gnab-rtl8812au/hal/rtl8812a/rtl8812a_hal_init.c
2013-11-19 21:24:49 +01:00

6044 lines
162 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8812A_HAL_INIT_C_
//#include <drv_types.h>
#include <rtl8812a_hal.h>
#if defined(CONFIG_IOL)
void iol_mode_enable(PADAPTER padapter, u8 enable)
{
u8 reg_0xf0 = 0;
if(enable)
{
//Enable initial offload
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0|IOL_ENABLE);
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
_8051Reset8812(padapter);
}
else
{
//disable initial offload
reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
//DBG_871X("%s reg_0xf0:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0xf0, reg_0xf0& ~IOL_ENABLE);
rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
}
}
s32 iol_execute(PADAPTER padapter, u8 control)
{
s32 status = _FAIL;
u8 reg_0x88 = 0;
u32 start = 0, passing_time = 0;
control = control&0x0f;
reg_0x88 = rtw_read8(padapter, 0x88);
//DBG_871X("%s reg_0x88:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x88, reg_0x88|control);
rtw_write8(padapter, 0x88, reg_0x88|control);
start = rtw_get_current_time();
while((reg_0x88=rtw_read8(padapter, 0x88)) & control
&& (passing_time=rtw_get_passing_time_ms(start))<1000
) {
DBG_871X("%s polling reg_0x88:0x%02x\n", __FUNCTION__, reg_0x88);
rtw_usleep_os(100);
}
reg_0x88 = rtw_read8(padapter, 0x88);
status = (reg_0x88 & control)?_FAIL:_SUCCESS;
if(reg_0x88 & control<<4)
status = _FAIL;
DBG_871X("%s in %u ms, reg_0x88:0x%02x\n", __FUNCTION__, passing_time, reg_0x88);
return status;
}
s32 iol_InitLLTTable(
PADAPTER padapter,
u8 txpktbuf_bndy
)
{
//DBG_871X("%s txpktbuf_bndy:%u\n", __FUNCTION__, txpktbuf_bndy);
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
return iol_execute(padapter, IOL_INIT_LLT);
}
static VOID
efuse_phymap_to_logical(u8 * phymap, u16 _offset, u16 _size_byte, u8 *pbuf)
{
u8 *efuseTbl = NULL;
u8 rtemp8;
u16 eFuse_Addr = 0;
u8 offset, wren;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 u1temp = 0;
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_JAGUAR);
if(efuseTbl == NULL)
{
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if(eFuseWord == NULL)
{
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_JAGUAR; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
rtemp8 = *(phymap+eFuse_Addr);
if(rtemp8 != 0xFF)
{
efuse_utilized++;
//printk("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8);
eFuse_Addr++;
}
else
{
DBG_871X("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, rtemp8);
goto exit;
}
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if((rtemp8 & 0x1F ) == 0x0F) //extended header
{
u1temp =( (rtemp8 & 0xE0) >> 5);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0));
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x \n", u1temp));
rtemp8 = *(phymap+eFuse_Addr);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8));
if((rtemp8 & 0x0F) == 0x0F)
{
eFuse_Addr++;
rtemp8 = *(phymap+eFuse_Addr);
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR))
{
eFuse_Addr++;
}
continue;
}
else
{
offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
wren = (rtemp8 & 0x0F);
eFuse_Addr++;
}
}
else
{
offset = ((rtemp8 >> 4) & 0x0f);
wren = (rtemp8 & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_JAGUAR)
{
// Get word enable value from PG header
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren));
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if(!(wren & 0x01))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d \n", eFuse_Addr));
rtemp8 = *(phymap+eFuse_Addr);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] = (rtemp8 & 0xff);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR)
break;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr));
rtemp8 = *(phymap+eFuse_Addr);
eFuse_Addr++;
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Data=0x%x\n", *rtemp8));
efuse_utilized++;
eFuseWord[offset][i] |= (((u2Byte)rtemp8 << 8) & 0xff00);
if(eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR)
break;
}
wren >>= 1;
}
}
// Read next PG header
rtemp8 = *(phymap+eFuse_Addr);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR))
{
efuse_utilized++;
eFuse_Addr++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_JAGUAR; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u1Byte)((efuse_utilized*100)/EFUSE_REAL_CONTENT_LEN_JAGUAR);
//Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_JAGUAR);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
void efuse_read_phymap_from_txpktbuf(
ADAPTER *adapter,
int bcnhead, //beacon head, where FW store len(2-byte) and efuse physical map.
u8 *content, //buffer to store efuse physical map
u16 *size //for efuse content: the max byte to read. will update to byte read
)
{
u16 dbg_addr = 0;
u32 start = 0, passing_time = 0;
u8 reg_0x143 = 0;
u8 reg_0x106 = 0;
u32 lo32 = 0, hi32 = 0;
u16 len = 0, count = 0;
int i = 0;
u16 limit = *size;
u8 *pos = content;
if(bcnhead<0) //if not valid
bcnhead = rtw_read8(adapter, REG_TDECTRL+1);
DBG_871X("%s bcnhead:%d\n", __FUNCTION__, bcnhead);
//reg_0x106 = rtw_read8(adapter, REG_PKT_BUFF_ACCESS_CTRL);
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(adapter, 0x106));
dbg_addr = bcnhead*128/8; //8-bytes addressing
while(1)
{
//DBG_871X("%s dbg_addr:0x%x\n", __FUNCTION__, dbg_addr+i);
rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
//DBG_871X("%s write reg_0x143:0x00\n", __FUNCTION__);
rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
start = rtw_get_current_time();
while(!(reg_0x143=rtw_read8(adapter, REG_TXPKTBUF_DBG))//dbg
//while(rtw_read8(adapter, REG_TXPKTBUF_DBG) & BIT0
&& (passing_time=rtw_get_passing_time_ms(start))<1000
) {
DBG_871X("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __FUNCTION__, reg_0x143, rtw_read8(adapter, 0x106));
rtw_usleep_os(100);
}
lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
#if 0
DBG_871X("%s lo32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, lo32
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+2)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+3)
);
DBG_871X("%s hi32:0x%08x, %02x %02x %02x %02x\n", __FUNCTION__, hi32
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+1)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+2)
, rtw_read8(adapter, REG_PKTBUF_DBG_DATA_H+3)
);
#endif
if(i==0)
{
#if 1 //for debug
u8 lenc[2];
u16 lenbak, aaabak;
u16 aaa;
lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
aaabak = le16_to_cpup((u16*)lenc);
lenbak = le16_to_cpu(*((u16*)lenc));
aaa = le16_to_cpup((u16*)&lo32);
#endif
len = le16_to_cpu(*((u16*)&lo32));
limit = len-2<limit?len-2:limit;
DBG_871X("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __FUNCTION__, len, lenbak, aaa, aaabak);
_rtw_memcpy(pos, ((u8*)&lo32)+2, limit>=count+2?2:limit-count);
count+=limit>=count+2?2:limit-count;
pos=content+count;
}
else
{
_rtw_memcpy(pos, ((u8*)&lo32), limit>=count+4?4:limit-count);
count+=limit>=count+4?4:limit-count;
pos=content+count;
}
if(limit>count && len-2>count) {
_rtw_memcpy(pos, (u8*)&hi32, limit>=count+4?4:limit-count);
count+=limit>=count+4?4:limit-count;
pos=content+count;
}
if(limit<=count || len-2<=count)
break;
i++;
}
rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
DBG_871X("%s read count:%u\n", __FUNCTION__, count);
*size = count;
}
static bool efuse_read_phymap(
PADAPTER Adapter,
u8 *pbuf, //buffer to store efuse physical map
u16 *size //the max byte to read. will update to byte read
)
{
u8 *pos = pbuf;
u16 limit = *size;
u16 addr = 0;
bool reach_end = _FALSE;
//
// Refresh efuse init map as all 0xFF.
//
_rtw_memset(pbuf, 0xFF, limit);
//
// Read physical efuse content.
//
while(addr < limit)
{
ReadEFuseByte(Adapter, addr, pos, _FALSE);
if(*pos != 0xFF)
{
pos++;
addr++;
}
else
{
reach_end = _TRUE;
break;
}
}
*size = addr;
return reach_end;
}
s32 iol_read_efuse(
PADAPTER padapter,
u8 txpktbuf_bndy,
u16 offset,
u16 size_byte,
u8 *logical_map
)
{
s32 status = _FAIL;
u8 reg_0x106 = 0;
u8 physical_map[512];
u16 size = 512;
int i;
rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
_rtw_memset(physical_map, 0xFF, 512);
///reg_0x106 = rtw_read8(padapter, REG_PKT_BUFF_ACCESS_CTRL);
//DBG_871X("%s reg_0x106:0x%02x, write 0x%02x\n", __FUNCTION__, reg_0x106, 0x69);
rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
//DBG_871X("%s reg_0x106:0x%02x\n", __FUNCTION__, rtw_read8(padapter, 0x106));
status = iol_execute(padapter, IOL_READ_EFUSE_MAP);
if(status == _SUCCESS)
efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
#if 0
DBG_871X("%s physical map\n", __FUNCTION__);
for(i=0;i<size;i++)
{
DBG_871X("%02x ", physical_map[i]);
if(i%16==15)
DBG_871X("\n");
}
DBG_871X("\n");
#endif
efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
return status;
}
#endif /* defined(CONFIG_IOL) */
//-------------------------------------------------------------------------
//
// LLT R/W/Init function
//
//-------------------------------------------------------------------------
static s32 _LLTWrite(PADAPTER padapter, u32 address, u32 data)
{
s32 status = _SUCCESS;
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
//polling
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
break;
}
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
status = _FAIL;
break;
}
} while (count++);
return status;
}
u8 _LLTRead(PADAPTER padapter, u32 address)
{
s32 count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS);
u16 LLTReg = REG_LLT_INIT;
rtw_write32(padapter, LLTReg, value);
//polling and get value
do {
value = rtw_read32(padapter, LLTReg);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) {
return (u8)value;
}
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling read LLT done at address %d!\n", address));
break;
}
} while (count++);
return 0xFF;
}
s32 InitLLTTable8812(PADAPTER padapter, u8 txpktbuf_bndy)
{
s32 status = _FAIL;
u32 i;
u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER_8812;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
#if defined(CONFIG_IOL_LLT)
if(1 || rtw_IOL_applied(padapter))
{
iol_mode_enable(padapter, 1);
status = iol_InitLLTTable(padapter, txpktbuf_bndy);
iol_mode_enable(padapter, 0);
}
else
#endif
{
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _LLTWrite(padapter, i, i + 1);
if (_SUCCESS != status) {
return status;
}
}
// end of list
status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
if (_SUCCESS != status) {
return status;
}
// Make the other pages as ring buffer
// This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer.
// Otherwise used as local loopback buffer.
for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
status = _LLTWrite(padapter, i, (i + 1));
if (_SUCCESS != status) {
return status;
}
}
// Let last entry point to the start entry of ring buffer
status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
if (_SUCCESS != status) {
return status;
}
}
return status;
}
BOOLEAN HalDetectPwrDownMode8812(PADAPTER Adapter)
{
u8 tmpvalue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;
EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_OPT3_92C, (u32 *)&tmpvalue);
// 2010/08/25 MH INF priority > PDN Efuse value.
if(tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
{
pHalData->pwrdown = _TRUE;
}
else
{
pHalData->pwrdown = _FALSE;
}
DBG_8192C("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown);
return pHalData->pwrdown;
} // HalDetectPwrDownMode
#ifdef CONFIG_WOWLAN
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
pAdapter->pwrctrlpriv.bSupportRemoteWakeup = _TRUE;
DBG_871X("%s\n", __func__);
}
#endif
//====================================================================================
//
// 20100209 Joseph:
// This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
// We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
// the value of the register via atomic operation.
// This prevents from race condition when setting this register.
// The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
//
void SetBcnCtrlReg(
PADAPTER padapter,
u8 SetBits,
u8 ClearBits)
{
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(padapter);
pHalData->RegBcnCtrlVal |= SetBits;
pHalData->RegBcnCtrlVal &= ~ClearBits;
#if 0
//#ifdef CONFIG_SDIO_HCI
if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK))
pHalData->RegBcnCtrlVal |= EN_TXBCN_RPT;
#endif
rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal);
}
static VOID
_FWDownloadEnable_8812(
IN PADAPTER padapter,
IN BOOLEAN enable
)
{
u8 tmp;
if(enable)
{
// MCU firmware download enable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
// 8051 reset
tmp = rtw_read8(padapter, REG_MCUFWDL+2);
rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
}
else
{
// MCU firmware download disable.
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
}
}
#define MAX_REG_BOLCK_SIZE 196
static int
_BlockWrite_8812(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; // (Default) Phase #1 : PCI muse use 4-byte write to download FW
u32 blockSize_p2 = 8; // Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
u32 blockSize_p3 = 1; // Phase #3 : Use 1-byte, the remnant of FW image.
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8*)buffer;
u32 i=0, offset=0;
#ifdef CONFIG_PCI_HCI
u8 remainFW[4] = {0, 0, 0, 0};
u8 *p = NULL;
#endif
#ifdef CONFIG_USB_HCI
blockSize_p1 = MAX_REG_BOLCK_SIZE;
#endif
//3 Phase #1
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
if (blockCount_p1) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
}
for (i = 0; i < blockCount_p1; i++)
{
#ifdef CONFIG_USB_HCI
ret = rtw_writeN(padapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
#else
ret = rtw_write32(padapter, (FW_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32*)(bufferPtr + i * blockSize_p1))));
#endif
if(ret == _FAIL)
goto exit;
}
#ifdef CONFIG_PCI_HCI
p = (u8*)((u32*)(bufferPtr + blockCount_p1 * blockSize_p1));
if (remainSize_p1) {
switch (remainSize_p1) {
case 0:
break;
case 3:
remainFW[2]=*(p+2);
case 2:
remainFW[1]=*(p+1);
case 1:
remainFW[0]=*(p);
ret = rtw_write32(padapter, (FW_START_ADDRESS + blockCount_p1 * blockSize_p1),
le32_to_cpu(*(u32*)remainFW));
}
return ret;
}
#endif
//3 Phase #2
if (remainSize_p1)
{
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1/blockSize_p2;
remainSize_p2 = remainSize_p1%blockSize_p2;
if (blockCount_p2) {
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
(buffSize-offset), blockSize_p2 ,blockCount_p2, remainSize_p2));
}
#ifdef CONFIG_USB_HCI
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));
if(ret == _FAIL)
goto exit;
}
#endif
}
//3 Phase #3
if (remainSize_p2)
{
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
RT_TRACE(_module_hal_init_c_, _drv_notice_,
("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
(buffSize-offset), blockSize_p3, blockCount_p3));
for(i = 0 ; i < blockCount_p3 ; i++){
ret =rtw_write8(padapter, (FW_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if(ret == _FAIL)
goto exit;
}
}
exit:
return ret;
}
static int
_PageWrite_8812(
IN PADAPTER padapter,
IN u32 page,
IN PVOID buffer,
IN u32 size
)
{
u8 value8;
u8 u8Page = (u8) (page & 0x07) ;
value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page ;
rtw_write8(padapter, REG_MCUFWDL+2,value8);
return _BlockWrite_8812(padapter,buffer,size);
}
static VOID
_FillDummy_8812(
u8* pFwBuf,
u32* pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen%4);
remain = (remain==0)?0:(4-remain);
while(remain>0)
{
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
static int
_WriteFW_8812(
IN PADAPTER padapter,
IN PVOID buffer,
IN u32 size
)
{
// Since we need dynamic decide method of dwonload fw, so we call this function to get chip version.
// We can remove _ReadChipVersion from ReadpadapterInfo8192C later.
int ret = _SUCCESS;
u32 pageNums,remainSize ;
u32 page, offset;
u8 *bufferPtr = (u8*)buffer;
#ifdef CONFIG_PCI_HCI
// 20100120 Joseph: Add for 88CE normal chip.
// Fill in zero to make firmware image to dword alignment.
