1
0
mirror of https://github.com/morrownr/8821cu-20210916.git synced 2024-12-31 07:04:37 +00:00
8821cu-20210916/hal/rtl8821c/rtl8821c_phy.c
2022-11-17 08:26:57 -06:00

1377 lines
40 KiB
C

/******************************************************************************
*
* Copyright(c) 2016 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTL8821C_PHY_C_
#include <hal_data.h> /* HAL_DATA_TYPE */
#include "../hal_halmac.h" /* REG_CCK_CHECK_8821C */
#include "rtl8821c.h"
/*
* Description:
* Initialize Register definition offset for Radio Path A/B/C/D
* The initialization value is constant and it should never be changes
*/
static void bb_rf_register_definition(PADAPTER adapter)
{
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
/* RF Interface Sowrtware Control */
hal->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW;
hal->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW;
/* RF Interface Output (and Enable) */
hal->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE;
hal->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE;
/* RF Interface (Output and) Enable */
hal->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE;
hal->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE;
hal->PHYRegDef[RF_PATH_A].rf3wireOffset = rA_LSSIWrite_Jaguar;
hal->PHYRegDef[RF_PATH_B].rf3wireOffset = rB_LSSIWrite_Jaguar;
hal->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rHSSIRead_Jaguar;
hal->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rHSSIRead_Jaguar;
/* Tranceiver Readback LSSI/HSPI mode */
hal->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rA_SIRead_Jaguar;
hal->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rB_SIRead_Jaguar;
hal->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = rA_PIRead_Jaguar;
hal->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = rB_PIRead_Jaguar;
}
static void init_bb_rf(PADAPTER adapter)
{
u8 val8;
u16 val16;
/* Enable BB and RF */
val8 = rtw_read8(adapter, REG_SYS_FUNC_EN_8821C);
if (IS_HARDWARE_TYPE_8821CU(adapter))
val8 |= BIT_FEN_USBA_8821C;
else if (IS_HARDWARE_TYPE_8821CE(adapter))
val8 |= BIT_FEN_PCIEA_8821C;
rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8);
/*
* 8821C MP Chip => Reset BB/RF ??
* Need to set BBRSTB and GLB_RSTB = 1->0->1 to generate a postive edge and negtive edge for BB
*/
val8 |= BIT_FEN_BB_GLB_RSTN_8821C | BIT_FEN_BBRSTB_8821C;
rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8);
val8 &= ~(BIT_FEN_BB_GLB_RSTN_8821C | BIT_FEN_BBRSTB_8821C);
rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8);
val8 |= BIT_FEN_BB_GLB_RSTN_8821C | BIT_FEN_BBRSTB_8821C;
rtw_write8(adapter, REG_SYS_FUNC_EN_8821C, val8);
val8 = BIT_RF_EN_8821C | BIT_RF_RSTB_8821C | BIT_RF_SDMRSTB_8821C;
/* 0x1F[7:0] = 0x07 PathA RF Power On */
rtw_write8(adapter, REG_RF_CTRL_8821C, val8);
rtw_usleep_os(10);
/*0xEC [31:24],BIT_WLRF1_CTRL, For WLRF1 control*/
/* 0xEF[7:0] = 0x07 for RFE Type=2,BTG RF Power On*/
rtw_write8(adapter, REG_WLRF1_8821C + 3, val8);
rtw_usleep_os(10);
}
u8 rtl8821c_init_phy_parameter_mac(PADAPTER adapter)
{
u8 ret = _FAIL;
PHAL_DATA_TYPE hal;
hal = GET_HAL_DATA(adapter);
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
ret = phy_ConfigMACWithParaFile(adapter, PHY_FILE_MAC_REG);
if (ret == _FAIL)
#endif /* CONFIG_LOAD_PHY_PARA_FROM_FILE */
{
odm_config_mac_with_header_file(&hal->odmpriv);
ret = _SUCCESS;
}
return ret;
}
static u8 _init_phy_parameter_bb(PADAPTER Adapter)
{
PHAL_DATA_TYPE hal = GET_HAL_DATA(Adapter);
u8 ret = _TRUE;
int res;
enum hal_status status;
/*
* 1. Read PHY_REG.TXT BB INIT!!
