1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-22 13:24:36 +00:00
rtl8812au/core/rtw_io.c
2020-02-01 10:15:59 +01:00

900 lines
24 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
/*
The purpose of rtw_io.c
a. provides the API
b. provides the protocol engine
c. provides the software interface between caller and the hardware interface
Compiler Flag Option:
1. CONFIG_SDIO_HCI:
a. USE_SYNC_IRP: Only sync operations are provided.
b. USE_ASYNC_IRP:Both sync/async operations are provided.
2. CONFIG_USB_HCI:
a. USE_ASYNC_IRP: Both sync/async operations are provided.
3. CONFIG_CFIO_HCI:
b. USE_SYNC_IRP: Only sync operations are provided.
Only sync read/rtw_write_mem operations are provided.
jackson@realtek.com.tw
*/
#define _RTW_IO_C_
#include <drv_types.h>
#include <hal_data.h>
#if defined(CONFIG_SDIO_HCI) || defined(CONFIG_PLATFORM_RTL8197D)
#define rtw_le16_to_cpu(val) val
#define rtw_le32_to_cpu(val) val
#define rtw_cpu_to_le16(val) val
#define rtw_cpu_to_le32(val) val
#else
#define rtw_le16_to_cpu(val) le16_to_cpu(val)
#define rtw_le32_to_cpu(val) le32_to_cpu(val)
#define rtw_cpu_to_le16(val) cpu_to_le16(val)
#define rtw_cpu_to_le32(val) cpu_to_le32(val)
#endif
u8 _rtw_read8(_adapter *adapter, u32 addr)
{
u8 r_val;
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u8(*_read8)(struct intf_hdl *pintfhdl, u32 addr);
_read8 = pintfhdl->io_ops._read8;
r_val = _read8(pintfhdl, addr);
return r_val;
}
u16 _rtw_read16(_adapter *adapter, u32 addr)
{
u16 r_val;
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u16(*_read16)(struct intf_hdl *pintfhdl, u32 addr);
_read16 = pintfhdl->io_ops._read16;
r_val = _read16(pintfhdl, addr);
return rtw_le16_to_cpu(r_val);
}
u32 _rtw_read32(_adapter *adapter, u32 addr)
{
u32 r_val;
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u32(*_read32)(struct intf_hdl *pintfhdl, u32 addr);
_read32 = pintfhdl->io_ops._read32;
r_val = _read32(pintfhdl, addr);
return rtw_le32_to_cpu(r_val);
}
int _rtw_write8(_adapter *adapter, u32 addr, u8 val)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write8)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
int ret;
_write8 = pintfhdl->io_ops._write8;
ret = _write8(pintfhdl, addr, val);
return RTW_STATUS_CODE(ret);
}
int _rtw_write16(_adapter *adapter, u32 addr, u16 val)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write16)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
int ret;
_write16 = pintfhdl->io_ops._write16;
val = rtw_cpu_to_le16(val);
ret = _write16(pintfhdl, addr, val);
return RTW_STATUS_CODE(ret);
}
int _rtw_write32(_adapter *adapter, u32 addr, u32 val)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write32)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
int ret;
_write32 = pintfhdl->io_ops._write32;
val = rtw_cpu_to_le32(val);
ret = _write32(pintfhdl, addr, val);
return RTW_STATUS_CODE(ret);
}
int _rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *pdata)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = (struct intf_hdl *)(&(pio_priv->intf));
int (*_writeN)(struct intf_hdl *pintfhdl, u32 addr, u32 length, u8 *pdata);
int ret;
_writeN = pintfhdl->io_ops._writeN;
ret = _writeN(pintfhdl, addr, length, pdata);
return RTW_STATUS_CODE(ret);
}
#ifdef CONFIG_SDIO_HCI
u8 _rtw_sd_f0_read8(_adapter *adapter, u32 addr)
{
u8 r_val = 0x00;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u8(*_sd_f0_read8)(struct intf_hdl *pintfhdl, u32 addr);
_sd_f0_read8 = pintfhdl->io_ops._sd_f0_read8;
if (_sd_f0_read8)
r_val = _sd_f0_read8(pintfhdl, addr);
