mic[pp]);
RTW_INFO("\n");
}
#endif
/* MIC field should be last 8 bytes of packet (packet without FCS) */
if (_rtw_memcmp(mic, pframe + pattrib->pkt_len - 8, 8)) {
pmlmeext->mgnt_80211w_IPN_rx = temp_ipn;
res = _SUCCESS;
} else
RTW_INFO("BIP MIC error!\n");
} else
res = RTW_RX_HANDLED;
BIP_exit:
rtw_mfree(BIP_AAD, ori_len);
return res;
}
#endif /* CONFIG_IEEE80211W */
#ifndef PLATFORM_FREEBSD
/* compress 512-bits */
static int sha256_compress(struct sha256_state *md, unsigned char *buf)
{
u32 S[8], W[64], t0, t1;
u32 t;
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
S[i] = md->state[i];
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++)
W[i] = WPA_GET_BE32(buf + (4 * i));
/* fill W[16..63] */
for (i = 16; i < 64; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) +
W[i - 16];
}
/* Compress */
#define RND(a, b, c, d, e, f, g, h, i) do {\
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1; \
} while (0)
for (i = 0; i < 64; ++i) {
RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
t = S[7];
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3];
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = t;
}
/* feedback */
for (i = 0; i < 8; i++)
md->state[i] = md->state[i] + S[i];
return 0;
}
/* Initialize the hash state */
static void sha256_init(struct sha256_state *md)
{
md->curlen = 0;
md->length = 0;
md->state[0] = 0x6A09E667UL;
md->state[1] = 0xBB67AE85UL;
md->state[2] = 0x3C6EF372UL;
md->state[3] = 0xA54FF53AUL;
md->state[4] = 0x510E527FUL;
md->state[5] = 0x9B05688CUL;
md->state[6] = 0x1F83D9ABUL;
md->state[7] = 0x5BE0CD19UL;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
static int sha256_process(struct sha256_state *md, unsigned char *in,
unsigned long inlen)
{
unsigned long n;
#define block_size 64
if (md->curlen > sizeof(md->buf))
return -1;
while (inlen > 0) {
if (md->curlen == 0 && inlen >= block_size) {
if (sha256_compress(md, (unsigned char *) in) < 0)
return -1;
md->length += block_size * 8;
in += block_size;
inlen -= block_size;
} else {
n = MIN(inlen, (block_size - md->curlen));
_rtw_memcpy(md->buf + md->curlen, in, n);
md->curlen += n;
in += n;
inlen -= n;
if (md->curlen == block_size) {
if (sha256_compress(md, md->buf) < 0)
return -1;
md->length += 8 * block_size;
md->curlen = 0;
}
}
}
return 0;
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (32 bytes)
@return CRYPT_OK if successful
*/
static int sha256_done(struct sha256_state *md, unsigned char *out)
{
int i;
if (md->curlen >= sizeof(md->buf))
return -1;
/* increase the length of the message */
md->length += md->curlen * 8;
/* append the '1' bit */
md->buf[md->curlen++] = (unsigned char) 0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->curlen > 56) {
while (md->curlen < 64)
md->buf[md->curlen++] = (unsigned char) 0;
sha256_compress(md, md->buf);
md->curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->curlen < 56)
md->buf[md->curlen++] = (unsigned char) 0;
/* store length */
WPA_PUT_BE64(md->buf + 56, md->length);
sha256_compress(md, md->buf);
/* copy output */
for (i = 0; i < 8; i++)
WPA_PUT_BE32(out + (4 * i), md->state[i]);
return 0;
}
/**
* sha256_vector - SHA256 hash for data vector
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash
* Returns: 0 on success, -1 of failure
*/
static int sha256_vector(size_t num_elem, u8 *addr[], size_t *len,
u8 *mac)
{
struct sha256_state ctx;
size_t i;
sha256_init(&ctx);
for (i = 0; i < num_elem; i++)
if (sha256_process(&ctx, addr[i], len[i]))
return -1;
if (sha256_done(&ctx, mac))
return -1;
return 0;
}
static u8 os_strlen(const char *s)
{
const char *p = s;
while (*p)
p++;
return p - s;
}
static int os_memcmp(void *s1, void *s2, u8 n)
{
unsigned char *p1 = s1, *p2 = s2;
if (n == 0)
return 0;
while (*p1 == *p2) {
p1++;
p2++;
n--;
if (n == 0)
return 0;
}
return *p1 - *p2;
}
/**
* hmac_sha256_vector - HMAC-SHA256 over data vector (RFC 2104)
* @key: Key for HMAC operations
* @key_len: Length of the key in bytes
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for the hash (32 bytes)
*/
static void hmac_sha256_vector(u8 *key, size_t key_len, size_t num_elem,
u8 *addr[], size_t *len, u8 *mac)
{
unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
unsigned char tk[32];
u8 *_addr[6];
size_t _len[6], i;
if (num_elem > 5) {
/*
* Fixed limit on the number of fragments to avoid having to
* allocate memory (which could fail).