*/
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
res = phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG);
if (res == _FAIL)
#endif
{
ret = _FALSE;
status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_PHY_REG);
if (HAL_STATUS_SUCCESS == status)
ret = _TRUE;
}
if (ret != _TRUE) {
RTW_INFO("%s: Write BB Reg Fail!!", __FUNCTION__);
goto exit;
}
#ifdef CONFIG_MP_INCLUDED
if (Adapter->registrypriv.mp_mode == 1) {
/*
* 1.1 Read PHY_REG_MP.TXT BB INIT!!
*/
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
res = phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP);
if (res == _FAIL)
#endif
{
ret = _FALSE;
status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_PHY_REG_MP);
if (HAL_STATUS_SUCCESS == status)
ret = _TRUE;
}
if (ret != _TRUE) {
RTW_INFO("%s : Write BB Reg MP Fail!!", __FUNCTION__);
goto exit;
}
}
#endif /* CONFIG_MP_INCLUDED */
/*
* 2. Read BB AGC table Initialization
*/
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
res = phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB);
if (res == _FAIL)
#endif
{
ret = _FALSE;
status = odm_config_bb_with_header_file(&hal->odmpriv, CONFIG_BB_AGC_TAB);
if (HAL_STATUS_SUCCESS == status)
ret = _TRUE;
}
if (ret != _TRUE) {
RTW_INFO("%s: AGC Table Fail\n", __FUNCTION__);
goto exit;
}
exit:
return ret;
}
static u8 init_bb_reg(PADAPTER adapter)
{
u8 ret = _TRUE;
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
/*
* Config BB and AGC
*/
ret = _init_phy_parameter_bb(adapter);
if (rtw_phydm_set_crystal_cap(adapter, hal->crystal_cap) == _FALSE) {
RTW_ERR("Init crystal_cap failed\n");
rtw_warn_on(1);
ret = _FALSE;
}
phy_set_bb_reg(adapter, rCCK0_FalseAlarmReport, BIT18 | BIT22, 0);
return ret;
}
static u8 _init_phy_parameter_rf(PADAPTER adapter)
{
u32 val32 = 0;
enum rf_path eRFPath;
PBB_REGISTER_DEFINITION_T pPhyReg;
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
enum hal_status status;
int res;
u8 ret = _TRUE;
/*
* Initialize RF
*/
for (eRFPath = RF_PATH_A; eRFPath < hal_spec->rf_reg_path_num; eRFPath++) {
pPhyReg = &hal->PHYRegDef[eRFPath];
/* Initialize RF from configuration file */
switch (eRFPath) {
case RF_PATH_A:
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
res = PHY_ConfigRFWithParaFile(adapter, PHY_FILE_RADIO_A, eRFPath);
if (res == _FAIL)
#endif
{
ret = _FALSE;
status = odm_config_rf_with_header_file(&hal->odmpriv, CONFIG_RF_RADIO, eRFPath);
if (HAL_STATUS_SUCCESS == status)
ret = _TRUE;
}
break;
case RF_PATH_B:
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
res = PHY_ConfigRFWithParaFile(adapter, PHY_FILE_RADIO_B, eRFPath);
if (res == _FAIL)
#endif
{
ret = _FALSE;
status = odm_config_rf_with_header_file(&hal->odmpriv, CONFIG_RF_RADIO, eRFPath);
if (HAL_STATUS_SUCCESS == status)
ret = _TRUE;
}
break;
default:
RTW_INFO("Unknown RF path!! %d\r\n", eRFPath);
break;
}
if (ret != _TRUE)
goto exit;
}
/*
* Configuration of Tx Power Tracking
*/
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
res = PHY_ConfigRFWithTxPwrTrackParaFile(adapter, PHY_FILE_TXPWR_TRACK);
if (res == _FAIL)
#endif
{
ret = _FALSE;
status = odm_config_rf_with_tx_pwr_track_header_file(&hal->odmpriv);