else
RTW_WARN(FUNC_ADPT_FMT" _sd_f0_read8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return r_val;
}
#ifdef CONFIG_SDIO_INDIRECT_ACCESS
u8 _rtw_sd_iread8(_adapter *adapter, u32 addr)
{
u8 r_val = 0x00;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u8(*_sd_iread8)(struct intf_hdl *pintfhdl, u32 addr);
_sd_iread8 = pintfhdl->io_ops._sd_iread8;
if (_sd_iread8)
r_val = _sd_iread8(pintfhdl, addr);
else
RTW_ERR(FUNC_ADPT_FMT" _sd_iread8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return r_val;
}
u16 _rtw_sd_iread16(_adapter *adapter, u32 addr)
{
u16 r_val = 0x00;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u16(*_sd_iread16)(struct intf_hdl *pintfhdl, u32 addr);
_sd_iread16 = pintfhdl->io_ops._sd_iread16;
if (_sd_iread16)
r_val = _sd_iread16(pintfhdl, addr);
else
RTW_ERR(FUNC_ADPT_FMT" _sd_iread16 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return r_val;
}
u32 _rtw_sd_iread32(_adapter *adapter, u32 addr)
{
u32 r_val = 0x00;
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u32(*_sd_iread32)(struct intf_hdl *pintfhdl, u32 addr);
_sd_iread32 = pintfhdl->io_ops._sd_iread32;
if (_sd_iread32)
r_val = _sd_iread32(pintfhdl, addr);
else
RTW_ERR(FUNC_ADPT_FMT" _sd_iread32 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return r_val;
}
int _rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val)
{
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_sd_iwrite8)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
int ret = -1;
_sd_iwrite8 = pintfhdl->io_ops._sd_iwrite8;
if (_sd_iwrite8)
ret = _sd_iwrite8(pintfhdl, addr, val);
else
RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite8 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return RTW_STATUS_CODE(ret);
}
int _rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val)
{
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_sd_iwrite16)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
int ret = -1;
_sd_iwrite16 = pintfhdl->io_ops._sd_iwrite16;
if (_sd_iwrite16)
ret = _sd_iwrite16(pintfhdl, addr, val);
else
RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite16 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return RTW_STATUS_CODE(ret);
}
int _rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val)
{
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_sd_iwrite32)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
int ret = -1;
_sd_iwrite32 = pintfhdl->io_ops._sd_iwrite32;
if (_sd_iwrite32)
ret = _sd_iwrite32(pintfhdl, addr, val);
else
RTW_ERR(FUNC_ADPT_FMT" _sd_iwrite32 callback is NULL\n", FUNC_ADPT_ARG(adapter));
return RTW_STATUS_CODE(ret);
}
#endif /* CONFIG_SDIO_INDIRECT_ACCESS */
#endif /* CONFIG_SDIO_HCI */
int _rtw_write8_async(_adapter *adapter, u32 addr, u8 val)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write8_async)(struct intf_hdl *pintfhdl, u32 addr, u8 val);
int ret;
_write8_async = pintfhdl->io_ops._write8_async;
ret = _write8_async(pintfhdl, addr, val);
return RTW_STATUS_CODE(ret);
}
int _rtw_write16_async(_adapter *adapter, u32 addr, u16 val)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write16_async)(struct intf_hdl *pintfhdl, u32 addr, u16 val);
int ret;
_write16_async = pintfhdl->io_ops._write16_async;
val = rtw_cpu_to_le16(val);
ret = _write16_async(pintfhdl, addr, val);
return RTW_STATUS_CODE(ret);
}
int _rtw_write32_async(_adapter *adapter, u32 addr, u32 val)
{
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
int (*_write32_async)(struct intf_hdl *pintfhdl, u32 addr, u32 val);