*/
return;
}
/* if key is longer than 64 bytes reset it to key = SHA256(key) */
if (key_len > 64) {
sha256_vector(1, &key, &key_len, tk);
key = tk;
key_len = 32;
}
/* the HMAC_SHA256 transform looks like:
*
* SHA256(K XOR opad, SHA256(K XOR ipad, text))
*
* where K is an n byte key
* ipad is the byte 0x36 repeated 64 times
* opad is the byte 0x5c repeated 64 times
* and text is the data being protected */
/* start out by storing key in ipad */
_rtw_memset(k_pad, 0, sizeof(k_pad));
_rtw_memcpy(k_pad, key, key_len);
/* XOR key with ipad values */
for (i = 0; i < 64; i++)
k_pad[i] ^= 0x36;
/* perform inner SHA256 */
_addr[0] = k_pad;
_len[0] = 64;
for (i = 0; i < num_elem; i++) {
_addr[i + 1] = addr[i];
_len[i + 1] = len[i];
}
sha256_vector(1 + num_elem, _addr, _len, mac);
_rtw_memset(k_pad, 0, sizeof(k_pad));
_rtw_memcpy(k_pad, key, key_len);
/* XOR key with opad values */
for (i = 0; i < 64; i++)
k_pad[i] ^= 0x5c;
/* perform outer SHA256 */
_addr[0] = k_pad;
_len[0] = 64;
_addr[1] = mac;
_len[1] = 32;
sha256_vector(2, _addr, _len, mac);
}
#endif /* PLATFORM_FREEBSD */
/**
* sha256_prf - SHA256-based Pseudo-Random Function (IEEE 802.11r, 8.5.1.5.2)
* @key: Key for PRF
* @key_len: Length of the key in bytes
* @label: A unique label for each purpose of the PRF
* @data: Extra data to bind into the key
* @data_len: Length of the data
* @buf: Buffer for the generated pseudo-random key
* @buf_len: Number of bytes of key to generate
*
* This function is used to derive new, cryptographically separate keys from a
* given key.
*/
#ifndef PLATFORM_FREEBSD /* Baron */
static void sha256_prf(u8 *key, size_t key_len, char *label,
u8 *data, size_t data_len, u8 *buf, size_t buf_len)
{
u16 counter = 1;
size_t pos, plen;
u8 hash[SHA256_MAC_LEN];
u8 *addr[4];
size_t len[4];
u8 counter_le[2], length_le[2];
addr[0] = counter_le;
len[0] = 2;
addr[1] = (u8 *) label;
len[1] = os_strlen(label);
addr[2] = data;
len[2] = data_len;
addr[3] = length_le;
len[3] = sizeof(length_le);
WPA_PUT_LE16(length_le, buf_len * 8);
pos = 0;
while (pos < buf_len) {
plen = buf_len - pos;
WPA_PUT_LE16(counter_le, counter);
if (plen >= SHA256_MAC_LEN) {
hmac_sha256_vector(key, key_len, 4, addr, len,
&buf[pos]);
pos += SHA256_MAC_LEN;
} else {
hmac_sha256_vector(key, key_len, 4, addr, len, hash);
_rtw_memcpy(&buf[pos], hash, plen);
break;
}
counter++;
}
}
#endif /* PLATFORM_FREEBSD Baron */
/* AES tables*/
const u32 Te0[256] = {
0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,
0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU,
0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U,
0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU,
0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,
0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU,
0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,
0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,
0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,
0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,
0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,
0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,
0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,
0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,
0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,
0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,
0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,
0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U,
0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U,
0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU,
0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U,
0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U,
0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU,
0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU,
0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U,
0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U,
0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U,
0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU,
0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U,
0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU,
0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U,
0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU,
0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U,
0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U,
0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU,
0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U,
0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U,
0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U,
0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U,
0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U,