if (HAL_STATUS_SUCCESS == status)
ret = _TRUE;
}
if (ret != _TRUE)
goto exit;
exit:
return ret;
}
static u8 init_rf_reg(PADAPTER adapter)
{
u8 ret = _TRUE;
ret = _init_phy_parameter_rf(adapter);
return ret;
}
u8 rtl8821c_phy_init(PADAPTER adapter)
{
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
struct dm_struct *phydm = &hal->odmpriv;
bb_rf_register_definition(adapter);
init_bb_rf(adapter);
if (_FALSE == config_phydm_parameter_init_8821c(phydm, ODM_PRE_SETTING))
return _FALSE;
if (_FALSE == init_bb_reg(adapter))
return _FALSE;
if (_FALSE == init_rf_reg(adapter))
return _FALSE;
if (_FALSE == config_phydm_parameter_init_8821c(phydm, ODM_POST_SETTING))
return _FALSE;
hal->phy_spec.trx_cap = query_phydm_trx_capability(phydm);
hal->phy_spec.stbc_cap = query_phydm_stbc_capability(phydm);
hal->phy_spec.ldpc_cap = query_phydm_ldpc_capability(phydm);
hal->phy_spec.txbf_param = query_phydm_txbf_parameters(phydm);
hal->phy_spec.txbf_cap = query_phydm_txbf_capability(phydm);
/*rtw_dump_phy_cap(RTW_DBGDUMP, adapter);*/
return _TRUE;
}
static u32 phy_calculatebitshift(u32 mask)
{
u32 i;
for (i = 0; i <= 31; i++)
if (mask & BIT(i))
break;
return i;
}
u32 rtl8821c_read_bb_reg(PADAPTER adapter, u32 addr, u32 mask)
{
u32 val = 0, val_org, shift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
val_org = rtw_read32(adapter, addr);
shift = phy_calculatebitshift(mask);
val = (val_org & mask) >> shift;
return val;
}
void rtl8821c_write_bb_reg(PADAPTER adapter, u32 addr, u32 mask, u32 val)
{
u32 val_org, shift;
#if (DISABLE_BB_RF == 1)
return;
#endif
if (mask != 0xFFFFFFFF) {
/* not "double word" write */
val_org = rtw_read32(adapter, addr);
shift = phy_calculatebitshift(mask);
val = ((val_org & (~mask)) | ((val << shift) & mask));
}
rtw_write32(adapter, addr, val);
}
u32 rtl8821c_read_rf_reg(PADAPTER adapter, enum rf_path path, u32 addr, u32 mask)
{
struct dm_struct *phydm = adapter_to_phydm(adapter);
u32 val = 0;
val = config_phydm_read_rf_reg_8821c(phydm, path, addr, mask);
if (!config_phydm_read_rf_check_8821c(val))
RTW_INFO(FUNC_ADPT_FMT ": read RF reg path=%d addr=0x%x mask=0x%x FAIL!\n",
FUNC_ADPT_ARG(adapter), path, addr, mask);
return val;
}
void rtl8821c_write_rf_reg(PADAPTER adapter, enum rf_path path, u32 addr, u32 mask, u32 val)
{
struct dm_struct *phydm = adapter_to_phydm(adapter);
u8 ret;
ret = config_phydm_write_rf_reg_8821c(phydm, path, addr, mask, val);
if (_FALSE == ret)
RTW_INFO(FUNC_ADPT_FMT ": write RF reg path=%d addr=0x%x mask=0x%x val=0x%x FAIL!\n",
FUNC_ADPT_ARG(adapter), path, addr, mask, val);
}
void rtl8821c_set_tx_power_level(PADAPTER adapter, u8 channel)
{
u8 path = RF_PATH_A;
struct dm_struct *phydm = adapter_to_phydm(adapter);
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
u8 under_survey_ch = phy_check_under_survey_ch(adapter);
u8 under_24g = (hal->current_band_type == BAND_ON_2_4G);
/*((hal->RFEType == 2) || (hal->RFEType == 4) || (hal->RFEType == 7))*/
if ((channel <= 14) && (SWITCH_TO_BTG == query_phydm_default_rf_set_8821c(phydm)))
path = RF_PATH_B;
/*if (adapter->registrypriv.mp_mode == 1)*/