int ret;
_write32_async = pintfhdl->io_ops._write32_async;
val = rtw_cpu_to_le32(val);
ret = _write32_async(pintfhdl, addr, val);
return RTW_STATUS_CODE(ret);
}
void _rtw_read_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
void (*_read_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
if (RTW_CANNOT_RUN(adapter)) {
return;
}
_read_mem = pintfhdl->io_ops._read_mem;
_read_mem(pintfhdl, addr, cnt, pmem);
}
void _rtw_write_mem(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
void (*_write_mem)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_write_mem = pintfhdl->io_ops._write_mem;
_write_mem(pintfhdl, addr, cnt, pmem);
}
void _rtw_read_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
u32(*_read_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
if (RTW_CANNOT_RUN(adapter)) {
return;
}
_read_port = pintfhdl->io_ops._read_port;
_read_port(pintfhdl, addr, cnt, pmem);
}
void _rtw_read_port_cancel(_adapter *adapter)
{
void (*_read_port_cancel)(struct intf_hdl *pintfhdl);
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_read_port_cancel = pintfhdl->io_ops._read_port_cancel;
RTW_DISABLE_FUNC(adapter, DF_RX_BIT);
if (_read_port_cancel)
_read_port_cancel(pintfhdl);
}
u32 _rtw_write_port(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem)
{
u32(*_write_port)(struct intf_hdl *pintfhdl, u32 addr, u32 cnt, u8 *pmem);
/* struct io_queue *pio_queue = (struct io_queue *)adapter->pio_queue; */
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
u32 ret = _SUCCESS;
_write_port = pintfhdl->io_ops._write_port;
ret = _write_port(pintfhdl, addr, cnt, pmem);
return ret;
}
u32 _rtw_write_port_and_wait(_adapter *adapter, u32 addr, u32 cnt, u8 *pmem, int timeout_ms)
{
int ret = _SUCCESS;
struct xmit_buf *pxmitbuf = (struct xmit_buf *)pmem;
struct submit_ctx sctx;
rtw_sctx_init(&sctx, timeout_ms);
pxmitbuf->sctx = &sctx;
ret = _rtw_write_port(adapter, addr, cnt, pmem);
if (ret == _SUCCESS) {
ret = rtw_sctx_wait(&sctx, __func__);
if (ret != _SUCCESS)
pxmitbuf->sctx = NULL;
}
return ret;
}
void _rtw_write_port_cancel(_adapter *adapter)
{
void (*_write_port_cancel)(struct intf_hdl *pintfhdl);
struct io_priv *pio_priv = &adapter->iopriv;
struct intf_hdl *pintfhdl = &(pio_priv->intf);
_write_port_cancel = pintfhdl->io_ops._write_port_cancel;
RTW_DISABLE_FUNC(adapter, DF_TX_BIT);
if (_write_port_cancel)
_write_port_cancel(pintfhdl);
}
int rtw_init_io_priv(_adapter *padapter, void (*set_intf_ops)(_adapter *padapter, struct _io_ops *pops))
{
struct io_priv *piopriv = &padapter->iopriv;
struct intf_hdl *pintf = &piopriv->intf;
if (set_intf_ops == NULL)
return _FAIL;
piopriv->padapter = padapter;
pintf->padapter = padapter;
pintf->pintf_dev = adapter_to_dvobj(padapter);
set_intf_ops(padapter, &pintf->io_ops);
return _SUCCESS;
}
/*
* Increase and check if the continual_io_error of this @param dvobjprive is larger than MAX_CONTINUAL_IO_ERR
* @return _TRUE:
* @return _FALSE:
*/
int rtw_inc_and_chk_continual_io_error(struct dvobj_priv *dvobj)
{
int ret = _FALSE;
int value;
value = ATOMIC_INC_RETURN(&dvobj->continual_io_error);
if (value > MAX_CONTINUAL_IO_ERR) {
RTW_INFO("[dvobj:%p][ERROR] continual_io_error:%d > %d\n", dvobj, value, MAX_CONTINUAL_IO_ERR);
ret = _TRUE;
} else {
/* RTW_INFO("[dvobj:%p] continual_io_error:%d\n", dvobj, value); */
}
return ret;
}
/*
* Set the continual_io_error of this @param dvobjprive to 0
*/
void rtw_reset_continual_io_error(struct dvobj_priv *dvobj)
{
ATOMIC_SET(&dvobj->continual_io_error, 0);
}
#ifdef DBG_IO
