1
0
mirror of https://github.com/morrownr/8821cu-20210916.git synced 2024-12-22 14:26:30 +00:00
8821cu-20210916/core/efuse/rtw_efuse.c
2023-02-09 09:11:23 -06:00

3576 lines
93 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTW_EFUSE_C_
#include <drv_types.h>
#include <hal_data.h>
#include "../hal/efuse/efuse_mask.h"
/*------------------------Define local variable------------------------------*/
u8 fakeEfuseBank = {0};
u32 fakeEfuseUsedBytes = {0};
u8 fakeEfuseContent[EFUSE_MAX_HW_SIZE] = {0};
u8 fakeEfuseInitMap[EFUSE_MAX_MAP_LEN] = {0};
u8 fakeEfuseModifiedMap[EFUSE_MAX_MAP_LEN] = {0};
u32 BTEfuseUsedBytes = {0};
u8 BTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
u8 BTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u8 BTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u32 fakeBTEfuseUsedBytes = {0};
u8 fakeBTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
u8 fakeBTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u8 fakeBTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u8 maskfileBuffer[64];
u8 btmaskfileBuffer[64];
/*------------------------Define local variable------------------------------*/
BOOLEAN rtw_file_efuse_IsMasked(PADAPTER pAdapter, u16 Offset, u8 *maskbuf)
{
int r = Offset / 16;
int c = (Offset % 16) / 2;
int result = 0;
if (pAdapter->registrypriv.boffefusemask)
return FALSE;
if (c < 4) /* Upper double word */
result = (maskbuf[r] & (0x10 << c));
else
result = (maskbuf[r] & (0x01 << (c - 4)));
return (result > 0) ? 0 : 1;
}
BOOLEAN efuse_IsBT_Masked(PADAPTER pAdapter, u16 Offset)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
if (pAdapter->registrypriv.boffefusemask)
return FALSE;
#ifdef CONFIG_BT_EFUSE_MASK
#ifdef CONFIG_RTL8822C
#ifdef CONFIG_USB_HCI
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return (IS_BT_MASKED(8822C, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_PCI_HCI
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return (IS_BT_MASKED(8822C, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_SDIO_HCI
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return (IS_BT_MASKED(8822C, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#endif /*#ifdef CONFIG_RTL8822C*/
#endif /* CONFIG_BT_EFUSE_MASK */
return FALSE;
}
void rtw_bt_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
#ifdef CONFIG_BT_EFUSE_MASK
#ifdef CONFIG_RTL8822C
#ifdef CONFIG_USB_HCI
if (IS_HARDWARE_TYPE_8822CU(pAdapter))
GET_BT_MASK_ARRAY(8822C, _MUSB, pArray);
#endif
#ifdef CONFIG_PCI_HCI
if (IS_HARDWARE_TYPE_8822CE(pAdapter))
GET_BT_MASK_ARRAY(8822C, _MPCIE, pArray);
#endif
#ifdef CONFIG_SDIO_HCI
if (IS_HARDWARE_TYPE_8822CS(pAdapter))
GET_BT_MASK_ARRAY(8822C, _MSDIO, pArray);
#endif
#endif /*#ifdef CONFIG_RTL8822C*/
#endif /* CONFIG_BT_EFUSE_MASK */
}
u16 rtw_get_bt_efuse_mask_arraylen(PADAPTER pAdapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
#ifdef CONFIG_BT_EFUSE_MASK
#ifdef CONFIG_RTL8822C
#ifdef CONFIG_USB_HCI
if (IS_HARDWARE_TYPE_8822CU(pAdapter))
return GET_BT_MASK_ARRAY_LEN(8822C, _MUSB);
#endif
#ifdef CONFIG_PCI_HCI
if (IS_HARDWARE_TYPE_8822CE(pAdapter))
return GET_BT_MASK_ARRAY_LEN(8822C, _MPCIE);
#endif
#ifdef CONFIG_SDIO_HCI
if (IS_HARDWARE_TYPE_8822CS(pAdapter))
return GET_BT_MASK_ARRAY_LEN(8822C, _MSDIO);
#endif
#endif /*#ifdef CONFIG_RTL8822C*/
#endif /* CONFIG_BT_EFUSE_MASK */
return 0;
}
BOOLEAN efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
{
if (pAdapter->registrypriv.boffefusemask)
return FALSE;
#ifdef CONFIG_USB_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return (IS_MASKED(8188E, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return (IS_MASKED(8812A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821A)
#if 0
if (IS_HARDWARE_TYPE_8811AU(pAdapter))
return (IS_MASKED(8811A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
if (IS_HARDWARE_TYPE_8821(pAdapter))
return (IS_MASKED(8821A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return (IS_MASKED(8192E, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return (IS_MASKED(8723B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8703B)
if (IS_HARDWARE_TYPE_8703B(pAdapter))
return (IS_MASKED(8703B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return (IS_MASKED(8814A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return (IS_MASKED(8188F, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8188GTV)
if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
return (IS_MASKED(8188GTV, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return (IS_MASKED(8822B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723D)
if (IS_HARDWARE_TYPE_8723D(pAdapter))
return (IS_MASKED(8723D, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8710B)
if (IS_HARDWARE_TYPE_8710B(pAdapter))
return (IS_MASKED(8710B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CU(pAdapter))
return (IS_MASKED(8821C, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FU(pAdapter))
return (IS_MASKED(8192F, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return (IS_MASKED(8822C, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8814B)
if (IS_HARDWARE_TYPE_8814B(pAdapter))
return (IS_MASKED(8814B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723F)
if (IS_HARDWARE_TYPE_8723F(pAdapter))
return (IS_MASKED(8723F, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#endif /*CONFIG_USB_HCI*/
#ifdef CONFIG_PCI_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return (IS_MASKED(8188E, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return (IS_MASKED(8192E, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return (IS_MASKED(8812A, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
return (IS_MASKED(8821A, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return (IS_MASKED(8723B, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return (IS_MASKED(8814A, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return (IS_MASKED(8822B, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CE(pAdapter))
return (IS_MASKED(8821C, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FE(pAdapter))
return (IS_MASKED(8192F, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return (IS_MASKED(8822C, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8814B)
if (IS_HARDWARE_TYPE_8814B(pAdapter))
return (IS_MASKED(8814B, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#endif /*CONFIG_PCI_HCI*/
#ifdef CONFIG_SDIO_HCI
#ifdef CONFIG_RTL8188E_SDIO
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return (IS_MASKED(8188E, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_RTL8723B
if (IS_HARDWARE_TYPE_8723BS(pAdapter))
return (IS_MASKED(8723B, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_RTL8188F
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return (IS_MASKED(8188F, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_RTL8188GTV
if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
return (IS_MASKED(8188GTV, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_RTL8192E
if (IS_HARDWARE_TYPE_8192ES(pAdapter))
return (IS_MASKED(8192E, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821S(pAdapter))
return (IS_MASKED(8821A, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CS(pAdapter))
return (IS_MASKED(8821C, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return (IS_MASKED(8822B, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FS(pAdapter))
return (IS_MASKED(8192F, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return (IS_MASKED(8822C, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723F)
if (IS_HARDWARE_TYPE_8723F(pAdapter))
return (IS_MASKED(8723F, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#endif /*CONFIG_SDIO_HCI*/
return FALSE;
}
void rtw_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
{
#ifdef CONFIG_USB_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
GET_MASK_ARRAY(8188E, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
GET_MASK_ARRAY(8812A, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
GET_MASK_ARRAY(8821A, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
GET_MASK_ARRAY(8192E, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
GET_MASK_ARRAY(8723B, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8703B)
if (IS_HARDWARE_TYPE_8703B(pAdapter))
GET_MASK_ARRAY(8703B, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
GET_MASK_ARRAY(8188F, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8188GTV)
if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
GET_MASK_ARRAY(8188GTV, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
GET_MASK_ARRAY(8814A, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
GET_MASK_ARRAY(8822B, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CU(pAdapter))
GET_MASK_ARRAY(8821C, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FU(pAdapter))
GET_MASK_ARRAY(8192F, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
GET_MASK_ARRAY(8822C, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8814B)
if (IS_HARDWARE_TYPE_8814B(pAdapter))
GET_MASK_ARRAY(8814B, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8723F)
if (IS_HARDWARE_TYPE_8723F(pAdapter))
GET_MASK_ARRAY(8723F, _MUSB, pArray);
#endif
#endif /*CONFIG_USB_HCI*/
#ifdef CONFIG_PCI_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
GET_MASK_ARRAY(8188E, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
GET_MASK_ARRAY(8192E, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
GET_MASK_ARRAY(8812A, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
GET_MASK_ARRAY(8821A, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
GET_MASK_ARRAY(8723B, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
GET_MASK_ARRAY(8814A, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
GET_MASK_ARRAY(8822B, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CE(pAdapter))