// _FillDummy(bufferPtr, &size);
#endif
pageNums = size / MAX_DLFW_PAGE_SIZE ;
//RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4 \n"));
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite_8812(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
if(ret == _FAIL)
goto exit;
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite_8812(padapter, page, bufferPtr+offset, remainSize);
if(ret == _FAIL)
goto exit;
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
exit:
return ret;
}
void _8051Reset8812(PADAPTER padapter)
{
u8 u1bTmp, u1bTmp2;
// Reset MCU IO Wrapper- sugggest by SD1-Gimmy
if(IS_HARDWARE_TYPE_8812(padapter))
{
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp2&(~BIT3));
}
else if(IS_HARDWARE_TYPE_8821(padapter))
{
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp2&(~BIT0));
}
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
// Enable MCU IO Wrapper
if(IS_HARDWARE_TYPE_8812(padapter))
{
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp2 |(BIT3));
}
else if(IS_HARDWARE_TYPE_8821(padapter))
{
u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL+1);
rtw_write8(padapter, REG_RSV_CTRL+1, u1bTmp2|(BIT0));
}
rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
DBG_871X("=====> _8051Reset8812(): 8051 reset success .\n");
}
static s32 _FWFreeToGo8812(PADAPTER padapter)
{
u32 counter = 0;
u32 value32;
u8 value8;
// polling CheckSum report
do {
value32 = rtw_read32(padapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt) break;
} while (counter++ < 6000);
if (counter >= 6000) {
DBG_871X("%s: chksum report fail! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
return _FAIL;
}
DBG_871X("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
value32 = rtw_read32(padapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(padapter, REG_MCUFWDL, value32);
_8051Reset8812(padapter);
// polling for FW ready
counter = 0;
do {
value32 = rtw_read32(padapter, REG_MCUFWDL);
if (value32 & WINTINI_RDY) {
DBG_871X("%s: Polling FW ready success!! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
return _SUCCESS;
}
rtw_udelay_os(5);
} while (counter++ < 6000);
DBG_871X ("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n", __FUNCTION__, value32);
return _FAIL;
}
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
u8 FwBuffer8812[FW_SIZE_8812];
#endif //CONFIG_FILE_FWIMG
s32
FirmwareDownload8812(
IN PADAPTER Adapter,
IN BOOLEAN bUsedWoWLANFw
)
{
s32 rtStatus = _SUCCESS;
u8 writeFW_retry = 0;
u32 fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 *pFwImageFileName;
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8812 pFirmware = NULL;
u8 *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __FUNCTION__));
pFirmware = (PRT_FIRMWARE_8812)rtw_zmalloc(sizeof(RT_FIRMWARE_8812));
if(!pFirmware)
{
rtStatus = _FAIL;
goto Exit;
}
#ifdef CONFIG_FILE_FWIMG
if(rtw_is_file_readable(rtw_fw_file_path) == _TRUE)
{
DBG_871X("%s accquire FW from file:%s\n", __FUNCTION__, rtw_fw_file_path);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
}
else
#endif //CONFIG_FILE_FWIMG
{
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
}
DBG_871X(" ===> FirmwareDownload8812() fw source from %s.\n", (pFirmware->eFWSource ? "Header": "File"));
switch(pFirmware->eFWSource)
{
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrive_from_file(rtw_fw_file_path, FwBuffer8812, FW_SIZE_8812);
pFirmware->ulFwLength = rtStatus>=0?rtStatus:0;
pFirmware->szFwBuffer = FwBuffer8812;
#endif //CONFIG_FILE_FWIMG
break;
case FW_SOURCE_HEADER_FILE:
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_NIC, (u8 *)&(pFirmware->szFwBuffer), &(pFirmware->ulFwLength));
DBG_871X(" ===> FirmwareDownload8812() fw:%s, size: %d\n", "Firmware for NIC", pFirmware->ulFwLength);
#ifdef CONFIG_WOWLAN
ODM_ConfigFWWithHeaderFile(&pHalData->odmpriv, CONFIG_FW_WoWLAN, (u8 *)&(pFirmware->szWoWLANFwBuffer), &(pFirmware->ulWoWLANFwLength));
DBG_871X(" ===> FirmwareDownload88E() fw:%s, size: %d\n", "Firmware for WoWLAN", pFirmware->ulWoWLANFwLength);
#endif //CONFIG_WOWLAN
if (pFirmware->ulFwLength > FW_SIZE_8812) {
rtStatus = _FAIL;
RT_TRACE(_module_hal_init_c_, _drv_err_, ("Firmware size exceed 0x%X. Check it.\n", FW_SIZE_8812) );
goto Exit;
}
break;
}
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw) {
pFirmwareBuf = pFirmware->szWoWLANFwBuffer;
FirmwareLen = pFirmware->ulWoWLANFwLength;
pFwHdr = (u8 *)pFirmware->szWoWLANFwBuffer;
} else
#endif
{
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
DBG_871X_LEVEL(_drv_info_, "+%s: !bUsedWoWLANFw, FmrmwareLen:%d+\n", __func__, FirmwareLen);
// To Check Fw header. Added by tynli. 2009.12.04.
pFwHdr = (u8 *)pFirmware->szFwBuffer;
}
pHalData->FirmwareVersion = (u16)GET_FIRMWARE_HDR_VERSION_8812(pFwHdr);
pHalData->FirmwareSubVersion = (u16)GET_FIRMWARE_HDR_SUB_VER_8812(pFwHdr);
pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_8812(pFwHdr);
DBG_871X ("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
__FUNCTION__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);
if (IS_FW_HEADER_EXIST_8812(pFwHdr) || IS_FW_HEADER_EXIST_8821(pFwHdr))
{
// Shift 32 bytes for FW header
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
// Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself,
// or it will cause download Fw fail. 2010.02.01. by tynli.
if (rtw_read8(Adapter, REG_MCUFWDL) & BIT7) //8051 RAM code
{
rtw_write8(Adapter, REG_MCUFWDL, 0x00);
_8051Reset8812(Adapter);
}
_FWDownloadEnable_8812(Adapter, _TRUE);
fwdl_start_time = rtw_get_current_time();
while(1) {
//reset the FWDL chksum
rtw_write8(Adapter, REG_MCUFWDL, rtw_read8(Adapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
rtStatus = _WriteFW_8812(Adapter, pFirmwareBuf, FirmwareLen);
if(rtStatus == _SUCCESS
||(rtw_get_passing_time_ms(fwdl_start_time) > 500 && writeFW_retry++ >= 3)
)
break;
DBG_871X("%s writeFW_retry:%u, time after fwdl_start_time:%ums\n", __FUNCTION__
, writeFW_retry
, rtw_get_passing_time_ms(fwdl_start_time)
);
}
_FWDownloadEnable_8812(Adapter, _FALSE);
if(_SUCCESS != rtStatus){
DBG_871X("DL Firmware failed!\n");
goto Exit;
}
rtStatus = _FWFreeToGo8812(Adapter);
if (_SUCCESS != rtStatus) {
DBG_871X("DL Firmware failed!\n");
goto Exit;
}
RT_TRACE(_module_hal_init_c_, _drv_info_, ("Firmware is ready to run!\n"));
Exit:
if (pFirmware)
rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8812));
//RT_TRACE(COMP_INIT, DBG_LOUD, (" <=== FirmwareDownload91C()\n"));
#ifdef CONFIG_WOWLAN
if (Adapter->pwrctrlpriv.wowlan_mode)
InitializeFirmwareVars8812(Adapter);
else
DBG_871X_LEVEL(_drv_always_, "%s: wowland_mode:%d wowlan_wake_reason:%d\n",
__func__, Adapter->pwrctrlpriv.wowlan_mode,
Adapter->pwrctrlpriv.wowlan_wake_reason);
#endif
return rtStatus;
}
void InitializeFirmwareVars8812(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrpriv;
pwrpriv = &padapter->pwrctrlpriv;
// Init Fw LPS related.
padapter->pwrctrlpriv.bFwCurrentInPSMode = _FALSE;
// Init H2C counter. by tynli. 2009.12.09.
pHalData->LastHMEBoxNum = 0;
}
#ifdef CONFIG_WOWLAN
//===========================================
//
// Description: Prepare some information to Fw for WoWLAN.
// (1) Download wowlan Fw.
// (2) Download RSVD page packets.
// (3) Enable AP offload if needed.
//
// 2011.04.12 by tynli.
//
VOID
SetFwRelatedForWoWLAN8812(
IN PADAPTER padapter,
IN u8 bHostIsGoingtoSleep
)
{
int status=_FAIL;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 bRecover = _FALSE;
//
// 1. Before WoWLAN we need to re-download WoWLAN Fw.
//
status = FirmwareDownload8812(padapter, bHostIsGoingtoSleep);
if(status != _SUCCESS) {
DBG_871X("SetFwRelatedForWoWLAN8812(): Re-Download Firmware failed!!\n");
return;
} else {
DBG_871X("SetFwRelatedForWoWLAN8812(): Re-Download Firmware Success !!\n");
}
//
// 2. Re-Init the variables about Fw related setting.
//
InitializeFirmwareVars8812(padapter);
}
#endif //CONFIG_WOWLAN
static void rtl8812_free_hal_data(PADAPTER padapter)
{
_func_enter_;
if (padapter->HalData) {
#ifdef CONFIG_CONCURRENT_MODE
if(padapter->isprimary)
#endif //CONFIG_CONCURRENT_MODE
rtw_mfree(padapter->HalData, sizeof(HAL_DATA_TYPE));
padapter->HalData = NULL;
}
_func_exit_;
}
//===========================================================
// Efuse related code
//===========================================================
BOOLEAN
Hal_GetChnlGroup8812A(
IN u8 Channel,
OUT u8* pGroup
)
{
BOOLEAN bIn24G=_TRUE;
if(Channel <= 14)
{
bIn24G=_TRUE;
if (1 <= Channel && Channel <= 2 ) *pGroup = 0;
else if (3 <= Channel && Channel <= 5 ) *pGroup = 1;
else if (6 <= Channel && Channel <= 8 ) *pGroup = 2;
else if (9 <= Channel && Channel <= 11) *pGroup = 3;
else if (12 <= Channel && Channel <= 14) *pGroup = 4;
else
{
DBG_871X("==>mpt_GetChnlGroup8812A in 2.4 G, but Channel %d in Group not found \n", Channel);
}
}
else
{
bIn24G=_FALSE;
if (36 <= Channel && Channel <= 42) *pGroup = 0;
else if (44 <= Channel && Channel <= 48) *pGroup = 1;
else if (50 <= Channel && Channel <= 58) *pGroup = 2;
else if (60 <= Channel && Channel <= 64) *pGroup = 3;
else if (100 <= Channel && Channel <= 106) *pGroup = 4;
else if (108 <= Channel && Channel <= 114) *pGroup = 5;
else if (116 <= Channel && Channel <= 122) *pGroup = 6;
else if (124 <= Channel && Channel <= 130) *pGroup = 7;
else if (132 <= Channel && Channel <= 138) *pGroup = 8;
else if (140 <= Channel && Channel <= 144) *pGroup = 9;
else if (149 <= Channel && Channel <= 155) *pGroup = 10;
else if (157 <= Channel && Channel <= 161) *pGroup = 11;
else if (165 <= Channel && Channel <= 171) *pGroup = 12;
else if (173 <= Channel && Channel <= 177) *pGroup = 13;
else
{
DBG_871X("==>mpt_GetChnlGroup8812A in 5G, but Channel %d in Group not found \n",Channel);
}
}
//DBG_871X("<==mpt_GetChnlGroup8812A, (%s) Channel = %d, Group =%d,\n", (bIn24G) ? "2.4G" : "5G", Channel, *pGroup);
return bIn24G;
}
static void
hal_ReadPowerValueFromPROM8812A(
IN PADAPTER Adapter,
IN PTxPowerInfo24G pwrInfo24G,
IN PTxPowerInfo5G pwrInfo5G,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_8812, group,TxCount=0;
_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
_rtw_memset(pwrInfo5G, 0, sizeof(TxPowerInfo5G));
//DBG_871X("hal_ReadPowerValueFromPROM8812A(): PROMContent[0x%x]=0x%x\n", (eeAddr+1), PROMContent[eeAddr+1]);
if(0xFF == PROMContent[eeAddr+1]) //YJ,add,120316
AutoLoadFail = _TRUE;
if(AutoLoadFail)
{
DBG_871X("hal_ReadPowerValueFromPROM8812A(): Use Default value!\n");
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
// 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
}
else
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
// 5G default value
for(group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
{
pwrInfo5G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_5G_INDEX;
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo5G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_5G_OFDM_DIFF;
pwrInfo5G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_5G_HT20_DIFF;
pwrInfo5G->BW80_Diff[rfPath][0] = EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW160_Diff[rfPath][0] = EEPROM_DEFAULT_DIFF;
}
else
{
pwrInfo5G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW40_Diff[rfPath][TxCount]= EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW80_Diff[rfPath][TxCount]= EEPROM_DEFAULT_DIFF;
pwrInfo5G->BW160_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
}
}
}
//pHalData->bNOPG = _TRUE;
return;
}
pHalData->bTXPowerDataReadFromEEPORM = _TRUE; //YJ,move,120316
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
// 2.4G default value
for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
{
pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
//pHalData->bNOPG = _TRUE;
}
//DBG_871X("8812-2G RF-%d-G-%d CCK-Addr-%x BASE=%x\n",
//rfPath, group, eeAddr-1, pwrInfo24G->IndexCCK_Base[rfPath][group]);
}
for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
{
pwrInfo24G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
//DBG_871X("8812-2G RF-%d-G-%d BW40-Addr-%x BASE=%x\n",
//rfPath, group, eeAddr-1, pwrInfo24G->IndexBW40_Base[rfPath][group]);
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]);
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->OFDM_Diff[rfPath][TxCount]);
pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
eeAddr++;
}
else
{
{
pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW40_Diff[rfPath][TxCount]);
{
pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]);
eeAddr++;
{
pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]);
{
pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-2G RF-%d-SS-%d CCK-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo24G->CCK_Diff[rfPath][TxCount]);
eeAddr++;
}
}
//5G default value
for(group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
{
pwrInfo5G->IndexBW40_Base[rfPath][group] = PROMContent[eeAddr++];
if(pwrInfo5G->IndexBW40_Base[rfPath][group] == 0xFF)
pwrInfo5G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_DIFF;
//DBG_871X("8812-5G RF-%d-G-%d BW40-Addr-%x BASE=%x\n",
// rfPath, TxCount, eeAddr-1, pwrInfo5G->IndexBW40_Base[rfPath][group]);
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
if(TxCount==0)
{
pwrInfo5G->BW40_Diff[rfPath][TxCount]= 0;
{
pwrInfo5G->BW20_Diff[rfPath][0] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo5G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-5G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->BW20_Diff[rfPath][TxCount]);
{
pwrInfo5G->OFDM_Diff[rfPath][0] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo5G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][TxCount]);
eeAddr++;
}
else
{
{
pwrInfo5G->BW40_Diff[rfPath][TxCount]= (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo5G->BW40_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW40_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-5G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->BW40_Diff[rfPath][TxCount]);
{
pwrInfo5G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
if(pwrInfo5G->BW20_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW20_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-5G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->BW20_Diff[rfPath][TxCount]);
eeAddr++;
}
}
{
pwrInfo5G->OFDM_Diff[rfPath][1] = (PROMContent[eeAddr]&0xf0)>>4;
pwrInfo5G->OFDM_Diff[rfPath][2] = (PROMContent[eeAddr]&0x0f);
}
//DBG_871X("8812-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
// rfPath, 2, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][2]);
eeAddr++;
pwrInfo5G->OFDM_Diff[rfPath][3] = (PROMContent[eeAddr]&0x0f);
//DBG_871X("8812-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, 3, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][3]);
eeAddr++;
for(TxCount=1;TxCount<MAX_TX_COUNT;TxCount++)
{
if(pwrInfo5G->OFDM_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
//DBG_871X("8812-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][TxCount]);
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
{
pwrInfo5G->BW80_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
if(pwrInfo5G->BW80_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW80_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-5G RF-%d-SS-%d BW80-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->BW80_Diff[rfPath][TxCount]);
{
pwrInfo5G->BW160_Diff[rfPath][TxCount]= (PROMContent[eeAddr]&0x0f);
if(pwrInfo5G->BW160_Diff[rfPath][TxCount] & BIT3) //4bit sign number to 8 bit sign number
pwrInfo5G->BW160_Diff[rfPath][TxCount] |= 0xF0;
}
//DBG_871X("8812-5G RF-%d-SS-%d BW160-Addr-%x DIFF=%d\n",
//rfPath, TxCount, eeAddr, pwrInfo5G->BW160_Diff[rfPath][TxCount]);
eeAddr++;
}
}
}
VOID
Hal_EfuseParseBTCoexistInfo8812A(
IN PADAPTER Adapter,
IN pu1Byte hwinfo,
IN BOOLEAN AutoLoadFail
)
{
#ifdef CONFIG_BT_COEXIST
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
pHalData->EEPROMBluetoothCoexist = 0;
pHalData->EEPROMBluetoothType = BT_CSR_BC8;
pHalData->EEPROMBluetoothAntNum = Ant_x2;
pHalData->EEPROMBluetoothAntIsolation = 1;
pHalData->EEPROMBluetoothRadioShared = BT_Radio_Shared;
BT_InitHalVars(Adapter);
#endif
}
void
Hal_EfuseParseIDCode8812A(
IN PADAPTER padapter,
IN u8 *hwinfo
)
{
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
u16 EEPROMId;
// Checl 0x8129 again for making sure autoload status!!