if (under_24g)
phy_set_tx_power_index_by_rate_section(adapter, path, channel, CCK);
phy_set_tx_power_index_by_rate_section(adapter, path, channel, OFDM);
if (!under_survey_ch) {
phy_set_tx_power_index_by_rate_section(adapter, path, channel, HT_MCS0_MCS7);
phy_set_tx_power_index_by_rate_section(adapter, path, channel, VHT_1SSMCS0_1SSMCS9);
}
}
/*
* Parameters:
* padatper
* powerindex power index for rate
* rfpath Antenna(RF) path, type "enum rf_path"
* rate data rate, type "enum MGN_RATE"
*/
void rtl8821c_set_tx_power_index(PADAPTER adapter, u32 powerindex, enum rf_path rfpath, u8 rate)
{
HAL_DATA_TYPE *hal = GET_HAL_DATA(adapter);
struct dm_struct *phydm = adapter_to_phydm(adapter);
u8 reg_path;
u8 shift = 0;
boolean write_ret;
if (!IS_1T_RATE(rate)) {
RTW_ERR(FUNC_ADPT_FMT" invalid rate(%s)\n", FUNC_ADPT_ARG(adapter), MGN_RATE_STR(rate));
rtw_warn_on(1);
goto exit;
}
reg_path = RF_PATH_A;
rate = MRateToHwRate(rate);
/*
* For 8821C, phydm api use 4 bytes txagc value
* driver must combine every four 1 byte to one 4 byte and send to phydm api
*/
shift = rate % 4;
hal->txagc_set_buf |= ((powerindex & 0xff) << (shift * 8));
if (shift != 3 && rate != DESC_RATEVHTSS1MCS9)
goto exit;
rate = rate & 0xFC;
write_ret = config_phydm_write_txagc_8821c(phydm, hal->txagc_set_buf, reg_path, rate);
if (write_ret == true && !DBG_TX_POWER_IDX)
goto clear_buf;
RTW_INFO(FUNC_ADPT_FMT" (index:0x%08x, %c, rate:%s(0x%02x), disable api:%d) from %c %s\n"
, FUNC_ADPT_ARG(adapter), hal->txagc_set_buf, rf_path_char(reg_path)
, HDATA_RATE(rate), rate, phydm->is_disable_phy_api
, rf_path_char(rfpath)
, write_ret == true ? "OK" : "FAIL");
rtw_warn_on(write_ret != true);
clear_buf:
hal->txagc_set_buf = 0;
exit:
return;
}
/*
* Description:
* Check need to switch band or not
* Parameters:
* channelToSW channel wiii be switch to
* Return:
* _TRUE need to switch band
* _FALSE not need to switch band
*/
static u8 need_switch_band(PADAPTER adapter, u8 channelToSW)
{
u8 u1tmp = 0;
u8 ret_value = _TRUE;
u8 Band = BAND_ON_5G, BandToSW = BAND_ON_5G;
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
Band = hal->current_band_type;
/* Use current swich channel to judge Band Type and switch Band if need */
if (channelToSW > 14)
BandToSW = BAND_ON_5G;
else
BandToSW = BAND_ON_2_4G;
if (BandToSW != Band) {
/* record current band type for other hal use */
hal->current_band_type = (BAND_TYPE)BandToSW;
ret_value = _TRUE;
} else
ret_value = _FALSE;
return ret_value;
}
static u8 get_pri_ch_id(PADAPTER adapter)
{
u8 pri_ch_idx = 0;
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
if (hal->current_channel_bw == CHANNEL_WIDTH_80) {
/* primary channel is at lower subband of 80MHz & 40MHz */
if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
pri_ch_idx = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
/* primary channel is at lower subband of 80MHz & upper subband of 40MHz */
else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
pri_ch_idx = VHT_DATA_SC_20_LOWER_OF_80MHZ;
/* primary channel is at upper subband of 80MHz & lower subband of 40MHz */
else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