GET_MASK_ARRAY(8821C, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FE(pAdapter))
GET_MASK_ARRAY(8192F, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
GET_MASK_ARRAY(8822C, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8814B)
if (IS_HARDWARE_TYPE_8814B(pAdapter))
GET_MASK_ARRAY(8814B, _MPCIE, pArray);
#endif
#endif /*CONFIG_PCI_HCI*/
#ifdef CONFIG_SDIO_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
GET_MASK_ARRAY(8188E, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723BS(pAdapter))
GET_MASK_ARRAY(8723B, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
GET_MASK_ARRAY(8188F, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8188GTV)
if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
GET_MASK_ARRAY(8188GTV, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192ES(pAdapter))
GET_MASK_ARRAY(8192E, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821S(pAdapter))
GET_MASK_ARRAY(8821A, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CS(pAdapter))
GET_MASK_ARRAY(8821C , _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
GET_MASK_ARRAY(8822B , _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FS(pAdapter))
GET_MASK_ARRAY(8192F, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
GET_MASK_ARRAY(8822C , _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8723F)
if (IS_HARDWARE_TYPE_8723F(pAdapter))
GET_MASK_ARRAY(8723F, _MSDIO, pArray);
#endif
#endif /*CONFIG_SDIO_HCI*/
}
u16 rtw_get_efuse_mask_arraylen(PADAPTER pAdapter)
{
#ifdef CONFIG_USB_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return GET_MASK_ARRAY_LEN(8188E, _MUSB);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return GET_MASK_ARRAY_LEN(8812A, _MUSB);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
return GET_MASK_ARRAY_LEN(8821A, _MUSB);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return GET_MASK_ARRAY_LEN(8192E, _MUSB);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return GET_MASK_ARRAY_LEN(8723B, _MUSB);
#endif
#if defined(CONFIG_RTL8703B)
if (IS_HARDWARE_TYPE_8703B(pAdapter))
return GET_MASK_ARRAY_LEN(8703B, _MUSB);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return GET_MASK_ARRAY_LEN(8188F, _MUSB);
#endif
#if defined(CONFIG_RTL8188GTV)
if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
return GET_MASK_ARRAY_LEN(8188GTV, _MUSB);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return GET_MASK_ARRAY_LEN(8814A, _MUSB);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return GET_MASK_ARRAY_LEN(8822B, _MUSB);
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CU(pAdapter))
return GET_MASK_ARRAY_LEN(8821C, _MUSB);
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FU(pAdapter))
return GET_MASK_ARRAY_LEN(8192F, _MUSB);
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return GET_MASK_ARRAY_LEN(8822C, _MUSB);
#endif
#if defined(CONFIG_RTL8814B)
if (IS_HARDWARE_TYPE_8814B(pAdapter)) {
return GET_MASK_ARRAY_LEN(8814B, _MUSB);
}
#endif
#if defined(CONFIG_RTL8723F)
if (IS_HARDWARE_TYPE_8723F(pAdapter))
return GET_MASK_ARRAY_LEN(8723F, _MUSB);
#endif
#endif /*CONFIG_USB_HCI*/
#ifdef CONFIG_PCI_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return GET_MASK_ARRAY_LEN(8188E, _MPCIE);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return GET_MASK_ARRAY_LEN(8192E, _MPCIE);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return GET_MASK_ARRAY_LEN(8812A, _MPCIE);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
return GET_MASK_ARRAY_LEN(8821A, _MPCIE);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return GET_MASK_ARRAY_LEN(8723B, _MPCIE);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return GET_MASK_ARRAY_LEN(8814A, _MPCIE);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return GET_MASK_ARRAY_LEN(8822B, _MPCIE);
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CE(pAdapter))
return GET_MASK_ARRAY_LEN(8821C, _MPCIE);
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FE(pAdapter))
return GET_MASK_ARRAY_LEN(8192F, _MPCIE);
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return GET_MASK_ARRAY_LEN(8822C, _MPCIE);
#endif
#if defined(CONFIG_RTL8814B)
if (IS_HARDWARE_TYPE_8814B(pAdapter))
return GET_MASK_ARRAY_LEN(8814B, _MPCIE);
#endif
#endif /*CONFIG_PCI_HCI*/
#ifdef CONFIG_SDIO_HCI
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return GET_MASK_ARRAY_LEN(8188E, _MSDIO);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723BS(pAdapter))
return GET_MASK_ARRAY_LEN(8723B, _MSDIO);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return GET_MASK_ARRAY_LEN(8188F, _MSDIO);
#endif
#if defined(CONFIG_RTL8188GTV)
if (IS_HARDWARE_TYPE_8188GTV(pAdapter))
return GET_MASK_ARRAY_LEN(8188GTV, _MSDIO);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192ES(pAdapter))
return GET_MASK_ARRAY_LEN(8192E, _MSDIO);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821S(pAdapter))
return GET_MASK_ARRAY_LEN(8821A, _MSDIO);
#endif
#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821CS(pAdapter))
return GET_MASK_ARRAY_LEN(8821C, _MSDIO);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return GET_MASK_ARRAY_LEN(8822B, _MSDIO);
#endif
#if defined(CONFIG_RTL8192F)
if (IS_HARDWARE_TYPE_8192FS(pAdapter))
return GET_MASK_ARRAY_LEN(8192F, _MSDIO);
#endif
#if defined(CONFIG_RTL8822C)
if (IS_HARDWARE_TYPE_8822C(pAdapter))
return GET_MASK_ARRAY_LEN(8822C, _MSDIO);
#endif
#if defined(CONFIG_RTL8723F)
if (IS_HARDWARE_TYPE_8723F(pAdapter))
return GET_MASK_ARRAY_LEN(8723F, _MSDIO);
#endif
#endif/*CONFIG_SDIO_HCI*/
return 0;
}
static void rtw_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u16 i = 0;
if (padapter->registrypriv.boffefusemask == 0) {
for (i = 0; i < cnts; i++) {
if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
if (rtw_file_efuse_IsMasked(padapter, addr + i, maskfileBuffer)) /*use file efuse mask.*/
data[i] = 0xff;
else
RTW_DBG("data[%x] = %x\n", i, data[i]);
} else {
if (efuse_IsMasked(padapter, addr + i))
data[i] = 0xff;
else
RTW_DBG("data[%x] = %x\n", i, data[i]);
}
}
}
}
u8 rtw_efuse_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u8 ret = _SUCCESS;
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
ret = rtw_efuse_map_read(padapter, addr, cnts , data);
rtw_mask_map_read(padapter, addr, cnts , data);
return ret;
}
/* ***********************************************************
* Efuse related code
* *********************************************************** */
static u8 hal_EfuseSwitchToBank(
PADAPTER padapter,
u8 bank,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u32 value32 = 0;
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseBank = bank;
#else
fakeEfuseBank = bank;
#endif
bRet = _TRUE;
} else {
value32 = rtw_read32(padapter, 0x34);
bRet = _TRUE;
switch (bank) {
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = _FALSE;
break;
}
rtw_write32(padapter, 0x34, value32);
}
return bRet;
}
void rtw_efuse_analyze(PADAPTER padapter, u8 Type, u8 Fake)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal);
u16 eFuse_Addr = 0;
u8 offset, wden;
u16 i, j;
u8 efuseHeader = 0, efuseExtHdr = 0, efuseData[EFUSE_MAX_WORD_UNIT*2] = {0}, dataCnt = 0;
u16 efuseHeader2Byte = 0;
u8 *eFuseWord = NULL;// [EFUSE_MAX_SECTION_NUM][EFUSE_MAX_WORD_UNIT];
u8 offset_2_0 = 0;
u8 pgSectionCnt = 0;
u8 wd_cnt = 0;
u8 max_section = 64;
u16 mapLen = 0, maprawlen = 0;
boolean bExtHeader = _FALSE;
u8 efuseType = EFUSE_WIFI;
boolean bPseudoTest = _FALSE;
u8 bank = 0, startBank = 0, endBank = 1-1;
boolean bCheckNextBank = FALSE;
u8 protectBytesBank = 0;
u16 efuse_max = 0;
u8 ParseEfuseExtHdr, ParseEfuseHeader, ParseOffset, ParseWDEN, ParseOffset2_0;
eFuseWord = rtw_zmalloc(EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
if (eFuseWord == NULL) {
RTW_INFO("%s:rtw_zmalloc eFuseWord = NULL !!\n", __func__);
return;
}
RTW_INFO("\n");
if (Type == 0) {
if (Fake == 0) {
RTW_INFO("\n\tEFUSE_Analyze Wifi Content\n");
efuseType = EFUSE_WIFI;
bPseudoTest = FALSE;
startBank = 0;
endBank = 0;
} else {
RTW_INFO("\n\tEFUSE_Analyze Wifi Pseudo Content\n");
efuseType = EFUSE_WIFI;
bPseudoTest = TRUE;
startBank = 0;
endBank = 0;
}
} else {
if (Fake == 0) {
RTW_INFO("\n\tEFUSE_Analyze BT Content\n");
efuseType = EFUSE_BT;
bPseudoTest = FALSE;
startBank = 1;
endBank = EFUSE_MAX_BANK - 1;
} else {
RTW_INFO("\n\tEFUSE_Analyze BT Pseudo Content\n");
efuseType = EFUSE_BT;
bPseudoTest = TRUE;
startBank = 1;
endBank = EFUSE_MAX_BANK - 1;
if (IS_HARDWARE_TYPE_8821(padapter))
endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/
}
}
RTW_INFO("\n\r 1Byte header, [7:4]=offset, [3:0]=word enable\n");
RTW_INFO("\n\r 2Byte header, header[7:5]=offset[2:0], header[4:0]=0x0F\n");
RTW_INFO("\n\r 2Byte header, extHeader[7:4]=offset[6:3], extHeader[3:0]=word enable\n");
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_PROTECT_BYTES_BANK, (void *)&protectBytesBank, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, (void *)&efuse_max, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&maprawlen, _FALSE);
_rtw_memset(eFuseWord, 0xff, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
_rtw_memset(pEfuseHal->fakeEfuseInitMap, 0xff, EFUSE_MAX_MAP_LEN);
if (IS_HARDWARE_TYPE_8821(padapter))
endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/
for (bank = startBank; bank <= endBank; bank++) {
if (!hal_EfuseSwitchToBank(padapter, bank, bPseudoTest)) {
RTW_INFO("EFUSE_SwitchToBank() Fail!!\n");
goto out_free_buffer;
}
eFuse_Addr = bank * EFUSE_MAX_BANK_SIZE;
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF && bank == startBank && Fake != TRUE) {
RTW_INFO("Non-PGed Efuse\n");
goto out_free_buffer;
}
RTW_INFO("EFUSE_REAL_CONTENT_LEN = %d\n", maprawlen);
while ((efuseHeader != 0xFF) && ((efuseType == EFUSE_WIFI && (eFuse_Addr < maprawlen)) || (efuseType == EFUSE_BT && (eFuse_Addr < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) {