#define RTW_IO_SNIFF_TYPE_RANGE 0 /* specific address range is accessed */
#define RTW_IO_SNIFF_TYPE_EN 1 /* part or all sniffed range is enabled */
#define RTW_IO_SNIFF_TYPE_DIS 2 /* part or all sniffed range is disabled */
struct rtw_io_sniff_ent {
u8 chip;
u8 hci;
u32 addr;
u8 type;
union {
u32 end_addr;
u32 mask;
} u;
char *tag;
};
const char *rtw_io_sniff_ent_get_tag(const struct rtw_io_sniff_ent *ent)
{
return ent->tag;
}
#define RTW_IO_SNIFF_RANGE_ENT(_chip, _hci, _addr, _end_addr, _tag) \
{.chip = _chip, .hci = _hci, .addr = _addr, .u.end_addr = _end_addr, .tag = _tag, .type = RTW_IO_SNIFF_TYPE_RANGE,}
#define RTW_IO_SNIFF_EN_ENT(_chip, _hci, _addr, _mask, _tag) \
{.chip = _chip, .hci = _hci, .addr = _addr, .u.mask = _mask, .tag = _tag, .type = RTW_IO_SNIFF_TYPE_EN,}
#define RTW_IO_SNIFF_DIS_ENT(_chip, _hci, _addr, _mask, _tag) \
{.chip = _chip, .hci = _hci, .addr = _addr, .u.mask = _mask, .tag = _tag, .type = RTW_IO_SNIFF_TYPE_DIS,}
const struct rtw_io_sniff_ent read_sniff[] = {
#ifdef DBG_IO_HCI_EN_CHK
RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_SDIO, 0x02, 0x1FC, "SDIO 0x02[8:2] not all 0"),
RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_USB, 0x02, 0x1E0, "USB 0x02[8:5] not all 0"),
RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_PCIE, 0x02, 0x01C, "PCI 0x02[4:2] not all 0"),
#endif
#ifdef DBG_IO_SNIFF_EXAMPLE
RTW_IO_SNIFF_RANGE_ENT(MAX_CHIP_TYPE, 0, 0x522, 0x522, "read TXPAUSE"),
RTW_IO_SNIFF_DIS_ENT(MAX_CHIP_TYPE, 0, 0x02, 0x3, "0x02[1:0] not all 1"),
#endif
};
const int read_sniff_num = sizeof(read_sniff) / sizeof(struct rtw_io_sniff_ent);
const struct rtw_io_sniff_ent write_sniff[] = {
#ifdef DBG_IO_HCI_EN_CHK
RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_SDIO, 0x02, 0x1FC, "SDIO 0x02[8:2] not all 0"),
RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_USB, 0x02, 0x1E0, "USB 0x02[8:5] not all 0"),
RTW_IO_SNIFF_EN_ENT(MAX_CHIP_TYPE, RTW_PCIE, 0x02, 0x01C, "PCI 0x02[4:2] not all 0"),
#endif
#ifdef DBG_IO_SNIFF_EXAMPLE
RTW_IO_SNIFF_RANGE_ENT(MAX_CHIP_TYPE, 0, 0x522, 0x522, "write TXPAUSE"),
RTW_IO_SNIFF_DIS_ENT(MAX_CHIP_TYPE, 0, 0x02, 0x3, "0x02[1:0] not all 1"),
#endif
};
const int write_sniff_num = sizeof(write_sniff) / sizeof(struct rtw_io_sniff_ent);
static bool match_io_sniff_ranges(_adapter *adapter
, const struct rtw_io_sniff_ent *sniff, int i, u32 addr, u16 len)
{
/* check if IO range after sniff end address */
if (addr > sniff->u.end_addr)
return 0;
return 1;
}
static bool match_io_sniff_en(_adapter *adapter
, const struct rtw_io_sniff_ent *sniff, int i, u32 addr, u8 len, u32 val)
{
u8 sniff_len;
u8 shift;
u32 mask;
bool ret = 0;
/* check if IO range after sniff end address */
sniff_len = 4;
while (!(sniff->u.mask & (0xFF << ((sniff_len - 1) * 8)))) {
sniff_len--;
if (sniff_len == 0)
goto exit;
}
if (sniff->addr + sniff_len <= addr)
goto exit;
if (sniff->addr > addr) {
shift = (sniff->addr - addr) * 8;
mask = sniff->u.mask << shift;
} else if (sniff->addr < addr) {
shift = (addr - sniff->addr) * 8;
mask = sniff->u.mask >> shift;
} else {
shift = 0;
mask = sniff->u.mask;
}
if (sniff->type == RTW_IO_SNIFF_TYPE_DIS) {
if (len == 4)
mask &= 0xFFFFFFFF;
else if (len == 3)
mask &= 0x00FFFFFF;
else if (len == 2)
mask &= 0x0000FFFF;
else if (len == 1)
mask &= 0x000000FF;
else
mask &= 0x00000000;
}
if ((sniff->type == RTW_IO_SNIFF_TYPE_EN && (mask & val))
|| (sniff->type == RTW_IO_SNIFF_TYPE_DIS && (mask & val) != mask)
) {
ret = 1;
if (0)
RTW_INFO(FUNC_ADPT_FMT" addr:0x%x len:%u val:0x%x i:%d sniff_len:%u shift:%u mask:0x%x\n"