pri_ch_idx = VHT_DATA_SC_20_UPPER_OF_80MHZ;
/* primary channel is at upper subband of 80MHz & upper subband of 40MHz */
else if ((hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
pri_ch_idx = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
else {
if (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
pri_ch_idx = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (hal->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
pri_ch_idx = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
}
} else if (hal->current_channel_bw == CHANNEL_WIDTH_40) {
/* primary channel is at upper subband of 40MHz */
if (hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
pri_ch_idx = VHT_DATA_SC_20_UPPER_OF_80MHZ;
/* primary channel is at lower subband of 40MHz */
else if (hal->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
pri_ch_idx = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
}
return pri_ch_idx;
}
static void mac_switch_bandwidth(PADAPTER adapter, u8 pri_ch_idx)
{
u8 channel = 0, bw = 0;
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
int err;
channel = hal->current_channel;
bw = hal->current_channel_bw;
err = rtw_halmac_set_bandwidth(adapter_to_dvobj(adapter), channel, pri_ch_idx, bw);
if (err) {
RTW_INFO(FUNC_ADPT_FMT ": (channel=%d, pri_ch_idx=%d, bw=%d) fail\n",
FUNC_ADPT_ARG(adapter), channel, pri_ch_idx, bw);
}
}
u32 phy_get_tx_bbswing_8821c(_adapter *adapter, BAND_TYPE band, u8 rf_path)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter);
struct dm_struct *pDM_Odm = &pHalData->odmpriv;
struct dm_rf_calibration_struct *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info);
s8 bbSwing_2G = -1 * GetRegTxBBSwing_2G(adapter);
s8 bbSwing_5G = -1 * GetRegTxBBSwing_5G(adapter);
u32 out = 0x200;
const s8 AUTO = -1;
if (pHalData->bautoload_fail_flag) {
if (band == BAND_ON_2_4G) {
pRFCalibrateInfo->bb_swing_diff_2g = bbSwing_2G;
if (bbSwing_2G == 0)
out = 0x200; /* 0 dB */
else if (bbSwing_2G == -3)
out = 0x16A; /* -3 dB */
else if (bbSwing_2G == -6)
out = 0x101; /* -6 dB */
else if (bbSwing_2G == -9)
out = 0x0B6; /* -9 dB */
else {
if (pHalData->ExternalPA_2G) {
pRFCalibrateInfo->bb_swing_diff_2g = -3;
out = 0x16A;
} else {
pRFCalibrateInfo->bb_swing_diff_2g = 0;
out = 0x200;
}
}
} else if (band == BAND_ON_5G) {
pRFCalibrateInfo->bb_swing_diff_5g = bbSwing_5G;
if (bbSwing_5G == 0)
out = 0x200; /* 0 dB */
else if (bbSwing_5G == -3)
out = 0x16A; /* -3 dB */
else if (bbSwing_5G == -6)
out = 0x101; /* -6 dB */
else if (bbSwing_5G == -9)
out = 0x0B6; /* -9 dB */
else {
if (pHalData->external_pa_5g) {
pRFCalibrateInfo->bb_swing_diff_5g = -3;
out = 0x16A;
} else {
pRFCalibrateInfo->bb_swing_diff_5g = 0;
out = 0x200;
}
}
} else {
pRFCalibrateInfo->bb_swing_diff_2g = -3;
pRFCalibrateInfo->bb_swing_diff_5g = -3;
out = 0x16A; /* -3 dB */
}
} else {
u32 swing = 0, onePathSwing = 0;
if (band == BAND_ON_2_4G) {
if (GetRegTxBBSwing_2G(adapter) == AUTO)
swing = pHalData->tx_bbswing_24G;
else if (bbSwing_2G == 0)
swing = 0x00; /* 0 dB */
else if (bbSwing_2G == -3)
swing = 0x55; /* -3 dB */
else if (bbSwing_2G == -6)
swing = 0xAA; /* -6 dB */