RTW_INFO("Analyzing: Offset: 0x%X\n", eFuse_Addr);
/* Check PG header for section num.*/
if (EXT_HEADER(efuseHeader)) {
bExtHeader = TRUE;
offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
if (efuseExtHdr != 0xff) {
if (ALL_WORDS_DISABLED(efuseExtHdr)) {
/* Read next pg header*/
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
continue;
} else {
offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0;
wden = (efuseExtHdr & 0x0F);
efuseHeader2Byte = (efuseExtHdr<<8)|efuseHeader;
RTW_INFO("Find efuseHeader2Byte = 0x%04X, offset=%d, wden=0x%x\n",
efuseHeader2Byte, offset, wden);
}
} else {
RTW_INFO("Error, efuse[%d]=0xff, efuseExtHdr=0xff\n", eFuse_Addr-1);
break;
}
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
_rtw_memset(efuseData, '\0', EFUSE_MAX_WORD_UNIT * 2);
dataCnt = 0;
if (offset < max_section) {
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01<<i))) {
if (!((efuseType == EFUSE_WIFI && (eFuse_Addr + 2 < maprawlen)) ||
(efuseType == EFUSE_BT && (eFuse_Addr + 2 < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) {
RTW_INFO("eFuse_Addr exceeds, break\n");
break;
}
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData[dataCnt++], bPseudoTest);
eFuseWord[(offset * 8) + (i * 2)] = (efuseData[dataCnt - 1]);
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData[dataCnt++], bPseudoTest);
eFuseWord[(offset * 8) + (i * 2 + 1)] = (efuseData[dataCnt - 1]);
}
}
}
if (bExtHeader) {
RTW_INFO("Efuse PG Section (%d) = ", pgSectionCnt);
RTW_INFO("[ %04X ], [", efuseHeader2Byte);
} else {
RTW_INFO("Efuse PG Section (%d) = ", pgSectionCnt);
RTW_INFO("[ %02X ], [", efuseHeader);
}
for (j = 0; j < dataCnt; j++)
RTW_INFO(" %02X ", efuseData[j]);
RTW_INFO("]\n");
if (bExtHeader) {
ParseEfuseExtHdr = (efuseHeader2Byte & 0xff00) >> 8;
ParseEfuseHeader = (efuseHeader2Byte & 0xff);
ParseOffset2_0 = GET_HDR_OFFSET_2_0(ParseEfuseHeader);
ParseOffset = ((ParseEfuseExtHdr & 0xF0) >> 1) | ParseOffset2_0;
ParseWDEN = (ParseEfuseExtHdr & 0x0F);
RTW_INFO("Header=0x%x, ExtHeader=0x%x, ", ParseEfuseHeader, ParseEfuseExtHdr);
} else {
ParseEfuseHeader = efuseHeader;
ParseOffset = ((ParseEfuseHeader >> 4) & 0x0f);
ParseWDEN = (ParseEfuseHeader & 0x0f);
RTW_INFO("Header=0x%x, ", ParseEfuseHeader);
}
RTW_INFO("offset=0x%x(%d), word enable=0x%x\n", ParseOffset, ParseOffset, ParseWDEN);
wd_cnt = 0;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
if (!(wden & (0x01 << i))) {
RTW_INFO("Map[ %02X ] = %02X %02X\n", ((offset * EFUSE_MAX_WORD_UNIT * 2) + (i * 2)), efuseData[wd_cnt * 2 + 0], efuseData[wd_cnt * 2 + 1]);
wd_cnt++;
}
}
pgSectionCnt++;
bExtHeader = FALSE;
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF) {
if ((eFuse_Addr + protectBytesBank) >= efuse_max)
bCheckNextBank = TRUE;
else
bCheckNextBank = FALSE;
}
}
if (!bCheckNextBank) {
RTW_INFO("Not need to check next bank, eFuse_Addr=%d, protectBytesBank=%d, efuse_max=%d\n",
eFuse_Addr, protectBytesBank, efuse_max);
break;
}
}
/* switch bank back to 0 for BT/wifi later use*/
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
/* 3. Collect 16 sections and 4 word unit into Efuse map.*/
for (i = 0; i < max_section; i++) {
for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
pEfuseHal->fakeEfuseInitMap[(i*8)+(j*2)] = (eFuseWord[(i*8)+(j*2)]);
pEfuseHal->fakeEfuseInitMap[(i*8)+((j*2)+1)] = (eFuseWord[(i*8)+((j*2)+1)]);
}
}
RTW_INFO("\n\tEFUSE Analyze Map\n");
i = 0;
j = 0;
for (i = 0; i < mapLen; i++) {
if (i % 16 == 0)
RTW_PRINT_SEL(RTW_DBGDUMP, "0x%03x: ", i);
_RTW_PRINT_SEL(RTW_DBGDUMP, "%02X%s"
, pEfuseHal->fakeEfuseInitMap[i]
, ((i + 1) % 16 == 0) ? "\n" : (((i + 1) % 8 == 0) ? " " : " ")
);
}
_RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
out_free_buffer:
if (eFuseWord)
rtw_mfree((u8 *)eFuseWord, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2));
}
void efuse_PreUpdateAction(
PADAPTER pAdapter,
u32 *BackupRegs)
{
if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) {
/* <20131115, Kordan> Turn off Rx to prevent from being busy when writing the EFUSE. (Asked by Chunchu.)*/
BackupRegs[0] = phy_query_mac_reg(pAdapter, REG_RCR, bMaskDWord);
BackupRegs[1] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord);
BackupRegs[2] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord);
#ifdef CONFIG_RTL8812A
BackupRegs[3] = phy_query_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord);
#endif
PlatformEFIOWrite4Byte(pAdapter, REG_RCR, 0x1);
PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0, 0);
PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+1, 0);
PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+2, 0);
PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+3, 0);
PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+4, 0);
PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+5, 0);
#ifdef CONFIG_RTL8812A
/* <20140410, Kordan> 0x11 = 0x4E, lower down LX_SPS0 voltage. (Asked by Chunchu)*/
phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskByte1, 0x4E);
#endif
RTW_INFO(" %s , done\n", __func__);
}
}
void efuse_PostUpdateAction(
PADAPTER pAdapter,
u32 *BackupRegs)
{
if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) {
/* <20131115, Kordan> Turn on Rx and restore the registers. (Asked by Chunchu.)*/
phy_set_mac_reg(pAdapter, REG_RCR, bMaskDWord, BackupRegs[0]);
phy_set_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord, BackupRegs[1]);
phy_set_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord, BackupRegs[2]);
#ifdef CONFIG_RTL8812A
phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord, BackupRegs[3]);
#endif
RTW_INFO(" %s , done\n", __func__);
}
}
#ifdef RTW_HALMAC
#include "../../hal/hal_halmac.h"
void Efuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
{
}
void BTEfuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
{
}
u8 efuse_GetCurrentSize(PADAPTER adapter, u16 *size)
{
*size = 0;
return _FAIL;
}
u16 efuse_GetMaxSize(PADAPTER adapter)
{
struct dvobj_priv *d;
u32 size = 0;
int err;
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_physical_efuse_size(d, &size);
if (err)
return 0;
return size;
}
u16 efuse_GetavailableSize(PADAPTER adapter)
{
struct dvobj_priv *d;
u32 size = 0;
int err;
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_available_efuse_size(d, &size);
if (err)
return 0;
return size;
}
u8 efuse_bt_GetCurrentSize(PADAPTER adapter, u16 *usesize)
{
u8 *efuse_map;
*usesize = 0;
efuse_map = rtw_malloc(EFUSE_BT_MAP_LEN);
if (efuse_map == NULL) {
RTW_DBG("%s: malloc FAIL\n", __FUNCTION__);
return _FAIL;
}
/* for get bt phy efuse last use byte */
hal_ReadEFuse_BT_logic_map(adapter, 0x00, EFUSE_BT_MAP_LEN, efuse_map);
*usesize = fakeBTEfuseUsedBytes;
if (efuse_map)
rtw_mfree(efuse_map, EFUSE_BT_MAP_LEN);
return _SUCCESS;
}
u16 efuse_bt_GetMaxSize(PADAPTER adapter)
{
return EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
}
void EFUSE_GetEfuseDefinition(PADAPTER adapter, u8 efusetype, u8 type, void *out, BOOLEAN test)
{
struct dvobj_priv *d;
u32 v32 = 0;
d = adapter_to_dvobj(adapter);
if (adapter->hal_func.EFUSEGetEfuseDefinition) {
adapter->hal_func.EFUSEGetEfuseDefinition(adapter, efusetype, type, out, test);
return;
}
if (EFUSE_WIFI == efusetype) {
switch (type) {
case TYPE_EFUSE_MAP_LEN:
rtw_halmac_get_logical_efuse_size(d, &v32);
*(u16 *)out = (u16)v32;
return;
case TYPE_EFUSE_REAL_CONTENT_LEN:
rtw_halmac_get_physical_efuse_size(d, &v32);
*(u16 *)out = (u16)v32;
return;
}
} else if (EFUSE_BT == efusetype) {
switch (type) {
case TYPE_EFUSE_MAP_LEN:
*(u16 *)out = EFUSE_BT_MAP_LEN;
return;
case TYPE_EFUSE_REAL_CONTENT_LEN:
*(u16 *)out = EFUSE_BT_REAL_CONTENT_LEN;
return;
}
}
}
/*
* read/write raw efuse data
*/
u8 rtw_efuse_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size;
int err;
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_physical_efuse_size(d, &size);
if (err){
size = EFUSE_MAX_SIZE;
RTW_INFO(" physical_efuse_size err size %d\n", size);
}
if ((addr + cnts) > size)
return _FAIL;
if (_TRUE == write) {
err = rtw_halmac_write_physical_efuse(d, addr, cnts, data);
if (err)
return _FAIL;
} else {
if (cnts > 16)
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_halmac_read_physical_efuse_map(d, efuse, size);
if (err) {
rtw_mfree(efuse, size);
return _FAIL;
}
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
} else {
err = rtw_halmac_read_physical_efuse(d, addr, cnts, data);
if (err)
return _FAIL;
}
}
return _SUCCESS;
}
static inline void dump_buf(u8 *buf, u32 len)
{
u32 i;
RTW_INFO("-----------------Len %d----------------\n", len);
for (i = 0; i < len; i++)
printk("%2.2x-", *(buf + i));
printk("\n");
}
/*
* read/write raw efuse data
*/
u8 rtw_efuse_bt_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size;
int err = _FAIL;
d = adapter_to_dvobj(adapter);
size = EFUSE_BT_REAL_CONTENT_LEN;
if ((addr + cnts) > size)
return _FAIL;
if (_TRUE == write) {
err = rtw_halmac_write_bt_physical_efuse(d, addr, cnts, data);
if (err == -1) {
RTW_ERR("%s: rtw_halmac_write_bt_physical_efuse fail!\n", __FUNCTION__);
return _FAIL;
}
RTW_INFO("%s: rtw_halmac_write_bt_physical_efuse OK! data 0x%x\n", __FUNCTION__, *data);
} else {
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_halmac_read_bt_physical_efuse_map(d, efuse, size);
if (err == -1) {
RTW_ERR("%s: rtw_halmac_read_bt_physical_efuse_map fail!\n", __FUNCTION__);
rtw_mfree(efuse, size);
return _FAIL;
}
dump_buf(efuse + addr, cnts);
_rtw_memcpy(data, efuse + addr, cnts);
RTW_INFO("%s: rtw_halmac_read_bt_physical_efuse_map ok! data 0x%x\n", __FUNCTION__, *data);
rtw_mfree(efuse, size);
}
}
return _SUCCESS;
}
u8 rtw_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size, i;
int err;
u32 backupRegs[4] = {0};
u8 status = _SUCCESS;
efuse_PreUpdateAction(adapter, backupRegs);