EEPROMId = le16_to_cpu(*((u16*)hwinfo));
if (EEPROMId != RTL_EEPROM_ID)
{
DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pEEPROM->bautoload_fail_flag = _TRUE;
}
else
{
pEEPROM->bautoload_fail_flag = _FALSE;
}
DBG_8192C("EEPROM ID=0x%04x\n", EEPROMId);
}
VOID
Hal_ReadPROMVersion8812A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(AutoloadFail){
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
else{
pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8812];
if(pHalData->EEPROMVersion == 0xFF)
pHalData->EEPROMVersion = EEPROM_Default_Version;
}
//DBG_871X("pHalData->EEPROMVersion is 0x%x\n", pHalData->EEPROMVersion);
}
void
Hal_ReadTxPowerInfo8812A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
TxPowerInfo24G pwrInfo24G;
TxPowerInfo5G pwrInfo5G;
u8 rfPath, ch, group, TxCount;
u8 channel5G[CHANNEL_MAX_NUMBER_5G] =
{36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,100,102,104,106,108,110,112,
114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,149,151,
153,155,157,159,161,163,165,167,168,169,171,173,175,177};
u8 channel5G_80M[CHANNEL_MAX_NUMBER_5G_80M] = {42, 58, 106, 122, 138, 155, 171};
hal_ReadPowerValueFromPROM8812A(Adapter, &pwrInfo24G,&pwrInfo5G, PROMContent, AutoLoadFail);
//if(!AutoLoadFail)
// pHalData->bTXPowerDataReadFromEEPORM = _TRUE;
for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
{
for(ch = 0 ; ch < CHANNEL_MAX_NUMBER_2G ; ch++)
{
Hal_GetChnlGroup8812A(ch+1, &group);
if(ch == 14-1)
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
else
{
pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
}
//DBG_871X("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
//DBG_871X("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_CCK_Base[rfPath][ch]);
//DBG_871X("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index24G_BW40_Base[rfPath][ch]);
}
for(ch = 0 ; ch < CHANNEL_MAX_NUMBER_5G; ch++)
{
Hal_GetChnlGroup8812A(channel5G[ch], &group);
pHalData->Index5G_BW40_Base[rfPath][ch] = pwrInfo5G.IndexBW40_Base[rfPath][group];
//DBG_871X("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
//DBG_871X("Index5G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index5G_BW40_Base[rfPath][ch]);
}
for(ch = 0 ; ch < CHANNEL_MAX_NUMBER_5G_80M; ch++)
{
u8 upper, lower;
Hal_GetChnlGroup8812A(channel5G_80M[ch], &group);
upper = pwrInfo5G.IndexBW40_Base[rfPath][group];
lower = pwrInfo5G.IndexBW40_Base[rfPath][group+1];
pHalData->Index5G_BW80_Base[rfPath][ch] = (upper + lower) / 2;
//DBG_871X("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);
//DBG_871X("Index5G_BW80_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index5G_BW80_Base[rfPath][ch]);
}
for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
{
pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
pHalData->OFDM_5G_Diff[rfPath][TxCount]=pwrInfo5G.OFDM_Diff[rfPath][TxCount];
pHalData->BW20_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW20_Diff[rfPath][TxCount];
pHalData->BW40_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW40_Diff[rfPath][TxCount];
pHalData->BW80_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW80_Diff[rfPath][TxCount];
//#if DBG
#if 0
DBG_871X("--------------------------------------- 2.4G ---------------------------------------\n");
DBG_871X("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]);
DBG_871X("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]);
DBG_871X("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]);
DBG_871X("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]);
DBG_871X("---------------------------------------- 5G ----------------------------------------\n");
DBG_871X("OFDM_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_5G_Diff[rfPath][TxCount]);
DBG_871X("BW20_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_5G_Diff[rfPath][TxCount]);
DBG_871X("BW40_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_5G_Diff[rfPath][TxCount]);
DBG_871X("BW80_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW80_5G_Diff[rfPath][TxCount]);
#endif
}
}
// 2010/10/19 MH Add Regulator recognize for CU.
if(!AutoLoadFail)
{
struct registry_priv *registry_par = &Adapter->registrypriv;
if( registry_par->regulatory_tid == 0xff){
if(PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); //bit0~2
else
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8812]&0x7); //bit0~2
}
else{
pHalData->EEPROMRegulatory = registry_par->regulatory_tid;
}
// 2012/09/26 MH Add for TX power calibrate rate.
pHalData->TxPwrCalibrateRate = PROMContent[EEPROM_TX_PWR_CALIBRATE_RATE_8812];
}
else
{
pHalData->EEPROMRegulatory = 0;
// 2012/09/26 MH Add for TX power calibrate rate.
pHalData->TxPwrCalibrateRate = EEPROM_DEFAULT_TX_CALIBRATE_RATE;
}
DBG_871X("EEPROMRegulatory = 0x%x TxPwrCalibrateRate=0x%x\n", pHalData->EEPROMRegulatory, pHalData->TxPwrCalibrateRate);
}
VOID
Hal_ReadBoardType8812A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(!AutoloadFail)
{
pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8812]&0xE0)>>5;
if(PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF)
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION&0xE0)>>5;
}
else
{
pHalData->InterfaceSel = 0;
}
DBG_871X("Board Type: 0x%2x\n", pHalData->InterfaceSel);
}
VOID
Hal_ReadThermalMeter_8812A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
//u8 tempval;
//
// ThermalMeter from EEPROM
//
if(!AutoloadFail)
pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8812];
else
pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8812;
//pHalData->EEPROMThermalMeter = (tempval&0x1f); //[4:0]
if(pHalData->EEPROMThermalMeter == 0xff || AutoloadFail)
{
pHalData->bAPKThermalMeterIgnore = _TRUE;
pHalData->EEPROMThermalMeter = 0xFF;
}
//pHalData->ThermalMeter[0] = pHalData->EEPROMThermalMeter;
DBG_871X("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
}
VOID
Hal_ReadChannelPlan8812A(
IN PADAPTER padapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
padapter->mlmepriv.ChannelPlan = hal_com_get_channel_plan(
padapter
, hwinfo?hwinfo[EEPROM_ChannelPlan_8812]:0xFF
, padapter->registrypriv.channel_plan
, RT_CHANNEL_DOMAIN_REALTEK_DEFINE
, AutoLoadFail
);
DBG_871X("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
}
VOID
Hal_EfuseParseXtal_8812A(
IN PADAPTER pAdapter,
IN u8* hwinfo,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if(!AutoLoadFail)
{
pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8812];
if(pHalData->CrystalCap == 0xFF)
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8812; //what value should 8812 set?
}
else
{
pHalData->CrystalCap = EEPROM_Default_CrystalCap_8812;
}
DBG_871X("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
}
VOID
Hal_ReadAntennaDiversity8812A(
IN PADAPTER pAdapter,
IN u8* PROMContent,
IN BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
if(!AutoLoadFail)
{
// Antenna Diversity setting.
if(registry_par->antdiv_cfg == 2)
{
pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_8812]&0x18)>>3;
if(PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF)
pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;;
}
else
{
pHalData->AntDivCfg = registry_par->antdiv_cfg;
}
if(pHalData->EEPROMBluetoothCoexist!=0 && pHalData->EEPROMBluetoothAntNum==Ant_x1)
pHalData->AntDivCfg = 0;
pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_8812]; //todo by page
if (pHalData->TRxAntDivType == 0xFF)
pHalData->TRxAntDivType = FIXED_HW_ANTDIV; // For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port)
}
else
{
pHalData->AntDivCfg = 0;
//pHalData->TRxAntDivType = pHalData->TRxAntDivType; // ?????
}
DBG_871X("SWAS: bHwAntDiv = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
}
VOID
Hal_ReadPAType_8812A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if( ! AutoloadFail )
{
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
pHalData->PAType_2G = EF1Byte( *(u8 *)&PROMContent[EEPROM_PA_TYPE_8812AU] );
pHalData->LNAType_2G = EF1Byte( *(u8 *)&PROMContent[EEPROM_LNA_TYPE_2G_8812AU] );
if (pHalData->PAType_2G == 0xFF && pHalData->LNAType_2G == 0xFF) {
pHalData->PAType_2G = 0;
pHalData->LNAType_2G = 0;
}
pHalData->ExternalPA_2G = ((pHalData->PAType_2G & BIT5) && (pHalData->PAType_2G & BIT4)) ? 1 : 0;
pHalData->ExternalLNA_2G = ((pHalData->LNAType_2G & BIT7) && (pHalData->LNAType_2G & BIT3)) ? 1 : 0;
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
pHalData->PAType_5G = EF1Byte( *(u8 *)&PROMContent[EEPROM_PA_TYPE_8812AU] );
pHalData->LNAType_5G = EF1Byte( *(u8 *)&PROMContent[EEPROM_LNA_TYPE_5G_8812AU] );
if (pHalData->PAType_5G == 0xFF && pHalData->LNAType_5G == 0xFF) {
pHalData->PAType_5G = 0;
pHalData->LNAType_5G = 0;
}
pHalData->ExternalPA_5G = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0;
pHalData->ExternalLNA_5G = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0;
}
else
{
pHalData->ExternalPA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->ExternalLNA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
else
{
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->ExternalPA_5G = 0xFF;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->ExternalLNA_5G = 0xFF;
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_5G = 0;
pHalData->ExternalLNA_5G = 0;
}
else
{
pHalData->ExternalPA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->ExternalLNA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
DBG_871X("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G);
DBG_871X("pHalData->PAType_5G is 0x%x, pHalData->ExternalPA_5G = %d\n", pHalData->PAType_5G, pHalData->ExternalPA_5G);
DBG_871X("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G);
DBG_871X("pHalData->LNAType_5G is 0x%x, pHalData->ExternalLNA_5G = %d\n", pHalData->LNAType_5G, pHalData->ExternalLNA_5G);
}
VOID
Hal_ReadPAType_8821A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if( ! AutoloadFail )
{
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
pHalData->PAType_2G = EF1Byte( *(u8 *)&PROMContent[EEPROM_PA_TYPE_8812AU] );
pHalData->LNAType_2G = EF1Byte( *(u8 *)&PROMContent[EEPROM_LNA_TYPE_2G_8812AU] );
if (pHalData->PAType_2G == 0xFF && pHalData->LNAType_2G == 0xFF) {
pHalData->PAType_2G = 0;
pHalData->LNAType_2G = 0;
}
pHalData->ExternalPA_2G = (pHalData->PAType_2G & BIT4) ? 1 : 0;
pHalData->ExternalLNA_2G = (pHalData->LNAType_2G & BIT3) ? 1 : 0;
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
pHalData->PAType_5G = EF1Byte( *(u8 *)&PROMContent[EEPROM_PA_TYPE_8812AU] );
pHalData->LNAType_5G = EF1Byte( *(u8 *)&PROMContent[EEPROM_LNA_TYPE_5G_8812AU] );
if (pHalData->PAType_5G == 0xFF && pHalData->LNAType_5G == 0xFF) {
pHalData->PAType_5G = 0;
pHalData->LNAType_5G = 0;
}
pHalData->ExternalPA_5G = (pHalData->PAType_5G & BIT0) ? 1 : 0;
pHalData->ExternalLNA_5G = (pHalData->LNAType_5G & BIT3) ? 1 : 0;
}
else
{
pHalData->ExternalPA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->ExternalLNA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
else
{
pHalData->ExternalPA_2G = EEPROM_Default_PAType;
pHalData->ExternalPA_5G = 0xFF;
pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;
pHalData->ExternalLNA_5G = 0xFF;
if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_2G = 0;
pHalData->ExternalLNA_2G = 0;
}
else
{
pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA) ? 1 : 0;
pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
}
if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
{
pHalData->ExternalPA_5G = 0;
pHalData->ExternalLNA_5G = 0;
}
else
{
pHalData->ExternalPA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G) ? 1 : 0;
pHalData->ExternalLNA_5G = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;
}
}
DBG_871X("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G);
DBG_871X("pHalData->PAType_5G is 0x%x, pHalData->ExternalPA_5G = %d\n", pHalData->PAType_5G, pHalData->ExternalPA_5G);
DBG_871X("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G);
DBG_871X("pHalData->LNAType_5G is 0x%x, pHalData->ExternalLNA_5G = %d\n", pHalData->LNAType_5G, pHalData->ExternalLNA_5G);
}
VOID
Hal_ReadRFEType_8812A(
IN PADAPTER Adapter,
IN u8* PROMContent,
IN BOOLEAN AutoloadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if(!AutoloadFail)
{
if(GetRegRFEType(Adapter) != 64)
pHalData->RFEType = GetRegRFEType(Adapter);
else if(PROMContent[EEPROM_RFE_OPTION_8812] & BIT7)
{
if(pHalData->ExternalLNA_5G)
{
if(pHalData->ExternalPA_5G)
{
if(pHalData->ExternalLNA_2G && pHalData->ExternalPA_2G )
pHalData->RFEType = 3;
else
pHalData->RFEType = 0;
}
else
pHalData->RFEType = 2;
}
else
pHalData->RFEType = 4;
}
else
{
pHalData->RFEType = PROMContent[EEPROM_RFE_OPTION_8812]&0x3F;
// 2013/03/19 MH Due to othe customer already use incorrect EFUSE map
// to for their product. We need to add workaround to prevent to modify
// spec and notify all customer to revise the IC 0xca content. After
// discussing with Willis an YN, revise driver code to prevent.
if (pHalData->RFEType == 4 &&
(pHalData->ExternalPA_5G == _TRUE || pHalData->ExternalPA_2G == _TRUE ||
pHalData->ExternalLNA_5G == _TRUE || pHalData->ExternalLNA_2G == _TRUE))
{
if (IS_HARDWARE_TYPE_8812AU(Adapter))
pHalData->RFEType = 0;
else if (IS_HARDWARE_TYPE_8812E(Adapter))
pHalData->RFEType = 2;
}
}
}
else
{
if(GetRegRFEType(Adapter) != 64)
pHalData->RFEType = GetRegRFEType(Adapter);
else
pHalData->RFEType = EEPROM_DEFAULT_RFE_OPTION;
}
DBG_871X("RFE Type: 0x%2x\n", pHalData->RFEType);
}
//
// 2013/04/15 MH Add 8812AU- VL/VS/VN for different board type.
//
VOID
hal_ReadUsbType_8812AU(
IN PADAPTER Adapter,
IN u8 *PROMContent,
IN BOOLEAN AutoloadFail
)
{
//if (IS_HARDWARE_TYPE_8812AU(Adapter) && Adapter->UsbModeMechanism.RegForcedUsbMode == 5)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
u8 reg_tmp, i, j, antenna = 0, wmode = 0;
// Read anenna type from EFUSE 1019/1018
for (i = 0; i < 2; i++)
{
// Check efuse address 1019
// Check efuse address 1018
efuse_OneByteRead(Adapter, 1019-i, &reg_tmp, _FALSE);
for (j = 0; j < 2; j++)
{
// CHeck bit 7-5
// Check bit 3-1
antenna = ((reg_tmp&0xee) >> (5-(j*4)));
if (antenna == 0)
continue;
else
{
break;
}
}
}
// Read anenna type from EFUSE 1021/1020
for (i = 0; i < 2; i++)
{
// Check efuse address 1019
// Check efuse address 1018
efuse_OneByteRead(Adapter, 1021-i, &reg_tmp, _FALSE);
for (j = 0; j < 2; j++)
{
// CHeck bit 3-2
// Check bit 1-0
wmode = ((reg_tmp&0x0f) >> (2-(j*2)));
if (wmode)
continue;
else
{
break;
}
}
}
// Antenna == 1 WMODE = 3 RTL8812AU-VL 11AC + USB2.0 Mode
if (antenna == 1)
{
// Config 8812AU as 1*1 mode AC mode.
pHalData->rf_type = RF_1T1R;
//UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE);
//pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VL;
DBG_871X("%s(): EFUSE_HIDDEN_812AU_VL\n",__FUNCTION__);
}
else if (antenna == 2)
{
if (wmode == 3)
{
if (PROMContent[EEPROM_USB_MODE_8812] == 0x2)
{
// RTL8812AU Normal Mode. No further action.
//pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU;
DBG_871X("%s(): EFUSE_HIDDEN_812AU\n",__FUNCTION__);
}
else
{
// Antenna == 2 WMODE = 3 RTL8812AU-VS 11AC + USB2.0 Mode
// Driver will not support USB automatic switch
//UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE);
//pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VS;
DBG_871X("%s(): EFUSE_HIDDEN_812AU_VS\n",__FUNCTION__);
}
}
else if (wmode == 2)
{
// Antenna == 2 WMODE = 2 RTL8812AU-VN 11N only + USB2.0 Mode
//UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE);
//pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VN;
DBG_871X("%s(): EFUSE_HIDDEN_812AU_VN\n",__FUNCTION__);
}
}
}
}
enum{
VOLTAGE_V25 = 0x03,
LDOE25_SHIFT = 28 ,
};
static VOID
Hal_EfusePowerSwitch8812A(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
u8 tempval;
u16 tmpV16;
#define EFUSE_ACCESS_ON_JAGUAR 0x69
#define EFUSE_ACCESS_OFF_JAGUAR 0x00
if (PwrState == _TRUE)
{
rtw_write8(pAdapter, REG_EFUSE_BURN_GNT_8812, EFUSE_ACCESS_ON_JAGUAR);
// 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_ISO_CTRL);
if( ! (tmpV16 & PWC_EV12V ) ){
tmpV16 |= PWC_EV12V ;
//rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16);
}
// Reset: 0x0000h[28], default valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_FUNC_EN);
if( !(tmpV16 & FEN_ELDR) ){
tmpV16 |= FEN_ELDR ;
rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16);
}
// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
tmpV16 = rtw_read16(pAdapter,REG_SYS_CLKR);
if( (!(tmpV16 & LOADER_CLK_EN) ) ||(!(tmpV16 & ANA8M) ) )
{
tmpV16 |= (LOADER_CLK_EN |ANA8M ) ;
rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16);
}
if(bWrite == _TRUE)
{
// Enable LDO 2.5V before read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
tempval &= ~(BIT3|BIT4|BIT5|BIT6);
tempval |= (VOLTAGE_V25 << 3);
tempval |= BIT7;
rtw_write8(pAdapter, EFUSE_TEST+3, tempval);
}
}
else
{
rtw_write8(pAdapter, REG_EFUSE_BURN_GNT_8812, EFUSE_ACCESS_OFF_JAGUAR);
if(bWrite == _TRUE){
// Disable LDO 2.5V after read/write action
tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
}
}
}
static VOID
rtl8812_EfusePowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
Hal_EfusePowerSwitch8812A(pAdapter, bWrite, PwrState);
}
static BOOLEAN
Hal_EfuseSwitchToBank8812A(
IN PADAPTER pAdapter,
IN u1Byte bank,
IN BOOLEAN bPseudoTest
)
{
return _FALSE;
}
static VOID
Hal_EfuseReadEFuse8812A(
PADAPTER Adapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
u8 *efuseTbl = NULL;
u16 eFuse_Addr = 0;
u8 offset=0, wden=0;
u16 i, j;
u16 **eFuseWord = NULL;
u16 efuse_utilized = 0;
u8 efuse_usage = 0;
u8 offset_2_0=0;
u8 efuseHeader=0, efuseExtHdr=0, efuseData=0;
//
// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
//
if((_offset + _size_byte)>EFUSE_MAP_LEN_JAGUAR)
{// total E-Fuse table is 512bytes
DBG_8192C("Hal_EfuseReadEFuse8812A(): Invalid offset(%#x) with read bytes(%#x)!!\n",_offset, _size_byte);
goto exit;
}
efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_JAGUAR);
if(efuseTbl == NULL)
{
DBG_871X("%s: alloc efuseTbl fail!\n", __FUNCTION__);
goto exit;
}
eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, sizeof(u16));
if(eFuseWord == NULL)
{
DBG_871X("%s: alloc eFuseWord fail!\n", __FUNCTION__);
goto exit;
}
// 0. Refresh efuse init map as all oxFF.
for (i = 0; i < EFUSE_MAX_SECTION_JAGUAR; i++)
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
eFuseWord[i][j] = 0xFFFF;
//
// 1. Read the first byte to check if efuse is empty!!!