0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U,
0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U,
0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U,
0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU,
0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U,
0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U,
0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U,
0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U,
0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,
0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U,
0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU,
0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U,
0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U,
0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,
0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,
};
const u32 Td0[256] = {
0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U,
0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U,
0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U,
0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU,
0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U,
0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U,
0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU,
0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U,
0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU,
0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U,
0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U,
0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U,
0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U,
0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU,
0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U,
0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU,
0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U,
0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU,
0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U,
0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U,
0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U,
0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU,
0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U,
0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU,
0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U,
0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU,
0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U,
0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU,
0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU,
0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U,
0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU,
0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U,
0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU,
0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U,
0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U,
0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U,
0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU,
0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U,
0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U,
0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU,
0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U,
0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U,
0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U,
0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U,
0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U,
0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU,
0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U,
0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U,
0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U,
0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U,
0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U,
0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU,
0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU,
0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU,
0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU,
0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U,
0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U,
0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU,
0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU,
0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U,
0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU,
0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U,
0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U,
0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U,
};
const u8 Td4s[256] = {
0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU,
};
const u8 rcons[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};
/**
* Expand the cipher key into the encryption key schedule.
*
* @return the number of rounds for the given cipher key size.
*/
#ifndef PLATFORM_FREEBSD /* Baron */
static void rijndaelKeySetupEnc(u32 rk[/*44*/], const u8 cipherKey[])
{
int i;
u32 temp;
rk[0] = GETU32(cipherKey);
rk[1] = GETU32(cipherKey + 4);
rk[2] = GETU32(cipherKey + 8);
rk[3] = GETU32(cipherKey + 12);
for (i = 0; i < 10; i++) {
temp = rk[3];
rk[4] = rk[0] ^
TE421(temp) ^ TE432(temp) ^ TE443(temp) ^ TE414(temp) ^
RCON(i);
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
rk += 4;
}
}
static void rijndaelEncrypt(u32 rk[/*44*/], u8 pt[16], u8 ct[16])
{
u32 s0, s1, s2, s3, t0, t1, t2, t3;
int Nr = 10;
#ifndef FULL_UNROLL
int r;
#endif /* ?FULL_UNROLL */
/*
* map byte array block to cipher state
* and add initial round key:
*/
s0 = GETU32(pt) ^ rk[0];
s1 = GETU32(pt + 4) ^ rk[1];
s2 = GETU32(pt + 8) ^ rk[2];
s3 = GETU32(pt + 12) ^ rk[3];
#define ROUND(i, d, s) do {\
d##0 = TE0(s##0) ^ TE1(s##1) ^ TE2(s##2) ^ TE3(s##3) ^ rk[4 * i]; \
d##1 = TE0(s##1) ^ TE1(s##2) ^ TE2(s##3) ^ TE3(s##0) ^ rk[4 * i + 1]; \
d##2 = TE0(s##2) ^ TE1(s##3) ^ TE2(s##0) ^ TE3(s##1) ^ rk[4 * i + 2]; \
d##3 = TE0(s##3) ^ TE1(s##0) ^ TE2(s##1) ^ TE3(s##2) ^ rk[4 * i + 3]; \
} while (0)
#ifdef FULL_UNROLL
ROUND(1, t, s);
ROUND(2, s, t);
ROUND(3, t, s);
ROUND(4, s, t);
ROUND(5, t, s);
ROUND(6, s, t);
ROUND(7, t, s);
ROUND(8, s, t);
ROUND(9, t, s);
rk += Nr << 2;
#else /* !FULL_UNROLL */
/* Nr - 1 full rounds: */
r = Nr >> 1;
for (;;) {
ROUND(1, t, s);
rk += 8;
if (--r == 0)
break;
ROUND(0, s, t);
}
#endif /* ?FULL_UNROLL */
#undef ROUND
/*
* apply last round and
* map cipher state to byte array block:
*/
s0 = TE41(t0) ^ TE42(t1) ^ TE43(t2) ^ TE44(t3) ^ rk[0];
PUTU32(ct , s0);
s1 = TE41(t1) ^ TE42(t2) ^ TE43(t3) ^ TE44(t0) ^ rk[1];
PUTU32(ct + 4, s1);
s2 = TE41(t2) ^ TE42(t3) ^ TE43(t0) ^ TE44(t1) ^ rk[2];
PUTU32(ct + 8, s2);
s3 = TE41(t3) ^ TE42(t0) ^ TE43(t1) ^ TE44(t2) ^ rk[3];
PUTU32(ct + 12, s3);
}
static void *aes_encrypt_init(u8 *key, size_t len)
{
u32 *rk;
if (len != 16)
return NULL;
rk = (u32 *)rtw_malloc(AES_PRIV_SIZE);
if (rk == NULL)
return NULL;
rijndaelKeySetupEnc(rk, key);
return rk;
}
static void aes_128_encrypt(void *ctx, u8 *plain, u8 *crypt)
{
rijndaelEncrypt(ctx, plain, crypt);
}
static void gf_mulx(u8 *pad)
{
int i, carry;
carry = pad[0] & 0x80;
for (i = 0; i < AES_BLOCK_SIZE - 1; i++)
pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7);
pad[AES_BLOCK_SIZE - 1] <<= 1;
if (carry)
pad[AES_BLOCK_SIZE - 1] ^= 0x87;
}
static void aes_encrypt_deinit(void *ctx)
{
_rtw_memset(ctx, 0, AES_PRIV_SIZE);
rtw_mfree(ctx, AES_PRIV_SIZE);
}
/**
* omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128
* @key: 128-bit key for the hash operation
* @num_elem: Number of elements in the data vector
* @addr: Pointers to the data areas
* @len: Lengths of the data blocks
* @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
* Returns: 0 on success, -1 on failure
*
* This is a mode for using block cipher (AES in this case) for authentication.
* OMAC1 was standardized with the name CMAC by NIST in a Special Publication
* (SP) 800-38B.
*/
static int omac1_aes_128_vector(u8 *key, size_t num_elem,
u8 *addr[], size_t *len, u8 *mac)
{
void *ctx;
u8 cbc[AES_BLOCK_SIZE], pad[AES_BLOCK_SIZE];
u8 *pos, *end;
size_t i, e, left, total_len;
ctx = aes_encrypt_init(key, 16);
if (ctx == NULL)
return -1;
_rtw_memset(cbc, 0, AES_BLOCK_SIZE);
total_len = 0;
for (e = 0; e < num_elem; e++)
total_len += len[e];
left = total_len;
e = 0;
pos = addr[0];
end = pos + len[0];
while (left >= AES_BLOCK_SIZE) {
for (i = 0; i < AES_BLOCK_SIZE; i++) {
cbc[i] ^= *pos++;
if (pos >= end) {
e++;
pos = addr[e];
end = pos + len[e];
}
}
if (left > AES_BLOCK_SIZE)
aes_128_encrypt(ctx, cbc, cbc);
left -= AES_BLOCK_SIZE;
}
_rtw_memset(pad, 0, AES_BLOCK_SIZE);
aes_128_encrypt(ctx, pad, pad);
gf_mulx(pad);
if (left || total_len == 0) {
for (i = 0; i < left; i++) {
cbc[i] ^= *pos++;
if (pos >= end) {
e++;
pos = addr[e];
end = pos + len[e];
}
}
cbc[left] ^= 0x80;
gf_mulx(pad);
}
for (i = 0; i < AES_BLOCK_SIZE; i++)
pad[i] ^= cbc[i];
aes_128_encrypt(ctx, pad, mac);
aes_encrypt_deinit(ctx);
return 0;
}
/**
* omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC)
* @key: 128-bit key for the hash operation
* @data: Data buffer for which a MAC is determined
* @data_len: Length of data buffer in bytes
* @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
* Returns: 0 on success, -1 on failure
*
* This is a mode for using block cipher (AES in this case) for authentication.
* OMAC1 was standardized with the name CMAC by NIST in a Special Publication
* (SP) 800-38B.