, FUNC_ADPT_ARG(adapter), addr, len, val, i, sniff_len, shift, mask);
}
exit:
return ret;
}
static bool match_io_sniff(_adapter *adapter
, const struct rtw_io_sniff_ent *sniff, int i, u32 addr, u8 len, u32 val)
{
bool ret = 0;
if (sniff->chip != MAX_CHIP_TYPE
&& sniff->chip != rtw_get_chip_type(adapter))
goto exit;
if (sniff->hci
&& !(sniff->hci & rtw_get_intf_type(adapter)))
goto exit;
if (sniff->addr >= addr + len) /* IO range below sniff start address */
goto exit;
switch (sniff->type) {
case RTW_IO_SNIFF_TYPE_RANGE:
ret = match_io_sniff_ranges(adapter, sniff, i, addr, len);
break;
case RTW_IO_SNIFF_TYPE_EN:
case RTW_IO_SNIFF_TYPE_DIS:
if (len == 1 || len == 2 || len == 4)
ret = match_io_sniff_en(adapter, sniff, i, addr, len, val);
break;
default:
rtw_warn_on(1);
break;
}
exit:
return ret;
}
const struct rtw_io_sniff_ent *match_read_sniff(_adapter *adapter
, u32 addr, u16 len, u32 val)
{
int i;
bool ret = 0;
for (i = 0; i < read_sniff_num; i++) {
ret = match_io_sniff(adapter, &read_sniff[i], i, addr, len, val);
if (ret)
goto exit;
}
exit:
return ret ? &read_sniff[i] : NULL;
}
const struct rtw_io_sniff_ent *match_write_sniff(_adapter *adapter
, u32 addr, u16 len, u32 val)
{
int i;
bool ret = 0;
for (i = 0; i < write_sniff_num; i++) {
ret = match_io_sniff(adapter, &write_sniff[i], i, addr, len, val);
if (ret)
goto exit;
}
exit:
return ret ? &write_sniff[i] : NULL;
}
struct rf_sniff_ent {
u8 path;
u16 reg;
u32 mask;
};
struct rf_sniff_ent rf_read_sniff_ranges[] = {
/* example for all path addr 0x55 with all RF Reg mask */
/* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */
};
struct rf_sniff_ent rf_write_sniff_ranges[] = {
/* example for all path addr 0x55 with all RF Reg mask */
/* {MAX_RF_PATH, 0x55, bRFRegOffsetMask}, */
};
int rf_read_sniff_num = sizeof(rf_read_sniff_ranges) / sizeof(struct rf_sniff_ent);
int rf_write_sniff_num = sizeof(rf_write_sniff_ranges) / sizeof(struct rf_sniff_ent);
bool match_rf_read_sniff_ranges(_adapter *adapter, u8 path, u32 addr, u32 mask)
{
int i;
for (i = 0; i < rf_read_sniff_num; i++) {
if (rf_read_sniff_ranges[i].path == MAX_RF_PATH || rf_read_sniff_ranges[i].path == path)
if (addr == rf_read_sniff_ranges[i].reg && (mask & rf_read_sniff_ranges[i].mask))
return _TRUE;
}
return _FALSE;
}
bool match_rf_write_sniff_ranges(_adapter *adapter, u8 path, u32 addr, u32 mask)
{
int i;
for (i = 0; i < rf_write_sniff_num; i++) {
if (rf_write_sniff_ranges[i].path == MAX_RF_PATH || rf_write_sniff_ranges[i].path == path)
if (addr == rf_write_sniff_ranges[i].reg && (mask & rf_write_sniff_ranges[i].mask))
return _TRUE;
}
return _FALSE;
}
u8 dbg_rtw_read8(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u8 val = _rtw_read8(adapter, addr);
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 1, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_read8(0x%04x) return 0x%02x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return val;
}
u16 dbg_rtw_read16(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u16 val = _rtw_read16(adapter, addr);
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 2, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_read16(0x%04x) return 0x%04x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return val;
}
u32 dbg_rtw_read32(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u32 val = _rtw_read32(adapter, addr);
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 4, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_read32(0x%04x) return 0x%08x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return val;