//
//
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if(efuseHeader != 0xFF)
{
efuse_utilized++;
}
else
{
DBG_871X("EFUSE is empty\n");
efuse_utilized = 0;
goto exit;
}
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Hal_EfuseReadEFuse8812A(): efuse_utilized: %d\n", efuse_utilized));
//
// 2. Read real efuse content. Filter PG header and every section data.
//
while((efuseHeader != 0xFF) && AVAILABLE_EFUSE_ADDR_8812(eFuse_Addr))
{
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
// Check PG header for section num.
if(EXT_HEADER(efuseHeader)) //extended header
{
offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("extended header offset_2_0=%X\n", offset_2_0));
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseExtHdr));
if(efuseExtHdr != 0xff)
{
efuse_utilized++;
if(ALL_WORDS_DISABLED(efuseExtHdr))
{
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if(efuseHeader != 0xff)
{
efuse_utilized++;
}
break;
}
else
{
offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0;
wden = (efuseExtHdr & 0x0F);
}
}
else
{
DBG_871X("Error condition, extended = 0xff\n");
// We should handle this condition.
break;
}
}
else
{
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if(offset < EFUSE_MAX_SECTION_JAGUAR)
{
// Get word enable value from PG header
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Offset-%X Worden=%X\n", offset, wden));
for(i=0; i<EFUSE_MAX_WORD_UNIT; i++)
{
// Check word enable condition in the section
if(!(wden & (0x01<<i)))
{
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseData, bPseudoTest);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseData));
efuse_utilized++;
eFuseWord[offset][i] = (efuseData & 0xff);
if(!AVAILABLE_EFUSE_ADDR_8812(eFuse_Addr))
break;
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseData, bPseudoTest);
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseData));
efuse_utilized++;
eFuseWord[offset][i] |= (((u16)efuseData << 8) & 0xff00);
if(!AVAILABLE_EFUSE_ADDR_8812(eFuse_Addr))
break;
}
}
}
// Read next PG header
efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
if(efuseHeader != 0xFF)
{
efuse_utilized++;
}
}
//
// 3. Collect 16 sections and 4 word unit into Efuse map.
//
for(i=0; i<EFUSE_MAX_SECTION_JAGUAR; i++)
{
for(j=0; j<EFUSE_MAX_WORD_UNIT; j++)
{
efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
}
}
//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Hal_EfuseReadEFuse8812A(): efuse_utilized: %d\n", efuse_utilized));
//
// 4. Copy from Efuse map to output pointer memory!!!
//
for(i=0; i<_size_byte; i++)
{
pbuf[i] = efuseTbl[_offset+i];
}
//
// 5. Calculate Efuse utilization.
//
efuse_usage = (u1Byte)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_JAGUAR);
rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
exit:
if(efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAP_LEN_JAGUAR);
if(eFuseWord)
rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, sizeof(u16));
}
static VOID
rtl8812_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
#ifdef DBG_IOL_READ_EFUSE_MAP
u8 logical_map[512];
#endif
#ifdef CONFIG_IOL_READ_EFUSE_MAP
if(!bPseudoTest )//&& rtw_IOL_applied(Adapter))
{
int ret = _FAIL;
rtw_hal_power_on(Adapter);
iol_mode_enable(Adapter, 1);
#ifdef DBG_IOL_READ_EFUSE_MAP
iol_read_efuse(Adapter, 0, _offset, _size_byte, logical_map);
#else
ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
#endif
iol_mode_enable(Adapter, 0);
if(_SUCCESS == ret)
goto exit;
}
#endif
Hal_EfuseReadEFuse8812A(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
#ifdef CONFIG_IOL_READ_EFUSE_MAP
exit:
#endif
#ifdef DBG_IOL_READ_EFUSE_MAP
if(_rtw_memcmp(logical_map, Adapter->eeprompriv.efuse_eeprom_data, 0x130) == _FALSE)
{
int i;
DBG_871X("%s compare first 0x130 byte fail\n", __FUNCTION__);
for(i=0;i<512;i++)
{
if(i%16==0)
DBG_871X("0x%03x: ", i);
DBG_871X("%02x ", logical_map[i]);
if(i%16==15)
DBG_871X("\n");
}
DBG_871X("\n");
}
#endif
}
//Do not support BT
VOID
Hal_EFUSEGetEfuseDefinition8812A(
IN PADAPTER pAdapter,
IN u1Byte efuseType,
IN u1Byte type,
OUT PVOID pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
u8* pMax_section;
pMax_section = (u8*)pOut;
*pMax_section = EFUSE_MAX_SECTION_JAGUAR;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16* pu2Tmp;
pu2Tmp = (u16*)pOut;
*pu2Tmp = (u16)EFUSE_MAP_LEN_JAGUAR;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
default:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = 0;
}
break;
}
}
VOID
Hal_EFUSEGetEfuseDefinition_Pseudo8812A(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT PVOID pOut
)
{
switch(type)
{
case TYPE_EFUSE_MAX_SECTION:
{
u8* pMax_section;
pMax_section = (pu1Byte)pOut;
*pMax_section = EFUSE_MAX_SECTION_JAGUAR;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN:
{
u16* pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK:
{
u16* pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
{
u16* pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
{
u16* pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
case TYPE_EFUSE_MAP_LEN:
{
u16* pu2Tmp;
pu2Tmp = (pu2Byte)pOut;
*pu2Tmp = (u2Byte)EFUSE_MAP_LEN_JAGUAR;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_JAGUAR);
}
break;
default:
{
u8* pu1Tmp;
pu1Tmp = (u8*)pOut;
*pu1Tmp = 0;
}
break;
}
}
static VOID
rtl8812_EFUSE_GetEfuseDefinition(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
if(bPseudoTest)
{
Hal_EFUSEGetEfuseDefinition_Pseudo8812A(pAdapter, efuseType, type, pOut);
}
else
{
Hal_EFUSEGetEfuseDefinition8812A(pAdapter, efuseType, type, pOut);
}
}
static u8
Hal_EfuseWordEnableDataWrite8812A( IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[8];
_rtw_memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE);
//RT_TRACE(COMP_EFUSE, DBG_LOUD, ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
if(!(word_en&BIT0))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[1], bPseudoTest);
if((data[0]!=tmpdata[0])||(data[1]!=tmpdata[1])){
badworden &= (~BIT0);
}
}
if(!(word_en&BIT1))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr , &tmpdata[2], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[3], bPseudoTest);
if((data[2]!=tmpdata[2])||(data[3]!=tmpdata[3])){
badworden &=( ~BIT1);
}
}
if(!(word_en&BIT2))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[5], bPseudoTest);
if((data[4]!=tmpdata[4])||(data[5]!=tmpdata[5])){
badworden &=( ~BIT2);
}
}
if(!(word_en&BIT3))
{
tmpaddr = start_addr;
efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(pAdapter,tmpaddr+1, &tmpdata[7], bPseudoTest);
if((data[6]!=tmpdata[6])||(data[7]!=tmpdata[7])){
badworden &=( ~BIT3);
}
}
return badworden;
}
static u8
rtl8812_Efuse_WordEnableDataWrite( IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret=0;
ret = Hal_EfuseWordEnableDataWrite8812A(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u16
hal_EfuseGetCurrentSize_8812A(IN PADAPTER pAdapter,
IN BOOLEAN bPseudoTest)
{
int bContinual = _TRUE;
u16 efuse_addr = 0;
u8 hoffset=0,hworden=0;
u8 efuse_data,word_cnts=0;
if(bPseudoTest)
{
efuse_addr = (u16)(fakeEfuseUsedBytes);
}
else
{
rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
}
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr));
while ( bContinual &&
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) &&
(efuse_addr < EFUSE_REAL_CONTENT_LEN_JAGUAR))
{
if(efuse_data!=0xFF)
{
if((efuse_data&0x1F) == 0x0F) //extended header
{
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F)
{
efuse_addr++;
continue;
}
else
{
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
}
else
{
bContinual = _FALSE ;
}
}
if(bPseudoTest)
{
fakeEfuseUsedBytes = efuse_addr;
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", fakeEfuseUsedBytes));
}
else
{
rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), return %d\n", efuse_addr));
}
return efuse_addr;
}
static u16
rtl8812_EfuseGetCurrentSize(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret=0;
ret = hal_EfuseGetCurrentSize_8812A(pAdapter, bPseudoTest);
return ret;
}
static int
hal_EfusePgPacketRead_8812A(
IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ReadState = PG_STATE_HEADER;
int bContinual = _TRUE;
int bDataEmpty = _TRUE ;
u8 efuse_data,word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0,hworden = 0;
u8 tmpidx = 0;
u8 tmpdata[8];
u8 max_section = 0;
u8 tmp_header = 0;
if(data==NULL)
return _FALSE;
if(offset>EFUSE_MAX_SECTION_JAGUAR)
return _FALSE;
_rtw_memset((PVOID)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
_rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
//
// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// Skip dummy parts to prevent unexpected data read from Efuse.
// By pass right now. 2009.02.19.
//
while(bContinual && (efuse_addr < EFUSE_REAL_CONTENT_LEN_JAGUAR) )
{
//------- Header Read -------------
if(ReadState & PG_STATE_HEADER)
{
if(efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF))
{
if(EXT_HEADER(efuse_data))
{
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if(!ALL_WORDS_DISABLED(efuse_data))
{
hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
else
{
DBG_8192C("Error, All words disabled\n");
efuse_addr++;
break;
}
}
else
{
hoffset = (efuse_data>>4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
bDataEmpty = _TRUE ;
if(hoffset==offset)
{
for(tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++)
{
if(efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) )
{
tmpdata[tmpidx] = efuse_data;
if(efuse_data!=0xff)
{
bDataEmpty = _FALSE;
}
}
}
if(bDataEmpty==_FALSE){
ReadState = PG_STATE_DATA;
}else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{//read next header
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
else{
bContinual = _FALSE ;
}
}
//------- Data section Read -------------
else if(ReadState & PG_STATE_DATA)
{
efuse_WordEnableDataRead(hworden,tmpdata,data);
efuse_addr = efuse_addr + (word_cnts*2)+1;
ReadState = PG_STATE_HEADER;
}
}
if( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff) && (data[3]==0xff) &&
(data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff) && (data[7]==0xff))
return _FALSE;
else
return _TRUE;
}
static int
rtl8812_Efuse_PgPacketRead( IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret=0;
ret = hal_EfusePgPacketRead_8812A(pAdapter, offset, data, bPseudoTest);
return ret;
}
int
hal_EfusePgPacketWrite_8812A(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 WriteState = PG_STATE_HEADER;
int bContinual = _TRUE,bDataEmpty=_TRUE;
//int bResult = _TRUE;
u16 efuse_addr = 0;
u8 efuse_data;
u8 pg_header = 0, pg_header_temp = 0;
u8 tmp_word_cnts=0,target_word_cnts=0;
u8 tmp_header,match_word_en,tmp_word_en;
PGPKT_STRUCT target_pkt;
PGPKT_STRUCT tmp_pkt;
u8 originaldata[sizeof(u8)*8];
u8 tmpindex = 0,badworden = 0x0F;
static int repeat_times = 0;
BOOLEAN bExtendedHeader = _FALSE;
u8 efuseType=EFUSE_WIFI;
//
// <Roger_Notes> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// So we have to prevent unexpected data string connection, which will cause
// incorrect data auto-load from HW. The total size is equal or smaller than 498bytes
// (i.e., offset 0~497, and dummy 1bytes) expected after CP test.
// 2009.02.19.
//
if( Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR))
{
DBG_871X("hal_EfusePgPacketWrite_8812A() error: %x >= %x\n", Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR));
return _FALSE;
}
// Init the 8 bytes content as 0xff
target_pkt.offset = offset;
target_pkt.word_en= word_en;
// Initial the value to avoid compile warning
tmp_pkt.offset = 0;
tmp_pkt.word_en= 0;
//DBG_871X("hal_EfusePgPacketWrite_8812A target offset 0x%x word_en 0x%x \n", target_pkt.offset, target_pkt.word_en);
_rtw_memset((PVOID)target_pkt.data, 0xFF, sizeof(u8)*8);
efuse_WordEnableDataRead(word_en, data, target_pkt.data);
target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en);
//efuse_reg_ctrl(pAdapter,_TRUE);//power on
//DBG_871X("EFUSE Power ON\n");
//
// <Roger_Notes> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
// So we have to prevent unexpected data string connection, which will cause
// incorrect data auto-load from HW. Dummy 1bytes is additional.
// 2009.02.19.
//
while( bContinual && (efuse_addr < (EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR)) )
{
if(WriteState==PG_STATE_HEADER)
{
bDataEmpty=_TRUE;
badworden = 0x0F;
//************ so *******************
//DBG_871X("EFUSE PG_STATE_HEADER\n");
if ( efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest) &&
(efuse_data!=0xFF))
{
if((efuse_data&0x1F) == 0x0F) //extended header
{
tmp_header = efuse_data;
efuse_addr++;
efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
if((efuse_data & 0x0F) == 0x0F) //wren fail
{
u8 next = 0, next_next = 0, data = 0, i = 0;
u8 s = ((tmp_header & 0xF0) >> 4);
efuse_OneByteRead(pAdapter, efuse_addr+1, &next, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr+2, &next_next, bPseudoTest);
if (next == 0xFF && next_next == 0xFF) { // Have enough space to make fake data to recover bad header.
switch (s) {
case 0x0:
case 0x2:
case 0x4:
case 0x6:
case 0x8:
case 0xA:
case 0xC:
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, efuse_addr, 0x27, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &data, bPseudoTest);
if (data == 0x27)
break;
}
break;
case 0xE:
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, efuse_addr, 0x17, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &data, bPseudoTest);
if (data == 0x17)
break;
}
break;
default:
break;
}
efuse_OneByteWrite(pAdapter, efuse_addr+1, 0xFF, bPseudoTest);
efuse_OneByteWrite(pAdapter, efuse_addr+2, 0xFF, bPseudoTest);
efuse_addr += 3;
} else {
efuse_addr++;
}
continue;
}
else
{
tmp_pkt.offset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
tmp_pkt.word_en = efuse_data & 0x0F;
}
}
else
{
u8 i = 0, data = 0;
tmp_header = efuse_data;
tmp_pkt.offset = (tmp_header>>4) & 0x0F;
tmp_pkt.word_en = tmp_header & 0x0F;
if (tmp_pkt.word_en == 0xF) {
u8 next = 0;
efuse_OneByteRead(pAdapter, efuse_addr+1, &next, bPseudoTest);
if (next == 0xFF) { // Have enough space to make fake data to recover bad header.