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_logical_efuse_size(d, &size);
if (err) {
status = _FAIL;
RTW_DBG("halmac_get_logical_efuse_size fail\n");
goto exit;
}
/* size error handle */
if ((addr + cnts) > size) {
if (addr < size)
cnts = size - addr;
else {
status = _FAIL;
RTW_DBG(" %s() ,addr + cnts) > size fail\n", __func__);
goto exit;
}
}
if (cnts > 16)
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0);
if (err) {
rtw_mfree(efuse, size);
status = _FAIL;
RTW_DBG(" %s() ,halmac_read_logical_efus map fail\n", __func__);
goto exit;
}
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
} else {
err = rtw_halmac_read_logical_efuse(d, addr, cnts, data);
if (err) {
status = _FAIL;
RTW_DBG(" %s() ,halmac_read_logical_efus data fail\n", __func__);
goto exit;
}
}
status = _SUCCESS;
exit:
efuse_PostUpdateAction(adapter, backupRegs);
return status;
}
u8 rtw_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size;
int err;
u8 mask_buf[64] = "";
u16 mask_len = sizeof(u8) * rtw_get_efuse_mask_arraylen(adapter);
u32 backupRegs[4] = {0};
u8 status = _SUCCESS;;
efuse_PreUpdateAction(adapter, backupRegs);
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_logical_efuse_size(d, &size);
if (err) {
status = _FAIL;
goto exit;
}
if ((addr + cnts) > size) {
status = _FAIL;
goto exit;
}
efuse = rtw_zmalloc(size);
if (!efuse) {
status = _FAIL;
goto exit;
}
err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0);
if (err) {
rtw_mfree(efuse, size);
status = _FAIL;
goto exit;
}
_rtw_memcpy(efuse + addr, data, cnts);
if (adapter->registrypriv.boffefusemask == 0) {
RTW_INFO("Use mask Array Len: %d\n", mask_len);
if (mask_len != 0) {
if (adapter->registrypriv.bFileMaskEfuse == _TRUE)
_rtw_memcpy(mask_buf, maskfileBuffer, mask_len);
else
rtw_efuse_mask_array(adapter, mask_buf);
err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, mask_len);
} else
err = rtw_halmac_write_logical_efuse_map(d, efuse, size, NULL, 0);
} else {
_rtw_memset(mask_buf, 0xFF, sizeof(mask_buf));
RTW_INFO("Efuse mask off\n");
err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, size/16);
}
if (err) {
rtw_mfree(efuse, size);
status = _FAIL;
goto exit;
}
rtw_mfree(efuse, size);
status = _SUCCESS;
exit :
efuse_PostUpdateAction(adapter, backupRegs);
return status;
}
int Efuse_PgPacketRead(PADAPTER adapter, u8 offset, u8 *data, BOOLEAN test)
{
return _FALSE;
}
int Efuse_PgPacketWrite(PADAPTER adapter, u8 offset, u8 word_en, u8 *data, BOOLEAN test)
{
return _FALSE;
}
static void rtw_bt_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u16 i = 0;
#ifdef CONFIG_BT_EFUSE_MASK
if (padapter->registrypriv.boffefusemask == 0) {
for (i = 0; i < cnts; i++) {
if (padapter->registrypriv.bBTFileMaskEfuse == _TRUE) {
if (rtw_file_efuse_IsMasked(padapter, addr + i, btmaskfileBuffer)) /*use BT file efuse mask.*/
data[i] = 0xff;
else
RTW_INFO("data[%x] = %x\n", i, data[i]);
} else {
if (efuse_IsBT_Masked(padapter, addr + i)) /*use drv internal efuse mask.*/
data[i] = 0xff;
else
RTW_INFO("data[%x] = %x\n", i, data[i]);
}
}
}
#endif /*CONFIG_BT_EFUSE_MASK*/
}
u8 rtw_BT_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
hal_ReadEFuse_BT_logic_map(adapter, addr, cnts, data);
rtw_bt_mask_map_read(adapter, addr, cnts, data);
return _SUCCESS;
}
static u16
hal_EfuseGetCurrentSize_BT(
PADAPTER padapter,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u16 btusedbytes;
u16 efuse_addr;
u8 bank, startBank;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u16 retU2 = 0;
btusedbytes = fakeBTEfuseUsedBytes;
efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr);
retU2 = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
for (bank = startBank; bank < 3; bank++) {
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
RTW_ERR("%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank);
/* bank = EFUSE_MAX_BANK; */
break;
}
/* only when bank is switched we have to reset the efuse_addr. */
if (bank != startBank)
efuse_addr = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data) == _FALSE) {
RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr);
/* bank = EFUSE_MAX_BANK; */
break;
}
RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data);
RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank);
if (ALL_WORDS_DISABLED(efuse_data)) {
efuse_addr++;
continue;
}
/* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
FUNC_ADPT_ARG(padapter), hoffset, hworden);
word_cnts = Efuse_CalculateWordCnts(hworden);
/* read next header */
efuse_addr += (word_cnts * 2) + 1;
}
/* Check if we need to check next bank efuse */
if (efuse_addr < retU2)
break;/* don't need to check next bank. */
}
retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
fakeBTEfuseUsedBytes = retU2;
RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2);
return retU2;
}
#ifdef CONFIG_RTL8822C
void rtw_pre_bt_efuse(PADAPTER padapter)
{
char pgdata[4] = {0x72, 0x80, 0x14, 0x90}; /*BT 5M PLL*/
u8 status = 1;
u8 bkmask;
BOOLEAN bt_en;
bkmask = padapter->registrypriv.boffefusemask;
padapter->registrypriv.boffefusemask = 1;
bt_en = rtw_read8(padapter, 0x6A) & BIT2 ? _TRUE : _FALSE;
if (IS_HARDWARE_TYPE_8822C(padapter) && bt_en == _TRUE) {
status = rtw_BT_efuse_map_write(padapter, 0x1f8, 4, pgdata);
RTW_INFO("%s done!!!\n", __FUNCTION__);
}
if (status == _FAIL)
RTW_INFO("%s: fail\n", __FUNCTION__);
padapter->registrypriv.boffefusemask = bkmask;
}
#endif
u8 rtw_BT_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
#define RT_ASSERT_RET(expr) \
if (!(expr)) { \
printk("Assertion failed! %s at ......\n", #expr); \
printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
return _FAIL; \
}
u8 offset, word_en;
u8 *efuse = NULL;
u8 *map;
u8 newdata[PGPKT_DATA_SIZE];
s32 i = 0, j = 0, idx = 0, chk_total_byte = 0;
u8 ret = _SUCCESS;
u16 mapLen = 1024;
u16 startAddr = 0;
if ((addr + cnts) > mapLen)
return _FAIL;
RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
efuse = rtw_zmalloc(mapLen);
if (!efuse)
return _FAIL;
map = rtw_zmalloc(mapLen);
if (map == NULL) {
rtw_mfree(efuse, mapLen);
return _FAIL;
}
_rtw_memset(map, 0xFF, mapLen);
ret = rtw_BT_efuse_map_read(adapter, 0, mapLen, map);
if (ret == _FAIL)
goto exit;
_rtw_memcpy(efuse , map, mapLen);
_rtw_memcpy(efuse + addr, data, cnts);
#ifdef CONFIG_BT_EFUSE_MASK
if (adapter->registrypriv.boffefusemask == 0) {
for (i = 0; i < cnts; i++) {
if (adapter->registrypriv.bBTFileMaskEfuse == _TRUE) {
if (rtw_file_efuse_IsMasked(adapter, addr + i, btmaskfileBuffer)) /*use file efuse mask. */
efuse[addr + i] = map[addr + i];
} else {
if (efuse_IsBT_Masked(adapter, addr + i))
efuse[addr + i] = map[addr + i];
}
RTW_INFO("%s , efuse[%x] = %x, map = %x\n", __func__, addr + i, efuse[ addr + i], map[addr + i]);
}
}
#endif /*CONFIG_BT_EFUSE_MASK*/
/* precheck pg efuse data byte*/
chk_total_byte = 0;
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (efuse[addr + idx] != map[addr + idx])
word_en &= ~BIT(i >> 1);
}
if (word_en != 0xF) {
chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2;
if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */
chk_total_byte += 2;
else
chk_total_byte += 1;
}
offset++;
}
RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte);
startAddr = hal_EfuseGetCurrentSize_BT(adapter, _FALSE);
RTW_INFO("%s: startAddr=%#X\n", __func__, startAddr);
if (!AVAILABLE_EFUSE_ADDR(startAddr + chk_total_byte)) {
RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse BT available offset (0x%X)\n",
__func__, startAddr, chk_total_byte, EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK);
ret = _FAIL;
goto exit;
}
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (efuse[addr + idx] != map[addr + idx]) {
word_en &= ~BIT(i >> 1);
newdata[i] = efuse[addr + idx];
}
}
if (word_en != 0xF) {
ret = EfusePgPacketWrite_BT(adapter, offset, word_en, newdata, _FALSE);
RTW_INFO("offset=%x\n", offset);
RTW_INFO("word_en=%x\n", word_en);
RTW_INFO("%s: data=", __FUNCTION__);
for (i = 0; i < PGPKT_DATA_SIZE; i++)
RTW_INFO("0x%02X ", newdata[i]);
RTW_INFO("\n");
if (ret == _FAIL)
break;
}
offset++;
}
exit:
if (efuse)
rtw_mfree(efuse, mapLen);
if (map)
rtw_mfree(map, mapLen);
return ret;
}
void hal_ReadEFuse_BT_logic_map(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 *efuseTbl, *phyefuse;
u8 bank;
u16 eFuse_Addr = 0;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
return;
}
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
phyefuse = rtw_malloc(EFUSE_BT_REAL_CONTENT_LEN);
if (efuseTbl == NULL || phyefuse == NULL) {
RTW_INFO("%s: efuseTbl or phyefuse malloc fail!\n", __FUNCTION__);
goto exit;
}
/* 0xff will be efuse default value instead of 0x00. */
_rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
_rtw_memset(phyefuse, 0xFF, EFUSE_BT_REAL_CONTENT_LEN);
if (rtw_efuse_bt_access(padapter, _FALSE, 0, EFUSE_BT_REAL_CONTENT_LEN, phyefuse))
dump_buf(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
total = BANK_NUM;
for (bank = 1; bank <= total; bank++) { /* 8723d Max bake 0~2 */
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuseHeader = phyefuse[eFuse_Addr++];
if (efuseHeader == 0xFF)
break;
RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader);
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /* extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuseExtHdr = phyefuse[eFuse_Addr++];
RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION) {
u16 addr;
/* Get word enable value from PG header */
RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuseData = phyefuse[eFuse_Addr++];
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuseData = phyefuse[eFuse_Addr++];
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
if ((eFuse_Addr - 1) < total) {
RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1);
break;
}
}
/* switch bank back to bank 0 for later BT and wifi use. */
//hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* Calculate Efuse utilization */
total = EFUSE_BT_REAL_BANK_CONTENT_LEN;
used = eFuse_Addr - 1;
if (total)
efuse_usage = (u8)((used * 100) / total);
else
efuse_usage = 100;
fakeBTEfuseUsedBytes = used;
RTW_INFO("%s: BTEfuseUsed last Bytes = %#x\n", __FUNCTION__, fakeBTEfuseUsedBytes);
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
if (phyefuse)
rtw_mfree(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
}
static u8 hal_EfusePartialWriteCheck(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u16 startAddr = 0, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN, efuse_max = EFUSE_BT_REAL_BANK_CONTENT_LEN;
u8 efuse_data = 0;
startAddr = (u16)fakeBTEfuseUsedBytes;
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = _FALSE;
RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
__FUNCTION__, startAddr, efuse_max_available_len);
break;
}
if (rtw_efuse_bt_access(padapter, _FALSE, startAddr, 1, &efuse_data)&& (efuse_data != 0xFF)) {
bRet = _FALSE;
RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
__FUNCTION__, startAddr, efuse_data);
break;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
/* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */
bRet = _TRUE;
break;
}
}
return bRet;
}
static u8 hal_EfusePgPacketWrite2ByteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN;
u8 pg_header = 0, tmp_header = 0;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len) {
RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
return _FALSE;
}
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
/* RTW_INFO("%s: pg_header=0x%x\n", __FUNCTION__, pg_header); */
do {
rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) {
RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
/* to write ext_header */
efuse_addr++;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
do {
rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for ext_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) { /* offset PG fail */
RTW_ERR("%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8 hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
do {
rtw_efuse_bt_access(pAdapter, _TRUE, efuse_addr, 1, &pg_header);
rtw_efuse_bt_access(pAdapter, _FALSE, efuse_addr, 1, &tmp_header);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) {
RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8 hal_EfusePgPacketWriteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static u8
Hal_EfuseWordEnableDataWrite(
PADAPTER padapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
u8 bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[PGPKT_DATA_SIZE];
/* RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en); */
_rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
if (!(word_en & BIT(0))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[0]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[1]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[0]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[1]);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT(0));
}
if (!(word_en & BIT(1))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[2]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[3]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[2]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[3]);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT(1));
}
if (!(word_en & BIT(2))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[4]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[5]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[4]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[5]);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT(2));
}
if (!(word_en & BIT(3))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[6]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[7]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[6]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[7]);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT(3));
}
return badworden;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
PPGPKT_STRUCT pTargetPkt)
{
_rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
static u8
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
RTW_INFO("%s: Fail!!\n", __FUNCTION__);
return _FALSE;
} else
RTW_INFO("%s: OK!!\n", __FUNCTION__);
return _TRUE;
}
u8 efuse_OneByteRead(struct _ADAPTER *a, u16 addr, u8 *data, u8 bPseudoTest)
{
struct dvobj_priv *d;
int err;
u8 ret = _TRUE;
d = adapter_to_dvobj(a);
err = rtw_halmac_read_physical_efuse(d, addr, 1, data);
if (err) {
RTW_ERR("%s: addr=0x%x FAIL!!!\n", __FUNCTION__, addr);
ret = _FALSE;
}
return ret;
}
static u8
hal_BT_EfusePgCheckAvailableAddr(
PADAPTER pAdapter,
u8 bPseudoTest)
{
u16 max_available = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK;
u16 current_size = 0;
RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available);
current_size = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
if (current_size >= max_available) {
RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available);
return _FALSE;
}
return _TRUE;
}
u8 EfusePgPacketWrite_BT(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
if (!hal_BT_EfusePgCheckAvailableAddr(pAdapter, bPseudoTest))
return _FALSE;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
#else /* !RTW_HALMAC */
/* ------------------------------------------------------------------------------ */
#define REG_EFUSE_CTRL 0x0030
#define EFUSE_CTRL REG_EFUSE_CTRL /* E-Fuse Control. */
/* ------------------------------------------------------------------------------ */
BOOLEAN
Efuse_Read1ByteFromFakeContent(
PADAPTER pAdapter,
u16 Offset,
u8 *Value);
BOOLEAN
Efuse_Read1ByteFromFakeContent(
PADAPTER pAdapter,
u16 Offset,
u8 *Value)
{
if (Offset >= EFUSE_MAX_HW_SIZE)
return _FALSE;
/* DbgPrint("Read fake content, offset = %d\n", Offset); */
if (fakeEfuseBank == 0)
*Value = fakeEfuseContent[Offset];
else
*Value = fakeBTEfuseContent[fakeEfuseBank - 1][Offset];
return _TRUE;
}
BOOLEAN
Efuse_Write1ByteToFakeContent(
PADAPTER pAdapter,
u16 Offset,
u8 Value);
BOOLEAN
Efuse_Write1ByteToFakeContent(
PADAPTER pAdapter,
u16 Offset,
u8 Value)
{
if (Offset >= EFUSE_MAX_HW_SIZE)
return _FALSE;
if (fakeEfuseBank == 0)
fakeEfuseContent[Offset] = Value;
else
fakeBTEfuseContent[fakeEfuseBank - 1][Offset] = Value;
return _TRUE;
}
/*-----------------------------------------------------------------------------
* Function: Efuse_PowerSwitch
*
* Overview: When we want to enable write operation, we should change to
* pwr on state. When we stop write, we should switch to 500k mode
* and disable LDO 2.5V.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/17/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void
Efuse_PowerSwitch(
PADAPTER pAdapter,
u8 bWrite,
u8 PwrState)
{
pAdapter->hal_func.EfusePowerSwitch(pAdapter, bWrite, PwrState);
}
void
BTEfuse_PowerSwitch(
PADAPTER pAdapter,
u8 bWrite,
u8 PwrState)
{
if (pAdapter->hal_func.BTEfusePowerSwitch)
pAdapter->hal_func.BTEfusePowerSwitch(pAdapter, bWrite, PwrState);
}
/*-----------------------------------------------------------------------------
* Function: efuse_GetCurrentSize
*
* Overview: Get current efuse size!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/16/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
u16
Efuse_GetCurrentSize(
PADAPTER pAdapter,
u8 efuseType,
BOOLEAN bPseudoTest)
{
u16 ret = 0;
ret = pAdapter->hal_func.EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest);
return ret;
}
/*
* Description:
* Execute E-Fuse read byte operation.
* Refered from SD1 Richard.
*
* Assumption:
* 1. Boot from E-Fuse and successfully auto-load.
* 2. PASSIVE_LEVEL (USB interface)
*
* Created by Roger, 2008.10.21.
* */
void
ReadEFuseByte(
PADAPTER Adapter,
u16 _offset,
u8 *pbuf,
BOOLEAN bPseudoTest)
{
u32 value32;
u8 readbyte;
u16 retry;
/* systime start=rtw_get_current_time(); */
if (bPseudoTest) {
Efuse_Read1ByteFromFakeContent(Adapter, _offset, pbuf);
return;
}
if (IS_HARDWARE_TYPE_8723B(Adapter)) {
/* <20130121, Kordan> For SMIC S55 EFUSE specificatoin. */
/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
phy_set_mac_reg(Adapter, EFUSE_TEST, BIT11, 0);
}
/* Write Address */
rtw_write8(Adapter, EFUSE_CTRL + 1, (_offset & 0xff));
readbyte = rtw_read8(Adapter, EFUSE_CTRL + 2);
rtw_write8(Adapter, EFUSE_CTRL + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
/* Write bit 32 0 */
readbyte = rtw_read8(Adapter, EFUSE_CTRL + 3);
rtw_write8(Adapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
/* Check bit 32 read-ready */
retry = 0;
value32 = rtw_read32(Adapter, EFUSE_CTRL);
/* while(!(((value32 >> 24) & 0xff) & 0x80) && (retry<10)) */
while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
value32 = rtw_read32(Adapter, EFUSE_CTRL);
retry++;
}
/* 20100205 Joseph: Add delay suggested by SD1 Victor. */
/* This fix the problem that Efuse read error in high temperature condition. */
/* Designer says that there shall be some delay after ready bit is set, or the */
/* result will always stay on last data we read. */
rtw_udelay_os(50);
value32 = rtw_read32(Adapter, EFUSE_CTRL);
*pbuf = (u8)(value32 & 0xff);
/* RTW_INFO("ReadEFuseByte _offset:%08u, in %d ms\n",_offset ,rtw_get_passing_time_ms(start)); */
}
/*
* Description:
* 1. Execute E-Fuse read byte operation according as map offset and
* save to E-Fuse table.
* 2. Refered from SD1 Richard.
*
* Assumption:
* 1. Boot from E-Fuse and successfully auto-load.
* 2. PASSIVE_LEVEL (USB interface)
*
* Created by Roger, 2008.10.21.
*
* 2008/12/12 MH 1. Reorganize code flow and reserve bytes. and add description.
* 2. Add efuse utilization collect.
* 2008/12/22 MH Read Efuse must check if we write section 1 data again!!! Sec1
* write addr must be after sec5.