*/ /* modify for CONFIG_IEEE80211W */
int omac1_aes_128(u8 *key, u8 *data, size_t data_len, u8 *mac)
{
return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
}
#endif /* PLATFORM_FREEBSD Baron */
#ifdef CONFIG_TDLS
void wpa_tdls_generate_tpk(_adapter *padapter, PVOID sta)
{
struct sta_info *psta = (struct sta_info *)sta;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
u8 *SNonce = psta->SNonce;
u8 *ANonce = psta->ANonce;
u8 key_input[SHA256_MAC_LEN];
u8 *nonce[2];
size_t len[2];
u8 data[3 * ETH_ALEN];
/* IEEE Std 802.11z-2010 8.5.9.1:
* TPK-Key-Input = SHA-256(min(SNonce, ANonce) || max(SNonce, ANonce))
*/
len[0] = 32;
len[1] = 32;
if (os_memcmp(SNonce, ANonce, 32) < 0) {
nonce[0] = SNonce;
nonce[1] = ANonce;
} else {
nonce[0] = ANonce;
nonce[1] = SNonce;
}
sha256_vector(2, nonce, len, key_input);
/*
* TPK-Key-Data = KDF-N_KEY(TPK-Key-Input, "TDLS PMK",
* min(MAC_I, MAC_R) || max(MAC_I, MAC_R) || BSSID || N_KEY)
* TODO: is N_KEY really included in KDF Context and if so, in which
* presentation format (little endian 16-bit?) is it used? It gets
* added by the KDF anyway..
*/
if (os_memcmp(adapter_mac_addr(padapter), psta->hwaddr, ETH_ALEN) < 0) {
_rtw_memcpy(data, adapter_mac_addr(padapter), ETH_ALEN);
_rtw_memcpy(data + ETH_ALEN, psta->hwaddr, ETH_ALEN);
} else {
_rtw_memcpy(data, psta->hwaddr, ETH_ALEN);
_rtw_memcpy(data + ETH_ALEN, adapter_mac_addr(padapter), ETH_ALEN);
}
_rtw_memcpy(data + 2 * ETH_ALEN, get_bssid(pmlmepriv), ETH_ALEN);
sha256_prf(key_input, SHA256_MAC_LEN, "TDLS PMK", data, sizeof(data), (u8 *) &psta->tpk, sizeof(psta->tpk));
}
/**
* wpa_tdls_ftie_mic - Calculate TDLS FTIE MIC
* @kck: TPK-KCK
* @lnkid: Pointer to the beginning of Link Identifier IE
* @rsnie: Pointer to the beginning of RSN IE used for handshake
* @timeoutie: Pointer to the beginning of Timeout IE used for handshake
* @ftie: Pointer to the beginning of FT IE
* @mic: Pointer for writing MIC
*
* Calculate MIC for TDLS frame.
*/
int wpa_tdls_ftie_mic(u8 *kck, u8 trans_seq,
u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie,
u8 *mic)
{
u8 *buf, *pos;
struct wpa_tdls_ftie *_ftie;
struct wpa_tdls_lnkid *_lnkid;
int ret;
int len = 2 * ETH_ALEN + 1 + 2 + lnkid[1] + 2 + rsnie[1] +
2 + timeoutie[1] + 2 + ftie[1];
buf = rtw_zmalloc(len);
if (!buf) {
RTW_INFO("TDLS: No memory for MIC calculation\n");
return -1;
}
pos = buf;
_lnkid = (struct wpa_tdls_lnkid *) lnkid;
/* 1) TDLS initiator STA MAC address */
_rtw_memcpy(pos, _lnkid->init_sta, ETH_ALEN);
pos += ETH_ALEN;
/* 2) TDLS responder STA MAC address */
_rtw_memcpy(pos, _lnkid->resp_sta, ETH_ALEN);
pos += ETH_ALEN;
/* 3) Transaction Sequence number */
*pos++ = trans_seq;
/* 4) Link Identifier IE */
_rtw_memcpy(pos, lnkid, 2 + lnkid[1]);
pos += 2 + lnkid[1];
/* 5) RSN IE */
_rtw_memcpy(pos, rsnie, 2 + rsnie[1]);
pos += 2 + rsnie[1];
/* 6) Timeout Interval IE */
_rtw_memcpy(pos, timeoutie, 2 + timeoutie[1]);
pos += 2 + timeoutie[1];
/* 7) FTIE, with the MIC field of the FTIE set to 0 */
_rtw_memcpy(pos, ftie, 2 + ftie[1]);
_ftie = (struct wpa_tdls_ftie *) pos;
_rtw_memset(_ftie->mic, 0, TDLS_MIC_LEN);
pos += 2 + ftie[1];
ret = omac1_aes_128(kck, buf, pos - buf, mic);
rtw_mfree(buf, len);
return ret;
}
/**
* wpa_tdls_teardown_ftie_mic - Calculate TDLS TEARDOWN FTIE MIC
* @kck: TPK-KCK
* @lnkid: Pointer to the beginning of Link Identifier IE
* @reason: Reason code of TDLS Teardown
* @dialog_token: Dialog token that was used in the MIC calculation for TPK Handshake Message 3
* @trans_seq: Transaction Sequence number (1 octet) which shall be set to the value 4
* @ftie: Pointer to the beginning of FT IE
* @mic: Pointer for writing MIC
*
* Calculate MIC for TDLS TEARDOWN frame according to Section 10.22.5 in IEEE 802.11 - 2012.