tmp_header = (tmp_header & 0xF0) | 0x7;
for (i = 0; i < 3; ++i) {
efuse_OneByteWrite(pAdapter, efuse_addr, tmp_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &data, bPseudoTest);
if (data == tmp_header)
break;
}
efuse_OneByteWrite(pAdapter, efuse_addr+1, 0xFF, bPseudoTest);
efuse_OneByteWrite(pAdapter, efuse_addr+2, 0xFF, bPseudoTest);
efuse_addr += 2;
}
}
}
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
//DBG_871X("section offset 0x%x worden 0x%x\n", tmp_pkt.offset, tmp_pkt.word_en);
//************ so-1 *******************
if(tmp_pkt.offset != target_pkt.offset)
{
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
#if (EFUSE_ERROE_HANDLE == 1)
WriteState = PG_STATE_HEADER;
#endif
}
else //write the same offset
{
//DBG_871X("hal_EfusePgPacketWrite_8812A section offset the same\n");
//************ so-2 *******************
for(tmpindex=0 ; tmpindex<(tmp_word_cnts*2) ; tmpindex++)
{
if(efuse_OneByteRead(pAdapter, (efuse_addr+1+tmpindex) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF)){
bDataEmpty = _FALSE;
}
}
//************ so-2-1 *******************
if(bDataEmpty == _FALSE)
{
//DBG_871X("hal_EfusePgPacketWrite_8812A section offset the same and data is NOT empty\n");
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
#endif
}
else
{//************ so-2-2 *******************
//DBG_871X("hal_EfusePgPacketWrite_8812A section data empty\n");
match_word_en = 0x0F; //same bit as original wren
if( !( (target_pkt.word_en&BIT0)|(tmp_pkt.word_en&BIT0) ))
{
match_word_en &= (~BIT0);
}
if( !( (target_pkt.word_en&BIT1)|(tmp_pkt.word_en&BIT1) ))
{
match_word_en &= (~BIT1);
}
if( !( (target_pkt.word_en&BIT2)|(tmp_pkt.word_en&BIT2) ))
{
match_word_en &= (~BIT2);
}
if( !( (target_pkt.word_en&BIT3)|(tmp_pkt.word_en&BIT3) ))
{
match_word_en &= (~BIT3);
}
//************ so-2-2-A *******************
if((match_word_en&0x0F)!=0x0F)
{
badworden = Efuse_WordEnableDataWrite(pAdapter,efuse_addr+1, tmp_pkt.word_en ,target_pkt.data, bPseudoTest);
//************ so-2-2-A-1 *******************
//############################
if(0x0F != (badworden&0x0F))
{
u8 reorg_offset = offset;
u8 reorg_worden=badworden;
Efuse_PgPacketWrite(pAdapter, reorg_offset, reorg_worden, target_pkt.data, bPseudoTest);
}
//############################
tmp_word_en = 0x0F; //not the same bit as original wren
if( (target_pkt.word_en&BIT0)^(match_word_en&BIT0) )
{
tmp_word_en &= (~BIT0);
}
if( (target_pkt.word_en&BIT1)^(match_word_en&BIT1) )
{
tmp_word_en &= (~BIT1);
}
if( (target_pkt.word_en&BIT2)^(match_word_en&BIT2) )
{
tmp_word_en &= (~BIT2);
}
if( (target_pkt.word_en&BIT3)^(match_word_en&BIT3) )
{
tmp_word_en &=(~BIT3);
}
//************ so-2-2-A-2 *******************
if((tmp_word_en&0x0F)!=0x0F){
//reorganize other pg packet
// efuse_addr = efuse_addr + (2*tmp_word_cnts) +1;//next pg packet addr
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
//===========================
target_pkt.offset = offset;
target_pkt.word_en= tmp_word_en;
//===========================
}else{
bContinual = _FALSE;
}
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
#endif
}
else{//************ so-2-2-B *******************
//reorganize other pg packet
efuse_addr = efuse_addr + (2*tmp_word_cnts) +1;//next pg packet addr
//===========================
target_pkt.offset = offset;
target_pkt.word_en= target_pkt.word_en;
//===========================
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
#endif
}
}
}
DBG_871X("EFUSE PG_STATE_HEADER-1\n");
}
else //************ s1: header == oxff *******************
{
bExtendedHeader = _FALSE;
if(target_pkt.offset >= EFUSE_MAX_SECTION_BASE)
{
pg_header = ((target_pkt.offset &0x07) << 5) | 0x0F;
//DBG_871X("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] |0x0F 0x%x \n", pg_header);
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
//DBG_871X("hal_EfusePgPacketWrite_8812A extended pg_header[2:0] wirte fail \n");
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
efuse_addr++;
break;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(!bContinual)
break;
if(tmp_header == pg_header)
{
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((target_pkt.offset & 0x78) << 1 ) | target_pkt.word_en;
//DBG_871X("hal_EfusePgPacketWrite_8812A extended pg_header[6:3] | worden 0x%x word_en 0x%x \n", pg_header, target_pkt.word_en);
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
while(tmp_header == 0xFF)
{
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
break;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(!bContinual)
break;
if((tmp_header & 0x0F) == 0x0F) //wren PG fail
{
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
break;
}
else
{
efuse_addr++;
continue;
}
}
else if(pg_header != tmp_header) //offset PG fail
{
bExtendedHeader = _TRUE;
tmp_pkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
tmp_pkt.word_en= tmp_header & 0x0F;
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
}
}
else if ((tmp_header & 0x1F) == 0x0F) //wrong extended header
{
efuse_addr+=2;
continue;
}
}
else
{
pg_header = ((target_pkt.offset << 4)&0xf0) |target_pkt.word_en;
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
}
if(tmp_header == pg_header)
{ //************ s1-1*******************
WriteState = PG_STATE_DATA;
}
#if (EFUSE_ERROE_HANDLE == 1)
else if(tmp_header == 0xFF){//************ s1-3: if Write or read func doesn't work *******************
//efuse_addr doesn't change
WriteState = PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
}
#endif
else
{//************ s1-2 : fixed the header procedure *******************
if(!bExtendedHeader)
{
tmp_pkt.offset = (tmp_header>>4) & 0x0F;
tmp_pkt.word_en= tmp_header & 0x0F;
tmp_word_cnts = Efuse_CalculateWordCnts(tmp_pkt.word_en);
}
//************ s1-2-A :cover the exist data *******************
_rtw_memset(originaldata, 0xff, sizeof(u8)*8);
if(Efuse_PgPacketRead( pAdapter, tmp_pkt.offset,originaldata, bPseudoTest))
{ //check if data exist
//efuse_reg_ctrl(pAdapter,_TRUE);//power on
badworden = Efuse_WordEnableDataWrite(pAdapter,efuse_addr+1,tmp_pkt.word_en,originaldata, bPseudoTest);
//############################
if(0x0F != (badworden&0x0F))
{
u8 reorg_offset = tmp_pkt.offset;
u8 reorg_worden=badworden;
Efuse_PgPacketWrite(pAdapter,reorg_offset,reorg_worden,originaldata, bPseudoTest);
efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
}
//############################
else{
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
}
}
//************ s1-2-B: wrong address*******************
else
{
efuse_addr = efuse_addr + (tmp_word_cnts*2) +1; //Next pg_packet
}
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
#endif
//DBG_871X("EFUSE PG_STATE_HEADER-2\n");
}
}
}
//write data state
else if(WriteState==PG_STATE_DATA)
{ //************ s1-1 *******************
//DBG_871X("EFUSE PG_STATE_DATA\n");
badworden = 0x0f;
badworden = Efuse_WordEnableDataWrite(pAdapter,efuse_addr+1,target_pkt.word_en,target_pkt.data, bPseudoTest);
if((badworden&0x0F)==0x0F)
{ //************ s1-1-A *******************
bContinual = _FALSE;
}
else
{//reorganize other pg packet //************ s1-1-B *******************
efuse_addr = efuse_addr + (2*target_word_cnts) +1;//next pg packet addr
//===========================
target_pkt.offset = offset;
target_pkt.word_en= badworden;
target_word_cnts = Efuse_CalculateWordCnts(target_pkt.word_en);
//===========================
#if (EFUSE_ERROE_HANDLE == 1)
WriteState=PG_STATE_HEADER;
repeat_times++;
if(repeat_times>EFUSE_REPEAT_THRESHOLD_){
bContinual = _FALSE;
//bResult = _FALSE;
}
#endif
//DBG_871X("EFUSE PG_STATE_HEADER-3\n");
}
}
}
if(efuse_addr >= (EFUSE_REAL_CONTENT_LEN_JAGUAR-EFUSE_OOB_PROTECT_BYTES_JAGUAR))
{
DBG_871X("hal_EfusePgPacketWrite_8812A(): efuse_addr(%#x) Out of size!!\n", efuse_addr);
}
//efuse_reg_ctrl(pAdapter,_FALSE);//power off
return _TRUE;
}
static int
rtl8812_Efuse_PgPacketWrite(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = hal_EfusePgPacketWrite_8812A(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
static s32 _halReadPGDataFromFile(PADAPTER padapter, u8 *pbuf)
{
u32 i;
struct file *fp;
mm_segment_t fs;
u8 temp[3];
loff_t pos = 0;
temp[2] = 0; // add end of string '\0'
DBG_8192C("%s: Read Efuse from file [%s]\n", __FUNCTION__, EFUSE_FILE_PATH);
fp = filp_open(EFUSE_FILE_PATH, O_RDONLY, 0);
if (IS_ERR(fp)) {
DBG_8192C("%s: Error, Read Efuse configure file FAIL!\n", __FUNCTION__);
pEEPROM->bloadfile_fail_flag = _TRUE;
return _FAIL;
}
fs = get_fs();
set_fs(KERNEL_DS);
for (i=0; i<HWSET_MAX_SIZE_JAGUAR; i++)
{
vfs_read(fp, temp, 2, &pos);
pbuf[i] = simple_strtoul(temp, NULL, 16);
pos += 1; // Filter the space character
}
set_fs(fs);
filp_close(fp, NULL);
#ifdef CONFIG_DEBUG
DBG_8192C("Efuse configure file:\n");
for (i=0; i<HWSET_MAX_SIZE_JAGUAR; i++)
{
if (i % 16 == 0)
printk("\n");
printk("%02X ", pbuf[i]);
}
printk("\n");
DBG_8192C("\n");
#endif
pEEPROM->bloadfile_fail_flag = _FALSE;
return _SUCCESS;
}
static s32 _halReadMACAddrFromFile(PADAPTER padapter, u8 *pbuf)
{
struct file *fp;
mm_segment_t fs;
loff_t pos = 0;
u8 source_addr[18];
u8 *head, *end;
u32 curtime;
u32 i;
s32 ret = _SUCCESS;
u8 null_mac_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
u8 multi_mac_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
curtime = rtw_get_current_time();
_rtw_memset(source_addr, 0, 18);
_rtw_memset(pbuf, 0, ETH_ALEN);
fp = filp_open(MAC_ADDRESS_FILE_PATH, O_RDONLY, 0);
if (IS_ERR(fp))
{
ret = _FAIL;
DBG_8192C("%s: Error, Read MAC address file FAIL!\n", __FUNCTION__);
}
else
{
fs = get_fs();
set_fs(KERNEL_DS);
vfs_read(fp, source_addr, 18, &pos);
source_addr[17] = ':';
head = end = source_addr;
for (i=0; i<ETH_ALEN; i++)
{
while (end && (*end != ':') )
end++;
if (end && (*end == ':') )
*end = '\0';
pbuf[i] = simple_strtoul(head, NULL, 16 );
if (end) {
end++;
head = end;
}
}
set_fs(fs);
filp_close(fp, NULL);
DBG_8192C("%s: Read MAC address from file [%s]\n", __FUNCTION__, MAC_ADDRESS_FILE_PATH);
DBG_8192C("WiFi MAC address: " MAC_FMT "\n", MAC_ARG(pbuf));
}
if (_rtw_memcmp(pbuf, null_mac_addr, ETH_ALEN) ||
_rtw_memcmp(pbuf, multi_mac_addr, ETH_ALEN))
{
pbuf[0] = 0x00;
pbuf[1] = 0xe0;
pbuf[2] = 0x4c;
pbuf[3] = (u8)(curtime & 0xff) ;
pbuf[4] = (u8)((curtime>>8) & 0xff) ;
pbuf[5] = (u8)((curtime>>16) & 0xff) ;
}
DBG_8192C("%s: Permanent Address = " MAC_FMT "\n", __FUNCTION__, MAC_ARG(pbuf));
return ret;
}
#endif // CONFIG_EFUSE_CONFIG_FILE
void InitRDGSetting8812A(PADAPTER padapter)
{
rtw_write8(padapter, REG_RD_CTRL, 0xFF);
rtw_write16(padapter, REG_RD_NAV_NXT, 0x200);
rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05);
}
void ReadRFType8812A(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
#if DISABLE_BB_RF
pHalData->rf_chip = RF_PSEUDO_11N;
#else
pHalData->rf_chip = RF_6052;
#endif
//if (pHalData->rf_type == RF_1T1R){
// pHalData->bRFPathRxEnable[0] = _TRUE;
//}
//else { // Default unknow type is 2T2r
// pHalData->bRFPathRxEnable[0] = pHalData->bRFPathRxEnable[1] = _TRUE;
//}
if (IsSupported24G(padapter->registrypriv.wireless_mode) &&
IsSupported5G(padapter->registrypriv.wireless_mode))
pHalData->BandSet = BAND_ON_BOTH;
else if (IsSupported5G(padapter->registrypriv.wireless_mode))
pHalData->BandSet = BAND_ON_5G;
else
pHalData->BandSet = BAND_ON_2_4G;
//if(padapter->bInHctTest)
// pHalData->BandSet = BAND_ON_2_4G;
}
void rtl8812_GetHalODMVar(
PADAPTER Adapter,
HAL_ODM_VARIABLE eVariable,
PVOID pValue1,
BOOLEAN bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
switch(eVariable){
case HAL_ODM_STA_INFO:
break;
default:
break;
}
}
void rtl8812_SetHalODMVar(
PADAPTER Adapter,
HAL_ODM_VARIABLE eVariable,
PVOID pValue1,
BOOLEAN bSet)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
PDM_ODM_T podmpriv = &pHalData->odmpriv;
//_irqL irqL;
switch(eVariable){
case HAL_ODM_STA_INFO:
{
struct sta_info *psta = (struct sta_info *)pValue1;
if(bSet){
DBG_8192C("### Set STA_(%d) info\n",psta->mac_id);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,psta);
#if(RATE_ADAPTIVE_SUPPORT==1)
ODM_RAInfo_Init(podmpriv,psta->mac_id);
#endif
}
else{
DBG_8192C("### Clean STA_(%d) info\n",psta->mac_id);
//_enter_critical_bh(&pHalData->odm_stainfo_lock, &irqL);
ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,NULL);
//_exit_critical_bh(&pHalData->odm_stainfo_lock, &irqL);
}
}
break;
case HAL_ODM_P2P_STATE:
ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DIRECT,bSet);
break;
case HAL_ODM_WIFI_DISPLAY_STATE:
ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DISPLAY,bSet);
break;
default:
break;
}
}
void rtl8812_clone_haldata(_adapter* dst_adapter, _adapter* src_adapter)
{
#ifdef CONFIG_SDIO_HCI
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(dst_adapter);
//_thread_hdl_ SdioXmitThread;
#ifndef CONFIG_SDIO_TX_TASKLET
_sema temp_SdioXmitSema;
_sema temp_SdioXmitTerminateSema;
#endif
//u8 SdioTxFIFOFreePage[SDIO_TX_FREE_PG_QUEUE];
_lock temp_SdioTxFIFOFreePageLock;
#ifndef CONFIG_SDIO_TX_TASKLET
_rtw_memcpy(&temp_SdioXmitSema, &(pHalData->SdioXmitSema), sizeof(_sema));
_rtw_memcpy(&temp_SdioXmitTerminateSema, &(pHalData->SdioXmitTerminateSema), sizeof(_sema));
#endif
_rtw_memcpy(&temp_SdioTxFIFOFreePageLock, &(pHalData->SdioTxFIFOFreePageLock), sizeof(_lock));
_rtw_memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz);
#ifndef CONFIG_SDIO_TX_TASKLET
_rtw_memcpy(&(pHalData->SdioXmitSema), &temp_SdioXmitSema, sizeof(_sema));
_rtw_memcpy(&(pHalData->SdioXmitTerminateSema), &temp_SdioXmitTerminateSema, sizeof(_sema));
#endif
_rtw_memcpy(&(pHalData->SdioTxFIFOFreePageLock), &temp_SdioTxFIFOFreePageLock, sizeof(_lock));
#else
_rtw_memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz);
#endif
}
void rtl8812_start_thread(PADAPTER padapter)
{
}
void rtl8812_stop_thread(PADAPTER padapter)
{
}
void hal_notch_filter_8812(_adapter *adapter, bool enable)
{
if (enable) {
DBG_871X("Enable notch filter\n");
//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
} else {
DBG_871X("Disable notch filter\n");
//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
}
}
u8
GetEEPROMSize8812A(
IN PADAPTER Adapter
)
{
u8 size = 0;
u32 curRCR;
curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL);
size = (curRCR & EEPROMSEL) ? 6 : 4; // 6: EEPROM used is 93C46, 4: boot from E-Fuse.
DBG_871X("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
//return size;
return 4; // <20120713, Kordan> The default value of HW is 6 ?!!
}
void CheckAutoloadState8812A(PADAPTER padapter)
{
PEEPROM_EFUSE_PRIV pEEPROM;
u8 val8;
pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
/* check system boot selection */
val8 = rtw_read8(padapter, REG_9346CR);
pEEPROM->EepromOrEfuse = (val8 & BOOT_FROM_EEPROM) ? _TRUE : _FALSE;
pEEPROM->bautoload_fail_flag = (val8 & EEPROM_EN) ? _FALSE : _TRUE;
DBG_8192C("%s: 9346CR(%#x)=0x%02x, Boot from %s, Autoload %s!\n",
__FUNCTION__, REG_9346CR, val8,
(pEEPROM->EepromOrEfuse ? "EEPROM" : "EFUSE"),
(pEEPROM->bautoload_fail_flag ? "Fail" : "OK"));
}
void InitPGData8812A(PADAPTER padapter)
{
PEEPROM_EFUSE_PRIV pEEPROM;
u32 i;
u16 val16;
pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
#ifdef CONFIG_EFUSE_CONFIG_FILE
{
s32 tmp;
u32 addr;
tmp = _halReadPGDataFromFile(padapter, pEEPROM->efuse_eeprom_data);
pEEPROM->bloadfile_fail_flag = ((tmp==_FAIL) ? _TRUE : _FALSE);
tmp = _halReadMACAddrFromFile(padapter, pEEPROM->mac_addr);
pEEPROM->bloadmac_fail_flag = ((tmp==_FAIL) ? _TRUE : _FALSE);
#ifdef CONFIG_SDIO_HCI
addr = EEPROM_MAC_ADDR_8821AS;
#elif defined(CONFIG_USB_HCI)
if (IS_HARDWARE_TYPE_8812AU(padapter))
addr = EEPROM_MAC_ADDR_8812AE;
else
addr = EEPROM_MAC_ADDR_8821AE;
#elif defined(CONFIG_PCI_HCI)
if (IS_HARDWARE_TYPE_8812E(padapter))
addr = EEPROM_MAC_ADDR_8812AE;
else
addr = EEPROM_MAC_ADDR_8821AE;
#endif // CONFIG_PCI_HCI
_rtw_memcpy(&pEEPROM->efuse_eeprom_data[addr], pEEPROM->mac_addr, ETH_ALEN);
}
#else // !CONFIG_EFUSE_CONFIG_FILE
if (_FALSE == pEEPROM->bautoload_fail_flag)
{
// autoload OK.
if (is_boot_from_eeprom(padapter))
{
// Read all Content from EEPROM or EFUSE.
for (i = 0; i < HWSET_MAX_SIZE_JAGUAR; i += 2)
{
//val16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1)));
//*((u16*)(&PROMContent[i])) = val16;
}
}
else
{
// Read EFUSE real map to shadow.