* */
void
efuse_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
BOOLEAN bPseudoTest
);
void
efuse_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
BOOLEAN bPseudoTest
)
{
Adapter->hal_func.ReadEFuse(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
}
void
EFUSE_GetEfuseDefinition(
PADAPTER pAdapter,
u8 efuseType,
u8 type,
void *pOut,
BOOLEAN bPseudoTest
)
{
pAdapter->hal_func.EFUSEGetEfuseDefinition(pAdapter, efuseType, type, pOut, bPseudoTest);
}
/* 11/16/2008 MH Read one byte from real Efuse. */
u8
efuse_OneByteRead(
PADAPTER pAdapter,
u16 addr,
u8 *data,
BOOLEAN bPseudoTest)
{
u32 tmpidx = 0;
u8 bResult;
u8 readbyte;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
/* RTW_INFO("===> EFUSE_OneByteRead(), addr = %x\n", addr); */
/* RTW_INFO("===> EFUSE_OneByteRead() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
if (bPseudoTest) {
bResult = Efuse_Read1ByteFromFakeContent(pAdapter, addr, data);
return bResult;
}
#ifdef CONFIG_RTL8710B
/* <20171208, Peter>, Dont do the following write16(0x34) */
if (IS_HARDWARE_TYPE_8710B(pAdapter)) {
bResult = pAdapter->hal_func.efuse_indirect_read4(pAdapter, addr, data);
return bResult;
}
#endif
if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
(IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
) {
/* <20130121, Kordan> For SMIC EFUSE specificatoin. */
/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
/* phy_set_mac_reg(pAdapter, 0x34, BIT11, 0); */
rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11));
}
/* -----------------e-fuse reg ctrl --------------------------------- */
/* address */
rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
(rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
/* rtw_write8(pAdapter, EFUSE_CTRL+3, 0x72); */ /* read cmd */
/* Write bit 32 0 */
readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3);
rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) {
rtw_mdelay_os(1);
tmpidx++;
}
if (tmpidx < 100) {
*data = rtw_read8(pAdapter, EFUSE_CTRL);
bResult = _TRUE;
} else {
*data = 0xff;
bResult = _FALSE;
RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult);
RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
}
return bResult;
}
/* 11/16/2008 MH Write one byte to reald Efuse. */
u8
efuse_OneByteWrite(
PADAPTER pAdapter,
u16 addr,
u8 data,
BOOLEAN bPseudoTest)
{
u8 tmpidx = 0;
u8 bResult = _FALSE;
u32 efuseValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
/* RTW_INFO("===> EFUSE_OneByteWrite(), addr = %x data=%x\n", addr, data); */
/* RTW_INFO("===> EFUSE_OneByteWrite() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
if (bPseudoTest) {
bResult = Efuse_Write1ByteToFakeContent(pAdapter, addr, data);
return bResult;
}
Efuse_PowerSwitch(pAdapter, _TRUE, _TRUE);
/* -----------------e-fuse reg ctrl --------------------------------- */
/* address */
efuseValue = rtw_read32(pAdapter, EFUSE_CTRL);
efuseValue |= (BIT21 | BIT31);
efuseValue &= ~(0x3FFFF);
efuseValue |= ((addr << 8 | data) & 0x3FFFF);
/* <20130227, Kordan> 8192E MP chip A-cut had better not set 0x34[11] until B-Cut. */
if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
(IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
) {
/* <20130121, Kordan> For SMIC EFUSE specificatoin. */
/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
/* phy_set_mac_reg(pAdapter, 0x34, BIT11, 1); */
rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) | (BIT11));
rtw_write32(pAdapter, EFUSE_CTRL, 0x90600000 | ((addr << 8 | data)));
} else
rtw_write32(pAdapter, EFUSE_CTRL, efuseValue);
rtw_mdelay_os(1);
while ((0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100)) {
rtw_mdelay_os(1);
tmpidx++;
}
if (tmpidx < 100)
bResult = _TRUE;
else {
bResult = _FALSE;
RTW_INFO("%s: [ERROR] addr=0x%x ,efuseValue=0x%x ,bResult=%d time out 1s !!!\n",
__FUNCTION__, addr, efuseValue, bResult);
RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
}
/* disable Efuse program enable */
if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
(IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) ||
(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id))
)
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT(11), 0);
Efuse_PowerSwitch(pAdapter, _TRUE, _FALSE);
return bResult;
}
int
Efuse_PgPacketRead(PADAPTER pAdapter,
u8 offset,
u8 *data,
BOOLEAN bPseudoTest)
{
int ret = 0;
ret = pAdapter->hal_func.Efuse_PgPacketRead(pAdapter, offset, data, bPseudoTest);
return ret;
}
int
Efuse_PgPacketWrite(PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *data,
BOOLEAN bPseudoTest)
{
int ret;
ret = pAdapter->hal_func.Efuse_PgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
int
Efuse_PgPacketWrite_BT(PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *data,
BOOLEAN bPseudoTest)
{
int ret;
ret = pAdapter->hal_func.Efuse_PgPacketWrite_BT(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
u8
Efuse_WordEnableDataWrite(PADAPTER pAdapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
BOOLEAN bPseudoTest)
{
u8 ret = 0;
ret = pAdapter->hal_func.Efuse_WordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u8 efuse_read8(PADAPTER padapter, u16 address, u8 *value)
{
return efuse_OneByteRead(padapter, address, value, _FALSE);
}
static u8 efuse_write8(PADAPTER padapter, u16 address, u8 *value)
{
return efuse_OneByteWrite(padapter, address, *value, _FALSE);
}
/*
* read/wirte raw efuse data
*/
u8 rtw_efuse_access(PADAPTER padapter, u8 bWrite, u16 start_addr, u16 cnts, u8 *data)
{
int i = 0;
u16 real_content_len = 0, max_available_size = 0;
u8 res = _FAIL ;
u8(*rw8)(PADAPTER, u16, u8 *);
u32 backupRegs[4] = {0};
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&real_content_len, _FALSE);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_available_size, _FALSE);
if (start_addr > real_content_len)
return _FAIL;
if (_TRUE == bWrite) {
if ((start_addr + cnts) > max_available_size)
return _FAIL;
rw8 = &efuse_write8;
} else
rw8 = &efuse_read8;
efuse_PreUpdateAction(padapter, backupRegs);
Efuse_PowerSwitch(padapter, bWrite, _TRUE);
/* e-fuse one byte read / write */
for (i = 0; i < cnts; i++) {
if (start_addr >= real_content_len) {
res = _FAIL;
break;
}
res = rw8(padapter, start_addr++, data++);
if (_FAIL == res)
break;
}
Efuse_PowerSwitch(padapter, bWrite, _FALSE);
efuse_PostUpdateAction(padapter, backupRegs);
return res;
}
/* ------------------------------------------------------------------------------ */
u16 efuse_GetMaxSize(PADAPTER padapter)
{
u16 max_size;
max_size = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_size, _FALSE);
return max_size;
}
/* ------------------------------------------------------------------------------ */
u8 efuse_GetCurrentSize(PADAPTER padapter, u16 *size)
{
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
*size = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
/* ------------------------------------------------------------------------------ */
u16 efuse_bt_GetMaxSize(PADAPTER padapter)
{
u16 max_size;
max_size = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_size, _FALSE);
return max_size;
}
u8 efuse_bt_GetCurrentSize(PADAPTER padapter, u16 *size)
{
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
*size = Efuse_GetCurrentSize(padapter, EFUSE_BT, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
u8 rtw_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
efuse_ReadEFuse(padapter, EFUSE_WIFI, addr, cnts, data, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
u8 rtw_BT_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
efuse_ReadEFuse(padapter, EFUSE_BT, addr, cnts, data, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
/* ------------------------------------------------------------------------------ */
u8 rtw_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
#define RT_ASSERT_RET(expr) \
if (!(expr)) { \
printk("Assertion failed! %s at ......\n", #expr); \
printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
return _FAIL; \
}
u8 *efuse = NULL;
u8 offset, word_en;
u8 *map = NULL;
u8 newdata[PGPKT_DATA_SIZE];
s32 i, j, idx, chk_total_byte;
u8 ret = _SUCCESS;
u16 mapLen = 0, startAddr = 0, efuse_max_available_len = 0;
u32 backupRegs[4] = {0};
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
efuse = rtw_zmalloc(mapLen);
if (!efuse)
return _FAIL;
map = rtw_zmalloc(mapLen);
if (map == NULL) {
rtw_mfree(efuse, mapLen);
return _FAIL;
}
_rtw_memset(map, 0xFF, mapLen);
ret = rtw_efuse_map_read(padapter, 0, mapLen, map);
if (ret == _FAIL)
goto exit;
_rtw_memcpy(efuse , map, mapLen);
_rtw_memcpy(efuse + addr, data, cnts);
if (padapter->registrypriv.boffefusemask == 0) {
for (i = 0; i < cnts; i++) {
if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
if (rtw_file_efuse_IsMasked(padapter, addr + i, maskfileBuffer)) /*use file efuse mask. */