*/
int wpa_tdls_teardown_ftie_mic(u8 *kck, u8 *lnkid, u16 reason,
u8 dialog_token, u8 trans_seq, u8 *ftie, u8 *mic)
{
u8 *buf, *pos;
struct wpa_tdls_ftie *_ftie;
int ret;
int len = 2 + lnkid[1] + 2 + 1 + 1 + 2 + ftie[1];
buf = rtw_zmalloc(len);
if (!buf) {
RTW_INFO("TDLS: No memory for MIC calculation\n");
return -1;
}
pos = buf;
/* 1) Link Identifier IE */
_rtw_memcpy(pos, lnkid, 2 + lnkid[1]);
pos += 2 + lnkid[1];
/* 2) Reason Code */
_rtw_memcpy(pos, (u8 *)&reason, 2);
pos += 2;
/* 3) Dialog Token */
*pos++ = dialog_token;
/* 4) Transaction Sequence number */
*pos++ = trans_seq;
/* 5) FTIE, with the MIC field of the FTIE set to 0 */
_rtw_memcpy(pos, ftie, 2 + ftie[1]);
_ftie = (struct wpa_tdls_ftie *) pos;
_rtw_memset(_ftie->mic, 0, TDLS_MIC_LEN);
pos += 2 + ftie[1];
ret = omac1_aes_128(kck, buf, pos - buf, mic);
rtw_mfree(buf, len);
return ret;
}
int tdls_verify_mic(u8 *kck, u8 trans_seq,
u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie)
{
u8 *buf, *pos;
int len;
u8 mic[16];
int ret;
u8 *rx_ftie, *tmp_ftie;
if (lnkid == NULL || rsnie == NULL ||
timeoutie == NULL || ftie == NULL)
return _FAIL;
len = 2 * ETH_ALEN + 1 + 2 + 18 + 2 + *(rsnie + 1) + 2 + *(timeoutie + 1) + 2 + *(ftie + 1);
buf = rtw_zmalloc(len);
if (buf == NULL)
return _FAIL;
pos = buf;
/* 1) TDLS initiator STA MAC address */
_rtw_memcpy(pos, lnkid + ETH_ALEN + 2, ETH_ALEN);
pos += ETH_ALEN;
/* 2) TDLS responder STA MAC address */
_rtw_memcpy(pos, lnkid + 2 * ETH_ALEN + 2, ETH_ALEN);
pos += ETH_ALEN;
/* 3) Transaction Sequence number */
*pos++ = trans_seq;
/* 4) Link Identifier IE */
_rtw_memcpy(pos, lnkid, 2 + 18);
pos += 2 + 18;
/* 5) RSN IE */
_rtw_memcpy(pos, rsnie, 2 + *(rsnie + 1));
pos += 2 + *(rsnie + 1);
/* 6) Timeout Interval IE */
_rtw_memcpy(pos, timeoutie, 2 + *(timeoutie + 1));
pos += 2 + *(timeoutie + 1);
/* 7) FTIE, with the MIC field of the FTIE set to 0 */
_rtw_memcpy(pos, ftie, 2 + *(ftie + 1));
pos += 2;
tmp_ftie = (u8 *)(pos + 2);
_rtw_memset(tmp_ftie, 0, 16);
pos += *(ftie + 1);
ret = omac1_aes_128(kck, buf, pos - buf, mic);
rtw_mfree(buf, len);
if (ret)
return _FAIL;
rx_ftie = ftie + 4;
if (os_memcmp(mic, rx_ftie, 16) == 0) {
/* Valid MIC */
return _SUCCESS;
}
/* Invalid MIC */
RTW_INFO("[%s] Invalid MIC\n", __FUNCTION__);
return _FAIL;
}
#endif /* CONFIG_TDLS */
void rtw_use_tkipkey_handler(RTW_TIMER_HDL_ARGS)
{
_adapter *padapter = (_adapter *)FunctionContext;
/*
if (RTW_CANNOT_RUN(padapter)) {
return;