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
}
else
{
// update to default value 0xFF
if (!is_boot_from_eeprom(padapter))
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
}
#endif // !CONFIG_EFUSE_CONFIG_FILE
}
void
ReadChipVersion8812A(
IN PADAPTER Adapter
)
{
u32 value32;
HAL_VERSION ChipVersion;
PHAL_DATA_TYPE pHalData;
pHalData = GET_HAL_DATA(Adapter);
value32 = rtw_read32(Adapter, REG_SYS_CFG);
DBG_8192C("%s SYS_CFG(0x%X)=0x%08x \n", __FUNCTION__, REG_SYS_CFG, value32);
if(IS_HARDWARE_TYPE_8812(Adapter))
ChipVersion.ICType = CHIP_8812;
else
ChipVersion.ICType = CHIP_8821;
ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
if (Adapter->registrypriv.rf_config == RF_MAX_TYPE) {
if(IS_HARDWARE_TYPE_8812(Adapter))
ChipVersion.RFType = RF_TYPE_2T2R;//RF_2T2R;
else
ChipVersion.RFType = RF_TYPE_1T1R;//RF_1T1R;
}
if (IS_HARDWARE_TYPE_8812(Adapter))
ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
else
{
u32 vendor;
vendor = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
switch (vendor)
{
case 0:
vendor = CHIP_VENDOR_TSMC;
break;
case 1:
vendor = CHIP_VENDOR_SMIC;
break;
case 2:
vendor = CHIP_VENDOR_UMC;
break;
}
ChipVersion.VendorType = vendor;
}
ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)
if(IS_HARDWARE_TYPE_8812(Adapter))
ChipVersion.CUTVersion += 1;
//value32 = rtw_read32(Adapter, REG_GPIO_OUTSTS);
ChipVersion.ROMVer = 0; // ROM code version.
// For multi-function consideration. Added by Roger, 2010.10.06.
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
value32 = rtw_read32(Adapter, REG_MULTI_FUNC_CTRL);
pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
#if 1
dump_chip_info(ChipVersion);
#endif
_rtw_memcpy(&pHalData->VersionID, &ChipVersion, sizeof(HAL_VERSION));
if (IS_1T2R(ChipVersion)){
pHalData->rf_type = RF_1T2R;
pHalData->NumTotalRFPath = 2;
}
else if (IS_2T2R(ChipVersion)){
pHalData->rf_type = RF_2T2R;
pHalData->NumTotalRFPath = 2;
}
else{
pHalData->rf_type = RF_1T1R;
pHalData->NumTotalRFPath = 1;
}
DBG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
}
VOID
Hal_PatchwithJaguar_8812(
IN PADAPTER Adapter,
IN RT_MEDIA_STATUS MediaStatus
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_ext_priv *pmlmeext = &(Adapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
if( (MediaStatus == RT_MEDIA_CONNECT) &&
(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP ))
{
rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x1);
rtw_write8(Adapter, REG_TCR+3, BIT2);
}
else
{
rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x3F);
rtw_write8(Adapter, REG_TCR+3, BIT0|BIT1|BIT2);
}
if( (MediaStatus == RT_MEDIA_CONNECT) &&
((pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP) ||
(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP)))
{
pHalData->Reg837 |= BIT2;
rtw_write8(Adapter, rBWIndication_Jaguar+3, pHalData->Reg837);
}
else
{
pHalData->Reg837 &= (~BIT2);
rtw_write8(Adapter, rBWIndication_Jaguar+3, pHalData->Reg837);
}
}
void UpdateHalRAMask8812A(PADAPTER padapter, u32 mac_id, u8 rssi_level)
{
//volatile unsigned int result;
u8 init_rate=0;
u8 networkType, raid;
u32 mask,rate_bitmap;
u8 shortGIrate = _FALSE;
int supportRateNum = 0;
u8 arg[4] = {0};
struct sta_info *psta;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
//struct dm_priv *pdmpriv = &pHalData->dmpriv;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network);
if (mac_id >= NUM_STA) //CAM_SIZE
{
return;
}
psta = pmlmeinfo->FW_sta_info[mac_id].psta;
if(psta == NULL)
{
return;
}
switch (mac_id)
{
case 0:// for infra mode
#ifdef CONFIG_CONCURRENT_MODE
case 2:// first station uses macid=0, second station uses macid=2
#endif
supportRateNum = rtw_get_rateset_len(cur_network->SupportedRates);
networkType = judge_network_type(padapter, cur_network->SupportedRates, supportRateNum);
//pmlmeext->cur_wireless_mode = networkType;
//raid = networktype_to_raid(networkType);
raid = rtw_hal_networktype_to_raid(padapter, networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
#ifdef CONFIG_80211AC_VHT
if (pmlmeinfo->VHT_enable) {
mask |= (rtw_vht_rate_to_bitmap(psta->vhtpriv.vht_mcs_map) << 12);
shortGIrate = psta->vhtpriv.sgi;
}
else
#endif
{
mask |= (pmlmeinfo->HT_enable)? update_MCS_rate(&(pmlmeinfo->HT_caps)): 0;
if (support_short_GI(padapter, &(pmlmeinfo->HT_caps)))
shortGIrate = _TRUE;
}
break;
case 1://for broadcast/multicast
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
if(pmlmeext->cur_wireless_mode & WIRELESS_11B)
networkType = WIRELESS_11B;
else
networkType = WIRELESS_11G;
//raid = networktype_to_raid(networkType);
raid = rtw_hal_networktype_to_raid(padapter, networkType);
mask = update_basic_rate(cur_network->SupportedRates, supportRateNum);
break;
default: //for each sta in IBSS
supportRateNum = rtw_get_rateset_len(pmlmeinfo->FW_sta_info[mac_id].SupportedRates);
networkType = judge_network_type(padapter, pmlmeinfo->FW_sta_info[mac_id].SupportedRates, supportRateNum) & 0xf;
//pmlmeext->cur_wireless_mode = networkType;
//raid = networktype_to_raid(networkType);
raid = rtw_hal_networktype_to_raid(padapter, networkType);
mask = update_supported_rate(cur_network->SupportedRates, supportRateNum);
//todo: support HT in IBSS
break;
}
//mask &=0x0fffffff;
rate_bitmap = 0xffffffff;
#ifdef CONFIG_ODM_REFRESH_RAMASK
{
rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv,mac_id,mask,rssi_level);
printk("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
__FUNCTION__,mac_id,networkType,mask,rssi_level,rate_bitmap);
}
#endif
mask &= rate_bitmap;
init_rate = get_highest_rate_idx(mask)&0x3f;
//arg[0] = macid
//arg[1] = raid
//arg[2] = shortGIrate
//arg[3] = init_rate
arg[0] = mac_id;
arg[1] = raid;
arg[2] = shortGIrate;
arg[3] = init_rate;
rtl8812_set_raid_cmd(padapter, mask, arg);
//set ra_id
psta->raid = raid;
psta->init_rate = init_rate;
}
void InitDefaultValue8821A(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
struct pwrctrl_priv *pwrctrlpriv;
struct dm_priv *pdmpriv;
u8 i;
pHalData = GET_HAL_DATA(padapter);
pwrctrlpriv = &padapter->pwrctrlpriv;
pdmpriv = &pHalData->dmpriv;
// init default value
pHalData->fw_ractrl = _FALSE;
if (!pwrctrlpriv->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
// init dm default value
pHalData->bChnlBWInitialzed = _FALSE;
pHalData->odmpriv.RFCalibrateInfo.bIQKInitialized = _FALSE;
pHalData->odmpriv.RFCalibrateInfo.TM_Trigger = 0;//for IQK
pHalData->pwrGroupCnt = 0;
pHalData->PGMaxGroup = MAX_PG_GROUP;
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP_index = 0;
for (i = 0; i < HP_THERMAL_NUM; i++)
pHalData->odmpriv.RFCalibrateInfo.ThermalValue_HP[i] = 0;
}
VOID
_InitBeaconParameters_8812A(
IN PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);
// TODO: Remove these magic number
rtw_write16(Adapter, REG_TBTT_PROHIBIT,0x6404);// ms
rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8812);// 5ms
rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8812); // 2ms
// Suggested by designer timchen. Change beacon AIFS to the largest number
// beacause test chip does not contension before sending beacon. by tynli. 2009.11.03
rtw_write16(Adapter, REG_BCNTCFG, 0x660F);
pHalData->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
pHalData->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE);
pHalData->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
pHalData->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2);
pHalData->RegCR_1 = rtw_read8(Adapter, REG_CR+1);
}
static VOID
_BeaconFunctionEnable(
IN PADAPTER Adapter,
IN BOOLEAN Enable,
IN BOOLEAN Linked
)
{
rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
//SetBcnCtrlReg(Adapter, (BIT4 | BIT3 | BIT1), 0x00);
//RT_TRACE(COMP_BEACON, DBG_LOUD, ("_BeaconFunctionEnable 0x550 0x%x\n", PlatformEFIORead1Byte(Adapter, 0x550)));
rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F);
}
static void ResumeTxBeacon(_adapter *padapter)
{
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
// 2010.03.01. Marked by tynli. No need to call workitem beacause we record the value
// which should be read from register to a global variable.
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) | BIT6);
pHalData->RegFwHwTxQCtrl |= BIT6;
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
pHalData->RegReg542 |= BIT0;
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
}
static void StopTxBeacon(_adapter *padapter)
{
HAL_DATA_TYPE* pHalData = GET_HAL_DATA(padapter);
rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl) & (~BIT6));
pHalData->RegFwHwTxQCtrl &= (~BIT6);
rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
pHalData->RegReg542 &= ~(BIT0);
rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
//todo: CheckFwRsvdPageContent(Adapter); // 2010.06.23. Added by tynli.
}
void SetBeaconRelatedRegisters8812A(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv);
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
u32 bcn_ctrl_reg = REG_BCN_CTRL;
//reset TSF, enable update TSF, correcting TSF On Beacon
//REG_BCN_INTERVAL
//REG_BCNDMATIM
//REG_ATIMWND
//REG_TBTT_PROHIBIT
//REG_DRVERLYINT
//REG_BCN_MAX_ERR
//REG_BCNTCFG //(0x510)
//REG_DUAL_TSF_RST
//REG_BCN_CTRL //(0x550)
//BCN interval
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->iface_type == IFACE_PORT1){
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
#endif
rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtw_write8(padapter, REG_ATIMWND, 0x02);// 2ms
_InitBeaconParameters_8812A(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
value32 =rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
// NOTE: Fix test chip's bug (about contention windows's randomness)
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
//rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6));
//rtw_write8(padapter, 0x541, 0xff);
//rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0));
rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1));
}
static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
{
u8 val8;
u8 mode = *((u8 *)val);
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
// disable Port1 TSF update
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_TSF_UDT);
// set net_type
val8 = rtw_read8(Adapter, MSR)&0x03;
val8 |= (mode<<2);
rtw_write8(Adapter, MSR, val8);
DBG_871X("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8812AU(Adapter,_TRUE, 0, IMR_BCNDMAINT1_8812);
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812));
#endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
StopTxBeacon(Adapter);
}
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x19);//disable atim wnd
//rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a);
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8812AU(Adapter,_TRUE ,IMR_BCNDMAINT1_8812, 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812), 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); // 10ms for port1
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF2
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//enable BCN1 Function for if2
//don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));
if(IS_HARDWARE_TYPE_8821(Adapter))
{
// select BCN on port 1
rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812)|BIT(5));
}
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL,
rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
#endif
//BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked
//rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5));
//rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3));
//dis BCN0 ATIM WND if if1 is station
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else //else for port0
#endif // CONFIG_CONCURRENT_MODE
{
// disable Port0 TSF update
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
// set net_type
val8 = rtw_read8(Adapter, MSR)&0x0c;
val8 |= mode;
rtw_write8(Adapter, MSR, val8);
DBG_871X("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
{
#ifdef CONFIG_CONCURRENT_MODE
if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
#endif // CONFIG_CONCURRENT_MODE
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
UpdateInterruptMask8812AU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_8812);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812));
#endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
StopTxBeacon(Adapter);
}
rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd
//rtw_write8(Adapter,REG_BCN_CTRL, 0x18);
}
else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
{
ResumeTxBeacon(Adapter);
rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
}
else if(mode == _HW_STATE_AP_)
{
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8812AU(Adapter,_TRUE ,IMR_BCNDMAINT0_8812, 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812), 0);
#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif //CONFIG_INTERRUPT_BASED_TXBCN
ResumeTxBeacon(Adapter);
rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
//Set RCR
//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);
//enable to rx ps-poll
rtw_write16(Adapter, REG_RXFLTMAP1, 0x0400);
//Beacon Control related register for first time
rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms
//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
rtw_write8(Adapter, REG_ATIMWND, 0x0a); // 10ms
rtw_write16(Adapter, REG_BCNTCFG, 0x00);
rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//enable BCN0 Function for if1
//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));
if(IS_HARDWARE_TYPE_8821(Adapter))
{
// select BCN on port 0
rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812)&(~BIT(5)));
}
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
rtw_write8(Adapter, REG_BCN_CTRL_1,
rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif
//dis BCN1 ATIM WND if if2 is station
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Reset TSF for STA+AP concurrent mode
if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
}
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
}
static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_macid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_macid = REG_MACID1;
}
else
#endif
{
reg_macid = REG_MACID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_macid+idx), val[idx]);
}
}
static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
{
u8 idx = 0;
u32 reg_bssid;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
reg_bssid = REG_BSSID1;
}
else
#endif
{
reg_bssid = REG_BSSID;
}
for(idx = 0 ; idx < 6; idx++)
{
rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
}
}
static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
{
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
{
bcn_ctrl_reg = REG_BCN_CTRL_1;
}
else
#endif
{
bcn_ctrl_reg = REG_BCN_CTRL;
}
if(*((u8 *)val))
{
rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
}
else
{
rtw_write8(Adapter, bcn_ctrl_reg, rtw_read8(Adapter, bcn_ctrl_reg)&(~(EN_BCN_FUNCTION | EN_TXBCN_RPT)));
}
}
static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u64 tsf;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(Adapter);
}
if(Adapter->iface_type == IFACE_PORT1)
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port0 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
else
{
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR, tsf);
rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
) {
//disable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
rtw_write32(Adapter, REG_TSFTR1, tsf);
rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);
//enable related TSF function
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
// Update buddy port's TSF if it is SoftAP for beacon TX issue!
if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
DBG_871X("ERROR! %s()-%d: Reset port1 TSF fail\n",
__FUNCTION__, __LINE__);
#endif // CONFIG_TSF_RESET_OFFLOAD
}
}
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(Adapter);
}
#endif
}
static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
if(Adapter->iface_type == IFACE_PORT1)
{
//reset TSF1
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));
//disable update TSF1
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));
}
else
{
//reset TSF
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
//disable update TSF
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
}
#endif
}
static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
{
u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
u16 value_rxfltmap2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv=&(Adapter->mlmepriv);
#ifdef CONFIG_CONCURRENT_MODE
if(Adapter->iface_type == IFACE_PORT1)
reg_bcn_ctl = REG_BCN_CTRL_1;
else
#endif
reg_bcn_ctl = REG_BCN_CTRL;
#ifdef CONFIG_FIND_BEST_CHANNEL
rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);
// Recieve all data frames
value_rxfltmap2 = 0xFFFF;
#else /* CONFIG_FIND_BEST_CHANNEL */
rcr_clear_bit = RCR_CBSSID_BCN;
//config RCR to receive different BSSID & not to receive data frame
value_rxfltmap2 = 0;
#endif /* CONFIG_FIND_BEST_CHANNEL */
if( (check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
#ifdef CONFIG_CONCURRENT_MODE
|| (check_buddy_fwstate(Adapter, WIFI_AP_STATE) == _TRUE)
#endif
)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#ifdef CONFIG_TDLS
// TDLS will clear RCR_CBSSID_DATA bit for connection.
else if (Adapter->tdlsinfo.setup_state & TDLS_LINKED_STATE)
{
rcr_clear_bit = RCR_CBSSID_BCN;
}
#endif // CONFIG_TDLS
value_rcr = rtw_read32(Adapter, REG_RCR);
if(*((u8 *)val))//under sitesurvey
{
value_rcr &= ~(rcr_clear_bit);
rtw_write32(Adapter, REG_RCR, value_rcr);
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
//disable update TSF
rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)|DIS_TSF_UDT);
}
// Save orignal RRSR setting.
pHalData->RegRRSR = rtw_read16(Adapter, REG_RRSR);
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
#endif
}
else//sitesurvey done
{
if(check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE))
#ifdef CONFIG_CONCURRENT_MODE
|| check_buddy_fwstate(Adapter, (_FW_LINKED|WIFI_AP_STATE))
#endif
)
{
//enable to rx data frame
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
}
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
//enable update TSF
rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)&(~(DIS_TSF_UDT)));
}
value_rcr |= rcr_clear_bit;
rtw_write32(Adapter, REG_RCR, value_rcr);
// Restore orignal RRSR setting.
rtw_write16(Adapter, REG_RRSR, pHalData->RegRRSR);
#ifdef CONFIG_CONCURRENT_MODE
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
}
#endif
}
}
static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
u8 RetryLimit = 0x30;
u8 type = *((u8 *)val);
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &Adapter->mlmepriv;
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
if(type == 0) // prepare to join
{
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
StopTxBeacon(Adapter);
}
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);
}
else
{
rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
}
if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
}
else if(type == 1) //joinbss_event call back when join res < 0
{
if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))
rtw_write16(Adapter, REG_RXFLTMAP2,0x00);
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
else if(type == 2) //sta add event call back
{
//enable update TSF
if(Adapter->iface_type == IFACE_PORT1)
rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
else
rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
//fixed beacon issue for 8191su...........
rtw_write8(Adapter,0x542 ,0x02);
RetryLimit = 0x7;
}
if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
check_buddy_fwstate(Adapter, _FW_LINKED))
{
ResumeTxBeacon(Adapter);
//reset TSF 1/2 after ResumeTxBeacon
rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
}
}
rtw_write16(Adapter, REG_RL, RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT);
#endif
}
void SetHwReg8812A(PADAPTER padapter, u8 variable, u8 *pval)
{
PHAL_DATA_TYPE pHalData;
struct dm_priv *pdmpriv;
PDM_ODM_T podmpriv;
u8 val8;
u16 val16;
u32 val32;
_func_enter_;
pHalData = GET_HAL_DATA(padapter);
pdmpriv = &pHalData->dmpriv;
podmpriv = &pHalData->odmpriv;
switch (variable)
{
case HW_VAR_MEDIA_STATUS:
val8 = rtw_read8(padapter, MSR) & 0x0c;
val8 |= *pval;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_MEDIA_STATUS1:
val8 = rtw_read8(padapter, MSR) & 0x03;
val8 |= *pval << 2;
rtw_write8(padapter, MSR, val8);
break;
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(padapter, variable, pval);
break;
case HW_VAR_MAC_ADDR:
hw_var_set_macaddr(padapter, variable, pval);
break;
case HW_VAR_BSSID:
hw_var_set_bssid(padapter, variable, pval);
break;
case HW_VAR_BASIC_RATE:
{
u16 BrateCfg = 0;
u8 RateIndex = 0;
// 2007.01.16, by Emily
// Select RRSR (in Legacy-OFDM and CCK)
// For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate.