efuse[addr + i] = map[addr + i];
} else {
if (efuse_IsMasked(padapter, addr + i))
efuse[addr + i] = map[addr + i];
}
RTW_INFO("%s , data[%d] = %x, map[addr+i]= %x\n", __func__, addr + i, efuse[ addr + i], map[addr + i]);
}
}
/*Efuse_PowerSwitch(padapter, _TRUE, _TRUE);*/
chk_total_byte = 0;
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (efuse[addr + idx] != map[addr + idx])
word_en &= ~BIT(i >> 1);
}
if (word_en != 0xF) {
chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2;
if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */
chk_total_byte += 2;
else
chk_total_byte += 1;
}
offset++;
}
RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte);
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
if (startAddr == 0) {
startAddr = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
RTW_INFO("%s: Efuse_GetCurrentSize startAddr=%#X\n", __func__, startAddr);
}
RTW_DBG("%s: startAddr=%#X\n", __func__, startAddr);
if ((startAddr + chk_total_byte) >= efuse_max_available_len) {
RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse_max_available_len(0x%X)\n",
__func__, startAddr, chk_total_byte, efuse_max_available_len);
ret = _FAIL;
goto exit;
}
efuse_PreUpdateAction(padapter, backupRegs);
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (efuse[addr + idx] != map[addr + idx]) {
word_en &= ~BIT(i >> 1);
newdata[i] = efuse[addr + idx];
#ifdef CONFIG_RTL8723B
if (addr + idx == 0x8) {
if (IS_C_CUT(pHalData->version_id) || IS_B_CUT(pHalData->version_id)) {
if (pHalData->adjuseVoltageVal == 6) {
newdata[i] = map[addr + idx];
RTW_INFO(" %s ,\n adjuseVoltageVal = %d ,newdata[%d] = %x\n", __func__, pHalData->adjuseVoltageVal, i, newdata[i]);
}
}
}
#endif
}
}
if (word_en != 0xF) {
ret = Efuse_PgPacketWrite(padapter, offset, word_en, newdata, _FALSE);
RTW_INFO("offset=%x\n", offset);
RTW_INFO("word_en=%x\n", word_en);
for (i = 0; i < PGPKT_DATA_SIZE; i++)
RTW_INFO("data=%x \t", newdata[i]);
if (ret == _FAIL)
break;
}
offset++;
}
/*Efuse_PowerSwitch(padapter, _TRUE, _FALSE);*/
efuse_PostUpdateAction(padapter, backupRegs);
exit:
rtw_mfree(map, mapLen);
rtw_mfree(efuse, mapLen);
return ret;
}
u8 rtw_BT_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
#define RT_ASSERT_RET(expr) \
if (!(expr)) { \
printk("Assertion failed! %s at ......\n", #expr); \
printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
return _FAIL; \
}
u8 offset, word_en;
u8 *map;
u8 newdata[PGPKT_DATA_SIZE];
s32 i = 0, j = 0, idx;
u8 ret = _SUCCESS;
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
map = rtw_zmalloc(mapLen);
if (map == NULL)
return _FAIL;
ret = rtw_BT_efuse_map_read(padapter, 0, mapLen, map);
if (ret == _FAIL)
goto exit;
RTW_INFO("OFFSET\tVALUE(hex)\n");
for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
RTW_INFO("0x%03x\t", i);
for (j = 0; j < 8; j++)
RTW_INFO("%02X ", map[i + j]);
RTW_INFO("\t");
for (; j < 16; j++)
RTW_INFO("%02X ", map[i + j]);
RTW_INFO("\n");
}
RTW_INFO("\n");
Efuse_PowerSwitch(padapter, _TRUE, _TRUE);
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (data[idx] != map[addr + idx]) {
word_en &= ~BIT(i >> 1);
newdata[i] = data[idx];
}
}
if (word_en != 0xF) {
RTW_INFO("offset=%x\n", offset);
RTW_INFO("word_en=%x\n", word_en);
RTW_INFO("%s: data=", __FUNCTION__);
for (i = 0; i < PGPKT_DATA_SIZE; i++)
RTW_INFO("0x%02X ", newdata[i]);
RTW_INFO("\n");
ret = Efuse_PgPacketWrite_BT(padapter, offset, word_en, newdata, _FALSE);
if (ret == _FAIL)
break;
}
offset++;
}
Efuse_PowerSwitch(padapter, _TRUE, _FALSE);
exit:
rtw_mfree(map, mapLen);
return ret;
}
/*-----------------------------------------------------------------------------
* Function: Efuse_ReadAllMap
*
* Overview: Read All Efuse content
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/11/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void
Efuse_ReadAllMap(
PADAPTER pAdapter,
u8 efuseType,
u8 *Efuse,
BOOLEAN bPseudoTest);
void
Efuse_ReadAllMap(
PADAPTER pAdapter,
u8 efuseType,
u8 *Efuse,
BOOLEAN bPseudoTest)
{
u16 mapLen = 0;
Efuse_PowerSwitch(pAdapter, _FALSE, _TRUE);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
efuse_ReadEFuse(pAdapter, efuseType, 0, mapLen, Efuse, bPseudoTest);
Efuse_PowerSwitch(pAdapter, _FALSE, _FALSE);
}
/*-----------------------------------------------------------------------------
* Function: efuse_ShadowWrite1Byte
* efuse_ShadowWrite2Byte
* efuse_ShadowWrite4Byte
*
* Overview: Write efuse modify map by one/two/four byte.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
#ifdef PLATFORM
static void
efuse_ShadowWrite1Byte(
PADAPTER pAdapter,
u16 Offset,
u8 Value);
#endif /* PLATFORM */
static void
efuse_ShadowWrite1Byte(
PADAPTER pAdapter,
u16 Offset,
u8 Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
pHalData->efuse_eeprom_data[Offset] = Value;
} /* efuse_ShadowWrite1Byte */
/* ---------------Write Two Bytes */
static void
efuse_ShadowWrite2Byte(
PADAPTER pAdapter,
u16 Offset,
u16 Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
pHalData->efuse_eeprom_data[Offset] = Value & 0x00FF;
pHalData->efuse_eeprom_data[Offset + 1] = Value >> 8;
} /* efuse_ShadowWrite1Byte */
/* ---------------Write Four Bytes */
static void
efuse_ShadowWrite4Byte(
PADAPTER pAdapter,
u16 Offset,
u32 Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
pHalData->efuse_eeprom_data[Offset] = (u8)(Value & 0x000000FF);
pHalData->efuse_eeprom_data[Offset + 1] = (u8)((Value >> 8) & 0x0000FF);
pHalData->efuse_eeprom_data[Offset + 2] = (u8)((Value >> 16) & 0x00FF);
pHalData->efuse_eeprom_data[Offset + 3] = (u8)((Value >> 24) & 0xFF);
} /* efuse_ShadowWrite1Byte */
/*-----------------------------------------------------------------------------
* Function: EFUSE_ShadowWrite
*
* Overview: Write efuse modify map for later update operation to use!!!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void
EFUSE_ShadowWrite(
PADAPTER pAdapter,
u8 Type,
u16 Offset,
u32 Value);
void
EFUSE_ShadowWrite(
PADAPTER pAdapter,
u8 Type,
u16 Offset,
u32 Value)
{
#if (MP_DRIVER == 0)
return;
#endif
if (pAdapter->registrypriv.mp_mode == 0)
return;
if (Type == 1)
efuse_ShadowWrite1Byte(pAdapter, Offset, (u8)Value);
else if (Type == 2)
efuse_ShadowWrite2Byte(pAdapter, Offset, (u16)Value);
else if (Type == 4)
efuse_ShadowWrite4Byte(pAdapter, Offset, (u32)Value);
} /* EFUSE_ShadowWrite */
#endif /* !RTW_HALMAC */
/*-----------------------------------------------------------------------------
* Function: efuse_ShadowRead1Byte
* efuse_ShadowRead2Byte
* efuse_ShadowRead4Byte
*
* Overview: Read from efuse init map by one/two/four bytes !!!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static void
efuse_ShadowRead1Byte(
PADAPTER pAdapter,
u16 Offset,
u8 *Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
*Value = pHalData->efuse_eeprom_data[Offset];
} /* EFUSE_ShadowRead1Byte */
/* ---------------Read Two Bytes */
static void
efuse_ShadowRead2Byte(
PADAPTER pAdapter,
u16 Offset,
u16 *Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
*Value = pHalData->efuse_eeprom_data[Offset];
*Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
} /* EFUSE_ShadowRead2Byte */
/* ---------------Read Four Bytes */
static void
efuse_ShadowRead4Byte(
PADAPTER pAdapter,
u16 Offset,
u32 *Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
*Value = pHalData->efuse_eeprom_data[Offset];
*Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
*Value |= pHalData->efuse_eeprom_data[Offset + 2] << 16;
*Value |= pHalData->efuse_eeprom_data[Offset + 3] << 24;
} /* efuse_ShadowRead4Byte */
/*-----------------------------------------------------------------------------
* Function: EFUSE_ShadowRead
*
* Overview: Read from pHalData->efuse_eeprom_data
*---------------------------------------------------------------------------*/
void
EFUSE_ShadowRead(
PADAPTER pAdapter,
u8 Type,
u16 Offset,
u32 *Value)
{
if (Type == 1)
efuse_ShadowRead1Byte(pAdapter, Offset, (u8 *)Value);
else if (Type == 2)
efuse_ShadowRead2Byte(pAdapter, Offset, (u16 *)Value);
else if (Type == 4)
efuse_ShadowRead4Byte(pAdapter, Offset, (u32 *)Value);
} /* EFUSE_ShadowRead */
/* 11/16/2008 MH Add description. Get current efuse area enabled word!!. */
u8
Efuse_CalculateWordCnts(u8 word_en)
{
u8 word_cnts = 0;
if (!(word_en & BIT(0)))
word_cnts++; /* 0 : write enable */
if (!(word_en & BIT(1)))
word_cnts++;
if (!(word_en & BIT(2)))
word_cnts++;
if (!(word_en & BIT(3)))
word_cnts++;
return word_cnts;
}
/*-----------------------------------------------------------------------------
* Function: efuse_WordEnableDataRead
*
* Overview: Read allowed word in current efuse section data.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/16/2008 MHC Create Version 0.
* 11/21/2008 MHC Fix Write bug when we only enable late word.