}
int dbg_rtw_write8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 1, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_write8(0x%04x, 0x%02x) %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_write8(adapter, addr, val);
}
int dbg_rtw_write16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 2, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_write16(0x%04x, 0x%04x) %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_write16(adapter, addr, val);
}
int dbg_rtw_write32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 4, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_write32(0x%04x, 0x%08x) %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_write32(adapter, addr, val);
}
int dbg_rtw_writeN(_adapter *adapter, u32 addr , u32 length , u8 *data, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, length, 0);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_writeN(0x%04x, %u) %s\n"
, caller, line, addr, length, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_writeN(adapter, addr, length, data);
}
#ifdef CONFIG_SDIO_HCI
u8 dbg_rtw_sd_f0_read8(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u8 val = _rtw_sd_f0_read8(adapter, addr);
#if 0
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 1, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_f0_read8(0x%04x) return 0x%02x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
#endif
return val;
}
#ifdef CONFIG_SDIO_INDIRECT_ACCESS
u8 dbg_rtw_sd_iread8(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u8 val = rtw_sd_iread8(adapter, addr);
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 1, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_iread8(0x%04x) return 0x%02x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return val;
}
u16 dbg_rtw_sd_iread16(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u16 val = _rtw_sd_iread16(adapter, addr);
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 2, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_iread16(0x%04x) return 0x%04x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return val;
}
u32 dbg_rtw_sd_iread32(_adapter *adapter, u32 addr, const char *caller, const int line)
{
u32 val = _rtw_sd_iread32(adapter, addr);
const struct rtw_io_sniff_ent *ent = match_read_sniff(adapter, addr, 4, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_iread32(0x%04x) return 0x%08x %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return val;
}
int dbg_rtw_sd_iwrite8(_adapter *adapter, u32 addr, u8 val, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 1, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite8(0x%04x, 0x%02x) %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_sd_iwrite8(adapter, addr, val);
}
int dbg_rtw_sd_iwrite16(_adapter *adapter, u32 addr, u16 val, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 2, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite16(0x%04x, 0x%04x) %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_sd_iwrite16(adapter, addr, val);
}
int dbg_rtw_sd_iwrite32(_adapter *adapter, u32 addr, u32 val, const char *caller, const int line)
{
const struct rtw_io_sniff_ent *ent = match_write_sniff(adapter, addr, 4, val);
if (ent) {
RTW_INFO("DBG_IO %s:%d rtw_sd_iwrite32(0x%04x, 0x%08x) %s\n"
, caller, line, addr, val, rtw_io_sniff_ent_get_tag(ent));
}
return _rtw_sd_iwrite32(adapter, addr, val);
}
#endif /* CONFIG_SDIO_INDIRECT_ACCESS */
#endif /* CONFIG_SDIO_HCI */
#endif