else if (bbSwing_2G == -9)
swing = 0xFF; /* -9 dB */
else
swing = 0x00;
} else {
if (GetRegTxBBSwing_5G(adapter) == AUTO)
swing = pHalData->tx_bbswing_5G;
else if (bbSwing_5G == 0)
swing = 0x00; /* 0 dB */
else if (bbSwing_5G == -3)
swing = 0x55; /* -3 dB */
else if (bbSwing_5G == -6)
swing = 0xAA; /* -6 dB */
else if (bbSwing_5G == -9)
swing = 0xFF; /* -9 dB */
else
swing = 0x00;
}
if (rf_path == RF_PATH_A)
onePathSwing = (swing & 0x3) >> 0; /* 0xC6/C7[1:0] */
if (onePathSwing == 0x0) {
if (band == BAND_ON_2_4G)
pRFCalibrateInfo->bb_swing_diff_2g = 0;
else
pRFCalibrateInfo->bb_swing_diff_5g = 0;
out = 0x200; /* 0 dB */
} else if (onePathSwing == 0x1) {
if (band == BAND_ON_2_4G)
pRFCalibrateInfo->bb_swing_diff_2g = -3;
else
pRFCalibrateInfo->bb_swing_diff_5g = -3;
out = 0x16A; /* -3 dB */
} else if (onePathSwing == 0x2) {
if (band == BAND_ON_2_4G)
pRFCalibrateInfo->bb_swing_diff_2g = -6;
else
pRFCalibrateInfo->bb_swing_diff_5g = -6;
out = 0x101; /* -6 dB */
} else if (onePathSwing == 0x3) {
if (band == BAND_ON_2_4G)
pRFCalibrateInfo->bb_swing_diff_2g = -9;
else
pRFCalibrateInfo->bb_swing_diff_5g = -9;
out = 0x0B6; /* -9 dB */
}
}
/* RTW_INFO("<=== PHY_GetTxBBSwing_8812C, out = 0x%X\n", out); */
return out;
}
void phy_set_bb_swing_by_band_8821c(_adapter *adapter, u8 band, u8 previous_band)
{
s8 BBDiffBetweenBand = 0;
struct dm_struct *pDM_Odm = adapter_to_phydm(adapter);
struct dm_rf_calibration_struct *pRFCalibrateInfo = &(pDM_Odm->rf_calibrate_info);
phy_set_bb_reg(adapter, rA_TxScale_Jaguar, 0xFFE00000,
phy_get_tx_bbswing_8821c(adapter, (BAND_TYPE)band, RF_PATH_A)); /* 0xC1C[31:21] */
/* When TxPowerTrack is ON, we should take care of the change of BB swing. */
/* That is, reset all info to trigger Tx power tracking. */
{
if (band != previous_band) {
BBDiffBetweenBand = (pRFCalibrateInfo->bb_swing_diff_2g - pRFCalibrateInfo->bb_swing_diff_5g);
BBDiffBetweenBand = (band == BAND_ON_2_4G) ? BBDiffBetweenBand : (-1 * BBDiffBetweenBand);
pRFCalibrateInfo->default_ofdm_index += BBDiffBetweenBand * 2;
}
odm_clear_txpowertracking_state(pDM_Odm);
}
}
void phy_switch_wireless_band_8821c(_adapter *adapter)
{
u8 ret = 0;
PHAL_DATA_TYPE hal_data = GET_HAL_DATA(adapter);
struct dm_struct *pDM_Odm = &hal_data->odmpriv;
u8 current_band = hal_data->current_band_type;
if (need_switch_band(adapter, hal_data->current_channel) == _TRUE) {
#ifdef CONFIG_BT_COEXIST
if (hal_data->EEPROMBluetoothCoexist) {
struct mlme_ext_priv *mlmeext;
/* switch band under site survey or not, must notify to BT COEX */
mlmeext = &adapter->mlmeextpriv;
if (mlmeext_scan_state(mlmeext) != SCAN_DISABLE)
rtw_btcoex_switchband_notify(_TRUE, hal_data->current_band_type);
else
rtw_btcoex_switchband_notify(_FALSE, hal_data->current_band_type);
} else
rtw_btcoex_wifionly_switchband_notify(adapter);
#else /* !CONFIG_BT_COEXIST */
rtw_btcoex_wifionly_switchband_notify(adapter);
#endif /* CONFIG_BT_COEXIST */
/* hal->current_channel is center channel of pmlmeext->cur_channel(primary channel) */
ret = config_phydm_switch_band_8821c(pDM_Odm, hal_data->current_channel);
if (!ret) {