}
*/
padapter->securitypriv.busetkipkey = _TRUE;
}
/* Restore HW wep key setting according to key_mask */
void rtw_sec_restore_wep_key(_adapter *adapter)
{
struct security_priv *securitypriv = &(adapter->securitypriv);
sint keyid;
if ((_WEP40_ == securitypriv->dot11PrivacyAlgrthm) || (_WEP104_ == securitypriv->dot11PrivacyAlgrthm)) {
for (keyid = 0; keyid < 4; keyid++) {
if (securitypriv->key_mask & BIT(keyid)) {
if (keyid == securitypriv->dot11PrivacyKeyIndex)
rtw_set_key(adapter, securitypriv, keyid, 1, _FALSE);
else
rtw_set_key(adapter, securitypriv, keyid, 0, _FALSE);
}
}
}
}
u8 rtw_handle_tkip_countermeasure(_adapter *adapter, const char *caller)
{
struct security_priv *securitypriv = &(adapter->securitypriv);
u8 status = _SUCCESS;
if (securitypriv->btkip_countermeasure == _TRUE) {
u32 passing_ms = rtw_get_passing_time_ms(securitypriv->btkip_countermeasure_time);
if (passing_ms > 60 * 1000) {
RTW_PRINT("%s("ADPT_FMT") countermeasure time:%ds > 60s\n",
caller, ADPT_ARG(adapter), passing_ms / 1000);
securitypriv->btkip_countermeasure = _FALSE;
securitypriv->btkip_countermeasure_time = 0;
} else {
RTW_PRINT("%s("ADPT_FMT") countermeasure time:%ds < 60s\n",
caller, ADPT_ARG(adapter), passing_ms / 1000);
status = _FAIL;
}
}
return status;
}
#ifdef CONFIG_WOWLAN
u16 rtw_cal_crc16(u8 data, u16 crc)
{
u8 shift_in, data_bit;
u8 crc_bit4, crc_bit11, crc_bit15;
u16 crc_result;
int index;
for (index = 0; index < 8; index++) {
crc_bit15 = ((crc & BIT15) ? 1 : 0);
data_bit = (data & (BIT0 << index) ? 1 : 0);
shift_in = crc_bit15 ^ data_bit;
/*printf("crc_bit15=%d, DataBit=%d, shift_in=%d\n",
* crc_bit15, data_bit, shift_in);*/
crc_result = crc << 1;
if (shift_in == 0)
crc_result &= (~BIT0);
else
crc_result |= BIT0;
/*printf("CRC =%x\n",CRC_Result);*/
crc_bit11 = ((crc & BIT11) ? 1 : 0) ^ shift_in;
if (crc_bit11 == 0)
crc_result &= (~BIT12);
else
crc_result |= BIT12;
/*printf("bit12 CRC =%x\n",CRC_Result);*/
crc_bit4 = ((crc & BIT4) ? 1 : 0) ^ shift_in;
if (crc_bit4 == 0)
crc_result &= (~BIT5);
else
crc_result |= BIT5;
/* printf("bit5 CRC =%x\n",CRC_Result); */
/* repeat using the last result*/
crc = crc_result;
}
return crc;
}
/*
* function name :rtw_calc_crc
*
* input: char* pattern , pattern size
*
*/
u16 rtw_calc_crc(u8 *pdata, int length)
{
u16 crc = 0xffff;
int i;
for (i = 0; i < length; i++)
crc = rtw_cal_crc16(pdata[i], crc);
/* get 1' complement */
crc = ~crc;
return crc;
}
#endif /*CONFIG_WOWLAN*/