// We do not use other rates.
HalSetBrateCfg(padapter, pval, &BrateCfg);
if(pHalData->CurrentBandType == BAND_ON_2_4G)
{
//CCK 2M ACK should be disabled for some BCM and Atheros AP IOT
//because CCK 2M has poor TXEVM
//CCK 5.5M & 11M ACK should be enabled for better performance
pHalData->BasicRateSet = BrateCfg = (BrateCfg |0xd) & 0x15d;
BrateCfg |= 0x01; // default enable 1M ACK rate
}
else // 5G
{
pHalData->BasicRateSet &= 0xFF0;
BrateCfg |= 0x10; // default enable 6M ACK rate
}
// DBG_8192C("HW_VAR_BASIC_RATE: BrateCfg(%#x)\n", BrateCfg);
// Set RRSR rate table.
rtw_write8(padapter, REG_RRSR, BrateCfg&0xff);
rtw_write8(padapter, REG_RRSR+1, (BrateCfg>>8)&0xff);
rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(padapter, REG_TXPAUSE, *pval);
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(padapter, variable, pval);
break;
case HW_VAR_CORRECT_TSF:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_correct_tsf(padapter, variable, pval);
#else
{
u64 tsf;
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
//rtw_write8(padapter, REG_TXPAUSE, (rtw_read8(padapter, REG_TXPAUSE)|BIT(6)));
StopTxBeacon(padapter);
}
//disable related TSF function
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)&(~BIT(3)));
rtw_write32(padapter, REG_TSFTR, tsf);
rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
//enable related TSF function
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)|BIT(3));
if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
{
//pHalData->RegTxPause &= (~STOP_BCNQ);
//rtw_write8(padapter, REG_TXPAUSE, (rtw_read8(padapter, REG_TXPAUSE)&(~BIT(6))));
ResumeTxBeacon(padapter);
}
}
#endif
break;
case HW_VAR_CHECK_BSSID:
val32 = rtw_read32(padapter, REG_RCR);
if (*pval)
val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
else
val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
rtw_write32(padapter, REG_RCR, val32);
break;
case HW_VAR_MLME_DISCONNECT:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_disconnect(padapter, variable, pval);
#else
{
// Set RCR to not to receive data frame when NO LINK state
// val32 = rtw_read32(padapter, REG_RCR);
// val32 &= ~RCR_ADF;
// rtw_write32(padapter, REG_RCR, val32);
// reject all data frames
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
// reset TSF
val8 = BIT(0) | BIT(1);
rtw_write8(padapter, REG_DUAL_TSF_RST, val8);
// disable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
#endif
break;
case HW_VAR_MLME_SITESURVEY:
hw_var_set_mlme_sitesurvey(padapter, variable, pval);
#ifdef CONFIG_BT_COEXIST
BT_WifiScanNotify(padapter, *pval?_TRUE:_FALSE);
#endif
break;
case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
hw_var_set_mlme_join(padapter, variable, pval);
#else // !CONFIG_CONCURRENT_MODE
{
u8 RetryLimit = 0x30;
u8 type = *(u8*)pval;
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
EEPROM_EFUSE_PRIV *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
if (type == 0) // prepare to join
{
//enable to rx data frame.Accept all data frame
//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
val32 = rtw_read32(padapter, REG_RCR);
if (padapter->in_cta_test)
val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);//| RCR_ADF
else
val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
rtw_write32(padapter, REG_RCR, val32);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
{
RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
}
else // Ad-hoc Mode
{
RetryLimit = 0x7;
}
pHalData->bNeedIQK = _TRUE;
}
else if (type == 1) //joinbss_event call back when join res < 0
{
rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
}
else if (type == 2) //sta add event call back
{
//enable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
{
RetryLimit = 0x7;
}
}
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
}
#endif // !CONFIG_CONCURRENT_MODE
#ifdef CONFIG_BT_COEXIST
switch (*pval)
{
case 0:
// prepare to join
BT_WifiAssociateNotify(padapter, _TRUE);
break;
case 1:
// joinbss_event callback when join res < 0
BT_WifiAssociateNotify(padapter, _FALSE);
break;
case 2:
// sta add event callback
// BT_WifiMediaStatusNotify(padapter, RT_MEDIA_CONNECT);
break;
}
#endif
break;
case HW_VAR_ON_RCR_AM:
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_AM;
rtw_write32(padapter, REG_RCR, val32);
DBG_8192C("%s, %d, RCR= %x\n", __FUNCTION__, __LINE__, rtw_read32(padapter, REG_RCR));
break;
case HW_VAR_OFF_RCR_AM:
val32 = rtw_read32(padapter, REG_RCR);
val32 &= ~RCR_AM;
rtw_write32(padapter, REG_RCR, val32);
DBG_8192C("%s, %d, RCR= %x\n", __FUNCTION__, __LINE__, rtw_read32(padapter, REG_RCR));
break;
case HW_VAR_BEACON_INTERVAL:
rtw_write16(padapter, REG_BCN_INTERVAL, *(u16*)pval);
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
{
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
u16 bcn_interval;
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &pmlmeext->mlmext_info;
bcn_interval = *((u16*)pval);
if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
{
DBG_8192C("%s==> bcn_interval:%d, eraly_int:%d\n", __FUNCTION__, bcn_interval, bcn_interval>>1);
rtw_write8(padapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio
}
}
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
break;
case HW_VAR_SLOT_TIME:
rtw_write8(padapter, REG_SLOT, *pval);
break;
case HW_VAR_RESP_SIFS:
// SIFS_Timer = 0x0a0a0808;
// RESP_SIFS for CCK
rtw_write8(padapter, REG_RESP_SIFS_CCK, pval[0]); // SIFS_T2T_CCK (0x08)
rtw_write8(padapter, REG_RESP_SIFS_CCK+1, pval[1]); //SIFS_R2T_CCK(0x08)
// RESP_SIFS for OFDM
rtw_write8(padapter, REG_RESP_SIFS_OFDM, pval[2]); //SIFS_T2T_OFDM (0x0a)
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, pval[3]); //SIFS_R2T_OFDM(0x0a)
break;
case HW_VAR_ACK_PREAMBLE:
{
u8 bShortPreamble = *pval;
// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
val8 = (pHalData->nCur40MhzPrimeSC) << 5;
if (bShortPreamble)
val8 |= 0x80;
rtw_write8(padapter, REG_RRSR+2, val8);
}
break;
case HW_VAR_SEC_CFG:
#ifdef CONFIG_CONCURRENT_MODE
// enable tx enc and rx dec engine, and no key search for MC/BC
val8 = 0x0c | BIT(5);
#else
val8 = *pval;
#endif
rtw_write8(padapter, REG_SECCFG, val8);
break;
case HW_VAR_DM_FLAG:
podmpriv->SupportAbility = *(u32*)pval;
break;
case HW_VAR_DM_FUNC_OP:
if (*pval) // save dm flag
podmpriv->BK_SupportAbility = podmpriv->SupportAbility;
else // restore dm flag
podmpriv->SupportAbility = podmpriv->BK_SupportAbility;
break;
case HW_VAR_DM_FUNC_SET:
val32 = *(u32*)pval;
if (val32 == DYNAMIC_ALL_FUNC_ENABLE) {
pdmpriv->DMFlag = pdmpriv->InitDMFlag;
podmpriv->SupportAbility = pdmpriv->InitODMFlag;
} else {
podmpriv->SupportAbility |= val32;
}
break;
case HW_VAR_DM_FUNC_CLR:
val32 = *(u32*)pval;
// input is already a mask to clear function
// don't invert it again! George,Lucas@20130513
podmpriv->SupportAbility &= val32;
break;
case HW_VAR_CAM_EMPTY_ENTRY:
{
u8 ucIndex = *pval;
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i=0; i<CAM_CONTENT_COUNT; i++)
{
// filled id in CAM config 2 byte
if (i == 0)
{
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
//ulContent |= CAM_VALID;
}
else
{
ulContent = 0;
}
// polling bit, and No Write enable, and address
ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
// write content 0 is equall to mark invalid
rtw_write32(padapter, WCAMI, ulContent); //delay_ms(40);
rtw_write32(padapter, RWCAM, ulCommand); //delay_ms(40);
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
val32 = BIT(31) | BIT(30);
rtw_write32(padapter, RWCAM, val32);
break;
case HW_VAR_CAM_WRITE:
{
u32 cmd;
u32 *cam_val = (u32*)pval;
rtw_write32(padapter, WCAMI, cam_val[0]);
cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
rtw_write32(padapter, RWCAM, cmd);
}
break;
case HW_VAR_CAM_READ:
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(padapter, REG_EDCA_VO_PARAM, *(u32*)pval);
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(padapter, REG_EDCA_VI_PARAM, *(u32*)pval);
break;
case HW_VAR_AC_PARAM_BE:
pHalData->AcParam_BE = *(u32*)pval;
rtw_write32(padapter, REG_EDCA_BE_PARAM, *(u32*)pval);
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(padapter, REG_EDCA_BK_PARAM, *(u32*)pval);
break;
case HW_VAR_ACM_CTRL:
{
u8 acm_ctrl;
u8 AcmCtrl;
acm_ctrl = *(u8*)pval;
AcmCtrl = rtw_read8(padapter, REG_ACMHWCTRL);
if (acm_ctrl > 1)
AcmCtrl = AcmCtrl | 0x1;
if (acm_ctrl & BIT(3))
AcmCtrl |= AcmHw_VoqEn;
else
AcmCtrl &= (~AcmHw_VoqEn);
if (acm_ctrl & BIT(2))
AcmCtrl |= AcmHw_ViqEn;
else
AcmCtrl &= (~AcmHw_ViqEn);
if (acm_ctrl & BIT(1))
AcmCtrl |= AcmHw_BeqEn;
else
AcmCtrl &= (~AcmHw_BeqEn);
DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
rtw_write8(padapter, REG_ACMHWCTRL, AcmCtrl );
}
break;
case HW_VAR_AMPDU_MIN_SPACE:
pHalData->AMPDUDensity = *(u8*)pval;
break;
case HW_VAR_AMPDU_FACTOR:
{
u32 AMPDULen = *(u8*)pval;
if (IS_HARDWARE_TYPE_8812(padapter))
{
if (AMPDULen < VHT_AGG_SIZE_128K)
AMPDULen = (0x2000 << *(u8*)pval) - 1;
else
AMPDULen = 0x1ffff;
}
else if(IS_HARDWARE_TYPE_8821(padapter))
{
if (AMPDULen < HT_AGG_SIZE_64K)
AMPDULen = (0x2000 << *(u8*)pval) - 1;
else
AMPDULen = 0xffff;
}
AMPDULen |= BIT(31);
rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8812, AMPDULen);
}
break;
#if 0
case HW_VAR_RXDMA_AGG_PG_TH:
rtw_write8(padapter, REG_RXDMA_AGG_PG_TH, *pval);
break;
#endif
case HW_VAR_H2C_FW_PWRMODE:
{
u8 psmode = *pval;
// Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power
// saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang.
if ((psmode != PS_MODE_ACTIVE) && (!IS_92C_SERIAL(pHalData->VersionID)))
{
ODM_RF_Saving(podmpriv, _TRUE);
}
rtl8812_set_FwPwrMode_cmd(padapter, psmode);
}
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8812_set_FwJoinBssReport_cmd(padapter, *pval);
break;
#ifdef CONFIG_P2P_PS
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8812_set_p2p_ps_offload_cmd(padapter, *pval);
break;
#endif // CONFIG_P2P_PS
#ifdef CONFIG_TDLS
case HW_VAR_TDLS_WRCR:
val32 = rtw_read32(padapter, REG_RCR);
val32 &= ~RCR_CBSSID_DATA;
rtw_write32(padapter, REG_RCR, val32);
break;
case HW_VAR_TDLS_INIT_CH_SEN:
val32 = rtw_read32(padapter, REG_RCR);
val32 &= (~RCR_CBSSID_DATA) & (~RCR_CBSSID_BCN);
rtw_write32(padapter, REG_RCR, val32);
rtw_write16(padapter, REG_RXFLTMAP2, 0xffff);
// disable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 |= BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
break;
case HW_VAR_TDLS_DONE_CH_SEN:
// enable update TSF
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_BCN_CTRL, val8);
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_CBSSID_BCN;
rtw_write32(padapter, REG_RCR, val32);
break;
case HW_VAR_TDLS_RS_RCR:
val32 = rtw_read32(padapter, REG_RCR);
val32 |= RCR_CBSSID_DATA;
rtw_write32(padapter, REG_RCR, val32);
break;
#endif // CONFIG_TDLS
case HW_VAR_INITIAL_GAIN:
{
pDIG_T pDigTable = &podmpriv->DM_DigTable;
u32 rx_gain = *(u32*)pval;
if (rx_gain == 0xff) {//restore rx gain
ODM_Write_DIG(podmpriv, pDigTable->BackupIGValue);
} else {
pDigTable->BackupIGValue = pDigTable->CurIGValue;
ODM_Write_DIG(podmpriv, rx_gain);
}
}
break;
#ifdef CONFIG_BT_COEXIST
case HW_VAR_BT_SET_COEXIST:
rtl8812_set_dm_bt_coexist(padapter, *pval);
break;
case HW_VAR_BT_ISSUE_DELBA:
rtl8812_issue_delete_ba(padapter, *pval);
break;
#endif
#if (RATE_ADAPTIVE_SUPPORT==1)
case HW_VAR_RPT_TIMER_SETTING:
{
val16 = *(u16*)pval;
ODM_RA_Set_TxRPT_Time(podmpriv, val16);
}
break;
#endif
#ifdef CONFIG_SW_ANTENNA_DIVERSITY
case HW_VAR_ANTENNA_DIVERSITY_LINK:
//SwAntDivRestAfterLink8192C(padapter);
ODM_SwAntDivRestAfterLink(podmpriv);
break;
case HW_VAR_ANTENNA_DIVERSITY_SELECT:
{
u8 Optimum_antenna = *pval;
u8 Ant;
//switch antenna to Optimum_antenna
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
if (pHalData->CurAntenna != Optimum_antenna)
{
Ant = (Optimum_antenna==2) ? MAIN_ANT : AUX_ANT;
ODM_UpdateRxIdleAnt_88E(podmpriv, Ant);
pHalData->CurAntenna = Optimum_antenna;
//DBG_8192C("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
}
}
break;
#endif
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *pval;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *(u16*)pval;
break;
#if 0
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *pval;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *(u16*)pval;
#else
BTEfuseUsedBytes = *(u16*)pval;
#endif
break;
#endif
case HW_VAR_FIFO_CLEARN_UP:
{
struct pwrctrl_priv *pwrpriv;
u8 trycnt = 100;
pwrpriv = &padapter->pwrctrlpriv;
// pause tx
rtw_write8(padapter, REG_TXPAUSE, 0xff);
// keep sn
padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
if (pwrpriv->bkeepfwalive != _TRUE)
{
// RX DMA stop
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(padapter, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (!val32)
break;
} while (trycnt--);
if (trycnt == 0)
{
DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
}
//RQPN Load 0
rtw_write16(padapter, REG_RQPN_NPQ, 0x0);
rtw_write32(padapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(10);
}
}
break;
#ifdef CONFIG_CONCURRENT_MODE
case HW_VAR_CHECK_TXBUF:
{
u32 i;
u8 RetryLimit;
u32 reg_200, reg_204;
RetryLimit = 0x01;
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
for (i=0; i<1000; i++)
{
reg_200 = rtw_read32(padapter, 0x200);
reg_204 = rtw_read32(padapter, 0x204);
if (reg_200 != reg_204)
{
// DBG_8192C("%s: (HW_VAR_CHECK_TXBUF)Tx buffer NOT empty - 0x204=0x%x, 0x200=0x%x (%d)\n", __FUNCTION__, reg_204, reg_200, i);
rtw_msleep_os(10);
}
else
{
DBG_8192C("%s: (HW_VAR_CHECK_TXBUF)Tx buffer Empty(%d)\n", __FUNCTION__, i);
break;
}
}
if (i == 1000)
{
DBG_8192C("%s: (HW_VAR_CHECK_TXBUF)TXBUF is still not Empty after %d times check!\n", __FUNCTION__, i);
DBG_8192C("%s: (HW_VAR_CHECK_TXBUF)0x204=0x%08x, 0x200=0x%08x\n", __FUNCTION__, reg_204, reg_200);
}
RetryLimit = 0x30;
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(padapter, REG_RL, val16);
}
break;
#endif
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HW_VAR_TX_RPT_MAX_MACID:
{
u8 maxMacid = *pval;
DBG_8192C("### MacID(%d),Set Max Tx RPT MID(%d)\n", maxMacid, maxMacid+1);
rtw_write8(padapter, REG_TX_RPT_CTRL+1, maxMacid+1);
}
break;
#endif
case HW_VAR_H2C_MEDIA_STATUS_RPT:
{
struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
RT_MEDIA_STATUS mstatus = *(u16*)pval & 0xFF;
rtl8812_set_FwMediaStatus_cmd(padapter, *(u16*)pval);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
Hal_PatchwithJaguar_8812(padapter, mstatus);
}
break;
case HW_VAR_APFM_ON_MAC:
pHalData->bMacPwrCtrlOn = *pval;
DBG_8192C("%s: bMacPwrCtrlOn=%d\n", __FUNCTION__, pHalData->bMacPwrCtrlOn);
break;
case HW_VAR_NAV_UPPER:
{
u32 usNavUpper = *((u32*)pval);
if (usNavUpper > HAL_NAV_UPPER_UNIT * 0xFF)
{
DBG_8192C("%s: [HW_VAR_NAV_UPPER] set value(0x%08X us) is larger than (%d * 0xFF)!\n",
__FUNCTION__, usNavUpper, HAL_NAV_UPPER_UNIT);
break;
}
// The value of ((usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT)
// is getting the upper integer.
usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT;
rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->iface_type == IFACE_PORT1)
{
val8 = rtw_read8(padapter, REG_TDECTRL1_8812+2);
val8 |= BIT(0);
rtw_write8(padapter, REG_TDECTRL1_8812+2, val8);
}
else
#endif
{
// BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw
val8 = rtw_read8(padapter, REG_TDECTRL+2);
val8 |= BIT(0);
rtw_write8(padapter, REG_TDECTRL+2, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->iface_type == IFACE_PORT1)
{
// SW_BCN_SEL - Port1
val8 = rtw_read8(padapter, REG_TDECTRL1_8812+2);
val8 |= BIT(4);
rtw_write8(padapter, REG_TDECTRL1_8812+2, val8);
}
else
#endif
{
// SW_BCN_SEL - Port0
val8 = rtw_read8(padapter, REG_TDECTRL1_8812+2);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_TDECTRL1_8812+2, val8);
}
break;
case HW_VAR_WIRELESS_MODE:
{
u8 R2T_SIFS = 0, SIFS_Timer = 0;
u8 wireless_mode = *pval;
if ((wireless_mode == WIRELESS_11BG) || (wireless_mode == WIRELESS_11G))
SIFS_Timer = 0xa;
else
SIFS_Timer = 0xe;
// SIFS for OFDM Data ACK
rtw_write8(padapter, REG_SIFS_CTX+1, SIFS_Timer);
// SIFS for OFDM consecutive tx like CTS data!
rtw_write8(padapter, REG_SIFS_TRX+1, SIFS_Timer);
rtw_write8(padapter,REG_SPEC_SIFS+1, SIFS_Timer);
rtw_write8(padapter,REG_MAC_SPEC_SIFS+1, SIFS_Timer);
// 20100719 Joseph: Revise SIFS setting due to Hardware register definition change.
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, SIFS_Timer);
rtw_write8(padapter, REG_RESP_SIFS_OFDM, SIFS_Timer);
//
// Adjust R2T SIFS for IOT issue. Add by hpfan 2013.01.25
// Set R2T SIFS to 0x0a for Atheros IOT. Add by hpfan 2013.02.22
//
// Mac has 10 us delay so use 0xa value is enough.
R2T_SIFS = 0xa;
rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, R2T_SIFS);
}
break;
default:
DBG_8192C("%s: [WARNNING] variable(%d) not defined!\n", __FUNCTION__, variable);
break;
}
_func_exit_;
}
void GetHwReg8812A(PADAPTER padapter, u8 variable, u8 *pval)
{
PHAL_DATA_TYPE pHalData;
PDM_ODM_T podmpriv;
u8 val8;
u16 val16;
u32 val32;
_func_enter_;
pHalData = GET_HAL_DATA(padapter);
podmpriv = &pHalData->odmpriv;
switch (variable)
{
case HW_VAR_BASIC_RATE:
*(u16*)pval = pHalData->BasicRateSet;
break;
case HW_VAR_TXPAUSE:
*pval = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (IS_HARDWARE_TYPE_8821(padapter) && padapter->iface_type == IFACE_PORT1)
{
val8 = rtw_read8(padapter, REG_TDECTRL1_8812+2);
*pval = (BIT(0) & val8) ? _TRUE:_FALSE;
}
else
#endif
{
//BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2
val8 = rtw_read8(padapter, REG_TDECTRL+2);
*pval = (BIT(0) & val8) ? _TRUE:_FALSE;
}
break;
case HW_VAR_DM_FLAG:
*pval = podmpriv->SupportAbility;
break;
case HW_VAR_RF_TYPE:
*pval = pHalData->rf_type;
break;
case HW_VAR_FWLPS_RF_ON:
//When we halt NIC, we should check if FW LPS is leave.
if(padapter->pwrctrlpriv.rf_pwrstate == rf_off)
{
// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
// because Fw is unload.
*pval = _TRUE;
}
else
{
u32 valRCR;
valRCR = rtw_read32(padapter, REG_RCR);
valRCR &= 0x00070000;
if(valRCR)
*pval = _FALSE;
else
*pval = _TRUE;
}
break;
#ifdef CONFIG_ANTENNA_DIVERSITY
case HW_VAR_CURRENT_ANTENNA:
*pval = pHalData->CurAntenna;
break;
#endif
case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22.
*(u16*)pval = pHalData->EfuseUsedBytes;
break;
case HW_VAR_APFM_ON_MAC:
*pval = pHalData->bMacPwrCtrlOn;
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*pval = (val16 & BIT(10)) ? _TRUE:_FALSE;
break;
default:
DBG_8192C("%s: [WARNNING] variable(%d) not defined!\n", __FUNCTION__, variable);
break;
}
_func_exit_;
}
/*
* Description:
* Change default setting of specified variable.
*/
u8 SetHalDefVar8812A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable)
{
case HAL_DEF_DBG_DM_FUNC:
{
u8 dm_func;
struct dm_priv *pdmpriv;
DM_ODM_T *podmpriv;
dm_func = *((u8*)pval);
pdmpriv = &pHalData->dmpriv;
podmpriv = &pHalData->odmpriv;
if (dm_func == 0)
{
//disable all dynamic func
podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE;
DBG_8192C("==> Disable all dynamic function...\n");
}
else if (dm_func == 1)
{
// disable DIG
podmpriv->SupportAbility &= (~DYNAMIC_BB_DIG);
DBG_8192C("==> Disable DIG...\n");
}
else if (dm_func == 2)
{
// disable High power
podmpriv->SupportAbility &= (~DYNAMIC_BB_DYNAMIC_TXPWR);
}
else if (dm_func == 3)
{
// disable tx power tracking
podmpriv->SupportAbility &= (~DYNAMIC_RF_CALIBRATION);
DBG_8192C("==> Disable tx power tracking...\n");
}
// else if (dm_func == 4)
// {
// disable BT coexistence
// pdmpriv->DMFlag &= (~DYNAMIC_FUNC_BT);
// }
else if (dm_func == 5)
{
// disable antenna diversity
podmpriv->SupportAbility &= (~DYNAMIC_BB_ANT_DIV);
}
else if (dm_func == 6)
{
// turn on all dynamic func
if (!(podmpriv->SupportAbility & DYNAMIC_BB_DIG))
{
pDIG_T pDigTable = &podmpriv->DM_DigTable;
pDigTable->CurIGValue = rtw_read8(padapter, 0xc50);
}
// pdmpriv->DMFlag |= DYNAMIC_FUNC_BT;
podmpriv->SupportAbility = DYNAMIC_ALL_FUNC_ENABLE;
DBG_8192C("==> Turn on all dynamic function...\n");
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
pHalData->bDumpRxPkt = *(u8*)pval;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
pHalData->bDumpTxPkt = *(u8*)pval;
break;
case HW_DEF_FA_CNT_DUMP:
{
u8 mac_id;
PDM_ODM_T pDM_Odm;
mac_id = *(u8*)pval;
pDM_Odm = &pHalData->odmpriv;
if (padapter->bLinkInfoDump & BIT(1))
pDM_Odm->DebugComponents |= ODM_COMP_DIG;
else
pDM_Odm->DebugComponents &= ~ODM_COMP_DIG;
if (padapter->bLinkInfoDump & BIT(2))
pDM_Odm->DebugComponents |= ODM_COMP_FA_CNT;
else
pDM_Odm->DebugComponents &= ~ODM_COMP_FA_CNT;
}
break;
case HW_DEF_ODM_DBG_FLAG:
{
u64 DebugComponents;
PDM_ODM_T pDM_Odm;
DebugComponents = *((u64*)pval);
pDM_Odm = &pHalData->odmpriv;
pDM_Odm->DebugComponents = DebugComponents;
}
break;
default:
DBG_8192C("%s: [ERROR] HAL_DEF_VARIABLE(%d) not defined!\n", __FUNCTION__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
/*
* Description:
* Query setting of specified variable.
*/
u8 GetHalDefVar8812A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable)
{
case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB:
{
struct mlme_priv *pmlmepriv;
struct sta_priv *pstapriv;
struct sta_info *psta;
pmlmepriv = &padapter->mlmepriv;
pstapriv = &padapter->stapriv;
psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress);
if (psta)
{
*((int*)pval) = psta->rssi_stat.UndecoratedSmoothedPWDB;
}
}
break;
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_DEF_IS_SUPPORT_ANT_DIV:
*((u8*)pval) = (pHalData->AntDivCfg==0) ? _FALSE : _TRUE;
break;
#endif
#ifdef CONFIG_ANTENNA_DIVERSITY
case HAL_DEF_CURRENT_ANTENNA:
*((u8*)pval) = pHalData->CurAntenna;
break;
#endif
case HAL_DEF_DRVINFO_SZ:
*((u32*)pval) = DRVINFO_SZ;
break;
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32*)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32*)pval) = RXDESC_SIZE + DRVINFO_SZ;
break;
case HAL_DEF_DBG_DM_FUNC:
*((u32*)pval) = pHalData->odmpriv.SupportAbility;
break;
#if (RATE_ADAPTIVE_SUPPORT == 1)
case HAL_DEF_RA_DECISION_RATE:
{
u8 MacID = *(u8*)pval;
*((u8*)pval) = ODM_RA_GetDecisionRate_8812A(&pHalData->odmpriv, MacID);
}
break;
case HAL_DEF_RA_SGI:
{
u8 MacID = *(u8*)pval;
*((u8*)pval) = ODM_RA_GetShortGI_8812A(&pHalData->odmpriv, MacID);
}
break;
#endif // (RATE_ADAPTIVE_SUPPORT == 1)
#if (POWER_TRAINING_ACTIVE == 1)
case HAL_DEF_PT_PWR_STATUS:
{
u8 MacID = *(u8*)pval;
*(u8*)pval = ODM_RA_GetHwPwrStatus_8812A(&pHalData->odmpriv, MacID);
}
break;
#endif //(POWER_TRAINING_ACTIVE == 1)
case HW_VAR_MAX_RX_AMPDU_FACTOR:
*((u32*)pval) = MAX_AMPDU_FACTOR_64K;
break;
case HAL_DEF_LDPC:
if (IS_VENDOR_8812A_C_CUT(padapter))
*(u8*)pval = _TRUE;
else if (IS_HARDWARE_TYPE_8821(padapter))
*(u8*)pval = _FALSE;
else
*(u8*)pval = _FALSE;
#if (MP_DRIVER == 1)
if (padapter->registrypriv.mp_mode == 1)
*(u8*)pval = _TRUE;
#endif
break;
case HAL_DEF_TX_STBC:
if (pHalData->rf_type == RF_2T2R)
*(u8*)pval = 1;
else
*(u8*)pval = 0;
break;
case HAL_DEF_RX_STBC:
*(u8*)pval = 1;
break;
case HW_DEF_RA_INFO_DUMP:
{
u8 mac_id = *(u8*)pval;
u32 cmd = 0x40000400 | mac_id;
u32 ra_info1, ra_info2;
u32 rate_mask1, rate_mask2;
if ((padapter->bLinkInfoDump & BIT(0))
&& (check_fwstate(&padapter->mlmepriv, _FW_LINKED) == _TRUE))
{
DBG_8192C("============ RA status check Mac_id:%d ===================\n", mac_id);
rtw_write32(padapter, REG_HMEBOX_E2_E3_8812,cmd);
ra_info1 = rtw_read32(padapter, REG_RSVD5_8812);
ra_info2 = rtw_read32(padapter, REG_RSVD6_8812);
rate_mask1 = rtw_read32(padapter,REG_RSVD7_8812);
rate_mask2 = rtw_read32(padapter,REG_RSVD8_8812);
DBG_8192C("[ ra_info1:0x%08x ] =>RSSI=%d, BW_setting=0x%02x, DISRA=0x%02x, VHT_EN=0x%02x\n",
ra_info1,
ra_info1&0xFF,
(ra_info1>>8) & 0xFF,
(ra_info1>>16) & 0xFF,
(ra_info1>>24) & 0xFF);
DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate=0x%02x, lowest_rate=0x%02x, SGI=0x%02x, RateID=%d\n",
ra_info2,
ra_info2&0xFF,
(ra_info2>>8) & 0xFF,
(ra_info2>>16) & 0xFF,
(ra_info2>>24) & 0xFF);
DBG_8192C("rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);
}
}
break;
case HAL_DEF_DBG_DUMP_RXPKT:
*(u8*)pval = pHalData->bDumpRxPkt;
break;
case HAL_DEF_DBG_DUMP_TXPKT:
*(u8*)pval = pHalData->bDumpTxPkt;
break;
case HW_DEF_ODM_DBG_FLAG:
{
u64 DebugComponents;
PDM_ODM_T pDM_Odm;
pDM_Odm = &pHalData->odmpriv;
DebugComponents = pDM_Odm->DebugComponents;
DBG_8192C("%s: pDM_Odm->DebugComponents=0x%llx\n", __FUNCTION__, DebugComponents);
*((u64*)pval) = DebugComponents;
}
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!padapter->registrypriv.wifi_spec)
{
if (IS_HARDWARE_TYPE_8812(padapter))
*(u8*)pval = TX_PAGE_BOUNDARY_8812;
else
*(u8*)pval = TX_PAGE_BOUNDARY_8821;
}
else
{
if (IS_HARDWARE_TYPE_8812(padapter))
*(u8*)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8812;
else
*(u8*)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8821;
}
break;
case HAL_DEF_TX_PAGE_BOUNDARY_WOWLAN:
*(u8*)pval = TX_PAGE_BOUNDARY_WOWLAN_8812;
break;
default:
DBG_8192C("%s: [ERROR] HAL_DEF_VARIABLE(%d) not defined!\n", __FUNCTION__, variable);
bResult = _FAIL;
break;
}
return bResult;
}
void rtl8812_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->free_hal_data = &rtl8812_free_hal_data;
pHalFunc->dm_init = &rtl8812_init_dm_priv;
pHalFunc->dm_deinit = &rtl8812_deinit_dm_priv;
pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8812A;
pHalFunc->read_chip_version = &ReadChipVersion8812A;
pHalFunc->set_bwmode_handler = &PHY_SetBWMode8812;
pHalFunc->set_channel_handler = &PHY_SwChnl8812;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8812;
pHalFunc->hal_dm_watchdog = &rtl8812_HalDmWatchDog;
pHalFunc->Add_RateATid = &rtl8812_Add_RateATid;
#ifdef CONFIG_CONCURRENT_MODE
pHalFunc->clone_haldata = &rtl8812_clone_haldata;
#endif
pHalFunc->run_thread= &rtl8812_start_thread;
pHalFunc->cancel_thread= &rtl8812_stop_thread;
#ifdef CONFIG_ANTENNA_DIVERSITY
pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8812;
pHalFunc->AntDivCompareHandler = &AntDivCompare8812;
#endif
pHalFunc->read_bbreg = &PHY_QueryBBReg8812;
pHalFunc->write_bbreg = &PHY_SetBBReg8812;
pHalFunc->read_rfreg = &PHY_QueryRFReg8812;
pHalFunc->write_rfreg = &PHY_SetRFReg8812;
// Efuse related function
pHalFunc->EfusePowerSwitch = &rtl8812_EfusePowerSwitch;
pHalFunc->ReadEFuse = &rtl8812_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &rtl8812_EFUSE_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &rtl8812_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &rtl8812_Efuse_PgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &rtl8812_Efuse_PgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &rtl8812_Efuse_WordEnableDataWrite;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8812_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8812_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress= &sreset_inprogress;
#endif //DBG_CONFIG_ERROR_DETECT
pHalFunc->GetHalODMVarHandler = &rtl8812_GetHalODMVar;
pHalFunc->SetHalODMVarHandler = &rtl8812_SetHalODMVar;
pHalFunc->hal_notch_filter = &hal_notch_filter_8812;
pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8812A;
}