RTW_ERR("%s: config_phydm_switch_band_8821c fail\n", __func__);
rtw_warn_on(1);
return;
}
phy_set_bb_swing_by_band_8821c(adapter, hal_data->current_band_type, current_band);
}
}
/*
* Description:
* Set channel & bandwidth & offset
*/
void rtl8821c_switch_chnl_and_set_bw(PADAPTER adapter)
{
PHAL_DATA_TYPE hal = GET_HAL_DATA(adapter);
struct dm_struct *pDM_Odm = &hal->odmpriv;
u8 center_ch = 0, ret = 0;
if (adapter->bNotifyChannelChange) {
RTW_INFO("[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n",
__FUNCTION__,
hal->bSwChnl,
hal->current_channel,
hal->bSetChnlBW,
hal->current_channel_bw);
}
if (RTW_CANNOT_RUN(adapter)) {
hal->bSwChnlAndSetBWInProgress = _FALSE;
return;
}
/* set channel & Bandwidth register */
/* 1. set switch band register if need to switch band */
phy_switch_wireless_band_8821c(adapter);
/* 2. set channel register */
if (hal->bSwChnl) {
ret = config_phydm_switch_channel_8821c(pDM_Odm, hal->current_channel);
hal->bSwChnl = _FALSE;
if (!ret) {
RTW_INFO("%s: config_phydm_switch_channel_8821c fail\n", __FUNCTION__);
rtw_warn_on(1);
return;
}
}
phydm_config_kfree(pDM_Odm, hal->current_channel);
/* 3. set Bandwidth register */
if (hal->bSetChnlBW) {
/* get primary channel index */
u8 pri_ch_idx = get_pri_ch_id(adapter);
/* 3.1 set MAC register */
mac_switch_bandwidth(adapter, pri_ch_idx);
/* 3.2 set BB/RF registet */
ret = config_phydm_switch_bandwidth_8821c(pDM_Odm, pri_ch_idx, hal->current_channel_bw);
hal->bSetChnlBW = _FALSE;
if (!ret) {
RTW_INFO("%s: config_phydm_switch_bandwidth_8821c fail\n", __FUNCTION__);
rtw_warn_on(1);
return;
}
}
/* TX Power Setting */
/* odm_clear_txpowertracking_state(pDM_Odm); */
rtw_hal_set_tx_power_level(adapter, hal->current_channel);
/* IQK */
if ((hal->bNeedIQK == _TRUE)
|| (adapter->registrypriv.mp_mode == 1)) {
#ifdef CONFIG_IQK_MONITOR
systime iqk_start_time = rtw_get_current_time();
#endif
/*phy_iq_calibrate_8821c(pDM_Odm, _FALSE);*/
rtw_phydm_iqk_trigger(adapter);
#ifdef CONFIG_IQK_MONITOR
RTW_INFO(ADPT_FMT" switch CH(%d) DO IQK : %d ms\n",
ADPT_ARG(adapter), hal->current_channel, rtw_get_passing_time_ms(iqk_start_time));
#endif
hal->bNeedIQK = _FALSE;
}
}
/*
* Description:
* Store channel setting to hal date
* Parameters:
* bSwitchChannel swith channel or not
* bSetBandWidth set band or not
* ChannelNum center channel
* ChnlWidth bandwidth
* ChnlOffsetOf40MHz channel offset for 40MHz Bandwidth
* ChnlOffsetOf80MHz channel offset for 80MHz Bandwidth
* CenterFrequencyIndex1 center channel index
*/
void rtl8821c_handle_sw_chnl_and_set_bw(
PADAPTER Adapter, u8 bSwitchChannel, u8 bSetBandWidth,
u8 ChannelNum, enum channel_width ChnlWidth, u8 ChnlOffsetOf40MHz,
u8 ChnlOffsetOf80MHz, u8 CenterFrequencyIndex1)
{
PHAL_DATA_TYPE hal = GET_HAL_DATA(Adapter);
u8 tmpChannel = hal->current_channel;
enum channel_width tmpBW = hal->current_channel_bw;
u8 tmpnCur40MhzPrimeSC = hal->nCur40MhzPrimeSC;
u8 tmpnCur80MhzPrimeSC = hal->nCur80MhzPrimeSC;
u8 tmpCenterFrequencyIndex1 = hal->CurrentCenterFrequencyIndex1;
struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
/* check swchnl or setbw */
if (!bSwitchChannel && !bSetBandWidth) {