*
*---------------------------------------------------------------------------*/
void
efuse_WordEnableDataRead(u8 word_en,
u8 *sourdata,
u8 *targetdata)
{
if (!(word_en & BIT(0))) {
targetdata[0] = sourdata[0];
targetdata[1] = sourdata[1];
}
if (!(word_en & BIT(1))) {
targetdata[2] = sourdata[2];
targetdata[3] = sourdata[3];
}
if (!(word_en & BIT(2))) {
targetdata[4] = sourdata[4];
targetdata[5] = sourdata[5];
}
if (!(word_en & BIT(3))) {
targetdata[6] = sourdata[6];
targetdata[7] = sourdata[7];
}
}
/*-----------------------------------------------------------------------------
* Function: EFUSE_ShadowMapUpdate
*
* Overview: Transfer current EFUSE content to shadow init and modify map.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/13/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void EFUSE_ShadowMapUpdate(
PADAPTER pAdapter,
u8 efuseType,
BOOLEAN bPseudoTest)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
u16 mapLen = 0;
#ifdef RTW_HALMAC
u8 *efuse_map = NULL;
int err;
mapLen = EEPROM_MAX_SIZE;
efuse_map = pHalData->efuse_eeprom_data;
/* efuse default content is 0xFF */
_rtw_memset(efuse_map, 0xFF, EEPROM_MAX_SIZE);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
if (!mapLen) {
RTW_WARN("%s: <ERROR> fail to get efuse size!\n", __FUNCTION__);
mapLen = EEPROM_MAX_SIZE;
}
if (mapLen > EEPROM_MAX_SIZE) {
RTW_WARN("%s: <ERROR> size of efuse data(%d) is large than expected(%d)!\n",
__FUNCTION__, mapLen, EEPROM_MAX_SIZE);
mapLen = EEPROM_MAX_SIZE;
}
if (pHalData->bautoload_fail_flag == _FALSE) {
err = rtw_halmac_read_logical_efuse_map(adapter_to_dvobj(pAdapter), efuse_map, mapLen, NULL, 0);
if (err)
RTW_ERR("%s: <ERROR> fail to get efuse map!\n", __FUNCTION__);
}
#else /* !RTW_HALMAC */
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest);
if (pHalData->bautoload_fail_flag == _TRUE)
_rtw_memset(pHalData->efuse_eeprom_data, 0xFF, mapLen);
else {
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
if (_SUCCESS != retriveAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data)) {
#endif
Efuse_ReadAllMap(pAdapter, efuseType, pHalData->efuse_eeprom_data, bPseudoTest);
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
storeAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data);
}
#endif
}
/* PlatformMoveMemory((void *)&pHalData->EfuseMap[EFUSE_MODIFY_MAP][0], */
/* (void *)&pHalData->EfuseMap[EFUSE_INIT_MAP][0], mapLen); */
#endif /* !RTW_HALMAC */
rtw_mask_map_read(pAdapter, 0x00, mapLen, pHalData->efuse_eeprom_data);
rtw_dump_cur_efuse(pAdapter);
} /* EFUSE_ShadowMapUpdate */
const u8 _mac_hidden_max_bw_to_hal_bw_cap[MAC_HIDDEN_MAX_BW_NUM] = {
0,
0,
(BW_CAP_160M | BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
(BW_CAP_5M),
(BW_CAP_10M | BW_CAP_5M),
(BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
(BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
(BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
};
const u8 _mac_hidden_proto_to_hal_proto_cap[MAC_HIDDEN_PROTOCOL_NUM] = {
0,
0,
(PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
(PROTO_CAP_11AC | PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
};
u8 mac_hidden_wl_func_to_hal_wl_func(u8 func)
{
u8 wl_func = 0;
if (func & BIT0)
wl_func |= WL_FUNC_MIRACAST;
if (func & BIT1)
wl_func |= WL_FUNC_P2P;
if (func & BIT2)
wl_func |= WL_FUNC_TDLS;
if (func & BIT3)
wl_func |= WL_FUNC_FTM;
return wl_func;
}
#ifdef PLATFORM_LINUX
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
/* #include <rtw_eeprom.h> */
int isAdaptorInfoFileValid(void)
{
return _TRUE;
}
int storeAdaptorInfoFile(char *path, u8 *efuse_data)
{
int ret = _SUCCESS;
if (path && efuse_data) {
ret = rtw_store_to_file(path, efuse_data, EEPROM_MAX_SIZE_512);
if (ret == EEPROM_MAX_SIZE)
ret = _SUCCESS;
else
ret = _FAIL;
} else {
RTW_INFO("%s NULL pointer\n", __FUNCTION__);
ret = _FAIL;
}
return ret;
}
int retriveAdaptorInfoFile(char *path, u8 *efuse_data)
{
int ret = _SUCCESS;
mm_segment_t oldfs;
struct file *fp;
if (path && efuse_data) {
ret = rtw_retrieve_from_file(path, efuse_data, EEPROM_MAX_SIZE);
if (ret == EEPROM_MAX_SIZE)
ret = _SUCCESS;
else
ret = _FAIL;
#if 0
if (isAdaptorInfoFileValid())
return 0;
else
return _FAIL;
#endif
} else {
RTW_INFO("%s NULL pointer\n", __FUNCTION__);
ret = _FAIL;
}
return ret;
}
#endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */
u8 rtw_efuse_file_read(PADAPTER padapter, u8 *filepath, u8 *buf, u32 len)
{
char *ptmpbuf = NULL, *ptr;
u8 val8;
u32 count, i, j;
int err;
u32 bufsize = 4096;
ptmpbuf = rtw_zmalloc(bufsize);
if (ptmpbuf == NULL)
return _FALSE;
count = rtw_retrieve_from_file(filepath, ptmpbuf, bufsize);
if (count <= 90) {
rtw_mfree(ptmpbuf, bufsize);
RTW_ERR("%s, filepatch %s, size=%d, FAIL!!\n", __FUNCTION__, filepath, count);
return _FALSE;
}
i = 0;
j = 0;
ptr = ptmpbuf;
while ((j < len) && (i < count)) {
if (ptmpbuf[i] == '\0')
break;
ptr = strpbrk(&ptmpbuf[i], " \t\n\r");
if (ptr) {
if (ptr == &ptmpbuf[i]) {
i++;
continue;
}
/* Add string terminating null */
*ptr = 0;
} else {
ptr = &ptmpbuf[count-1];
}
err = sscanf(&ptmpbuf[i], "%hhx", &val8);
if (err != 1) {
RTW_WARN("Something wrong to parse efuse file, string=%s\n", &ptmpbuf[i]);
} else {
buf[j] = val8;
RTW_DBG("i=%d, j=%d, 0x%02x\n", i, j, buf[j]);
j++;
}
i = ptr - ptmpbuf + 1;
}
rtw_mfree(ptmpbuf, bufsize);
RTW_INFO("%s, filepatch %s, size=%d, done\n", __FUNCTION__, filepath, count);
return _TRUE;
}
#if !defined(CONFIG_RTW_ANDROID_GKI)
u8 rtw_efuse_file_store(PADAPTER padapter, u8 *filepath, u8 *buf, u32 len)
{
int err = 0, i = 0, j = 0, mapLen = 0 ;
char *cbuf, *pchr;
cbuf = rtw_zmalloc(len * 3);
pchr = cbuf;
if (filepath && buf) {
if (cbuf == NULL) {
RTW_INFO("%s, malloc cbuf _FAIL\n", __FUNCTION__);
err = _FAIL;
} else {
for (i = 0; i <= len; i += 16) {
for (j = 0; j < 16; j++)
pchr += sprintf(pchr, "%02X ", buf[i + j]);
pchr += sprintf(pchr, "\n");
}
err = rtw_store_to_file(filepath, cbuf, strlen(cbuf));
RTW_INFO("%s, rtw_store_to_file len=%d,err =%d, len(cbuf)=%zd\n", __FUNCTION__, len, err, strlen(cbuf));
if (err == strlen(cbuf)) {
err = _SUCCESS;
RTW_INFO("%s, filepatch %s, len=%d, done\n", __FUNCTION__, filepath, len);
} else {
err = _FAIL;
RTW_INFO("%s, filepatch %s, len=%d,err =%d, _FAIL\n", __FUNCTION__, filepath, len, err);
}
}
}
if (cbuf)
rtw_mfree(cbuf, len * 3);
return err;
}
#endif /* !defined(CONFIG_RTW_ANDROID_GKI) */
#ifdef CONFIG_EFUSE_CONFIG_FILE
u32 rtw_read_efuse_from_file(const char *path, u8 *buf, int map_size)
{
u32 i;
u8 c;
u8 temp[3];
u8 temp_i;
u8 end = _FALSE;
u32 ret = _FAIL;
u8 *file_data = NULL;
u32 file_size = 16384, read_size, pos = 0;
u8 *map = NULL;
if (rtw_readable_file_sz_chk(path, file_size) != _TRUE) {
RTW_PRINT("%s %s is not readable\n", __func__, path);
goto exit;
}
file_data = rtw_vmalloc(file_size);
if (!file_data) {
RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, file_size);
goto exit;
}
read_size = rtw_retrieve_from_file(path, file_data, file_size);
if (read_size == 0) {
RTW_ERR("%s read from %s fail\n", __func__, path);
goto exit;
}
map = rtw_vmalloc(map_size);
if (!map) {
RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, map_size);
goto exit;
}
_rtw_memset(map, 0xff, map_size);
temp[2] = 0; /* end of string '\0' */
for (i = 0 ; i < map_size ; i++) {
temp_i = 0;
while (1) {
if (pos >= read_size) {
end = _TRUE;
break;
}
c = file_data[pos++];
/* bypass spece or eol or null before first hex digit */
if (temp_i == 0 && (is_eol(c) == _TRUE || is_space(c) == _TRUE || is_null(c) == _TRUE))
continue;
if (IsHexDigit(c) == _FALSE) {
RTW_ERR("%s invalid 8-bit hex format for offset:0x%03x\n", __func__, i);
goto exit;
}
temp[temp_i++] = c;
if (temp_i == 2) {
/* parse value */
if (sscanf(temp, "%hhx", &map[i]) != 1) {
RTW_ERR("%s sscanf fail for offset:0x%03x\n", __func__, i);
goto exit;
}
break;
}
}
if (end == _TRUE) {
if (temp_i != 0) {
RTW_ERR("%s incomplete 8-bit hex format for offset:0x%03x\n", __func__, i);
goto exit;
}
break;
}
}
RTW_PRINT("efuse file:%s, 0x%03x byte content read\n", path, i);
_rtw_memcpy(buf, map, map_size);
ret = _SUCCESS;
exit:
if (file_data)
rtw_vmfree(file_data, file_size);
if (map)
rtw_vmfree(map, map_size);
return ret;
}
u32 rtw_read_macaddr_from_file(const char *path, u8 *buf)
{
u32 i;
u8 temp[3];
u32 ret = _FAIL;
u8 file_data[17];
u32 read_size;
u8 addr[ETH_ALEN];
if (rtw_is_file_readable(path) != _TRUE) {
RTW_PRINT("%s %s is not readable\n", __func__, path);
goto exit;
}
read_size = rtw_retrieve_from_file(path, file_data, 17);
if (read_size != 17) {
RTW_ERR("%s read from %s fail\n", __func__, path);
goto exit;
}
temp[2] = 0; /* end of string '\0' */
for (i = 0 ; i < ETH_ALEN ; i++) {
if (IsHexDigit(file_data[i * 3]) == _FALSE || IsHexDigit(file_data[i * 3 + 1]) == _FALSE) {
RTW_ERR("%s invalid 8-bit hex format for address offset:%u\n", __func__, i);
goto exit;
}
if (i < ETH_ALEN - 1 && file_data[i * 3 + 2] != ':') {
RTW_ERR("%s invalid separator after address offset:%u\n", __func__, i);
goto exit;
}
temp[0] = file_data[i * 3];
temp[1] = file_data[i * 3 + 1];
if (sscanf(temp, "%hhx", &addr[i]) != 1) {
RTW_ERR("%s sscanf fail for address offset:0x%03x\n", __func__, i);
goto exit;
}
}
_rtw_memcpy(buf, addr, ETH_ALEN);
RTW_PRINT("wifi_mac file: %s\n", path);
#ifdef CONFIG_RTW_DEBUG
RTW_INFO(MAC_FMT"\n", MAC_ARG(buf));
#endif
ret = _SUCCESS;
exit:
return ret;
}
#endif /* CONFIG_EFUSE_CONFIG_FILE */
#endif /* PLATFORM_LINUX */