RTW_INFO("%s: not switch channel and not set bandwidth\n", __FUNCTION__);
return;
}
/* skip switch channel operation for current channel & ChannelNum(will be switch) are the same */
if (bSwitchChannel) {
if (hal->current_channel != ChannelNum) {
if (HAL_IsLegalChannel(Adapter, ChannelNum))
hal->bSwChnl = _TRUE;
else
return;
}
}
/* check set BandWidth */
if (bSetBandWidth) {
/* initial channel bw setting */
if (hal->bChnlBWInitialized == _FALSE) {
hal->bChnlBWInitialized = _TRUE;
hal->bSetChnlBW = _TRUE;
} else if ((hal->current_channel_bw != ChnlWidth) || /* check whether need set band or not */
(hal->nCur40MhzPrimeSC != ChnlOffsetOf40MHz) ||
(hal->nCur80MhzPrimeSC != ChnlOffsetOf80MHz) ||
(hal->CurrentCenterFrequencyIndex1 != CenterFrequencyIndex1))
hal->bSetChnlBW = _TRUE;
}
/* return if not need set bandwidth nor channel after check*/
if (!hal->bSetChnlBW && !hal->bSwChnl && hal->bNeedIQK != _TRUE)
return;
/* set channel number to hal data */
if (hal->bSwChnl) {
hal->current_channel = ChannelNum;
hal->CurrentCenterFrequencyIndex1 = ChannelNum;
}
/* set bandwidth info to hal data */
if (hal->bSetChnlBW) {
hal->current_channel_bw = ChnlWidth;
hal->nCur40MhzPrimeSC = ChnlOffsetOf40MHz;
hal->nCur80MhzPrimeSC = ChnlOffsetOf80MHz;
hal->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1;
}
/* switch channel & bandwidth */
if (!RTW_CANNOT_RUN(Adapter))
rtl8821c_switch_chnl_and_set_bw(Adapter);
else {
if (hal->bSwChnl) {
hal->current_channel = tmpChannel;
hal->CurrentCenterFrequencyIndex1 = tmpChannel;
}
if (hal->bSetChnlBW) {
hal->current_channel_bw = tmpBW;
hal->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC;
hal->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC;
hal->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1;
}
}
}
/*
* Description:
* Change channel, bandwidth & offset
* Parameters:
* center_ch center channel
* bw bandwidth
* offset40 channel offset for 40MHz Bandwidth
* offset80 channel offset for 80MHz Bandwidth
*/
void rtl8821c_set_channel_bw(PADAPTER adapter, u8 center_ch, enum channel_width bw, u8 offset40, u8 offset80)
{
rtl8821c_handle_sw_chnl_and_set_bw(adapter, _TRUE, _TRUE, center_ch, bw, offset40, offset80, center_ch);
}
void rtl8821c_notch_filter_switch(PADAPTER adapter, bool enable)
{
if (enable)
RTW_INFO("%s: Enable notch filter\n", __FUNCTION__);
else
RTW_INFO("%s: Disable notch filter\n", __FUNCTION__);
}
#ifdef CONFIG_BEAMFORMING
#ifdef RTW_BEAMFORMING_VERSION_2
/* REG_TXBF_CTRL (Offset 0x42C) */
#define BITS_R_TXBF1_AID_8821C (BIT_MASK_R_TXBF1_AID_8821C << BIT_SHIFT_R_TXBF1_AID_8821C)
#define BIT_CLEAR_R_TXBF1_AID_8821C(x) ((x) & (~BITS_R_TXBF1_AID_8821C))
#define BIT_SET_R_TXBF1_AID_8821C(x, v) (BIT_CLEAR_R_TXBF1_AID_8821C(x) | BIT_R_TXBF1_AID_8821C(v))
#define BITS_R_TXBF0_AID_8821C (BIT_MASK_R_TXBF0_AID_8821C << BIT_SHIFT_R_TXBF0_AID_8821C)
#define BIT_CLEAR_R_TXBF0_AID_8821C(x) ((x) & (~BITS_R_TXBF0_AID_8821C))
#define BIT_SET_R_TXBF0_AID_8821C(x, v) (BIT_CLEAR_R_TXBF0_AID_8821C(x) | BIT_R_TXBF0_AID_8821C(v))
/* REG_NDPA_OPT_CTRL (Offset 0x45F) */
#define BITS_R_NDPA_BW_8821C (BIT_MASK_R_NDPA_BW_8821C << BIT_SHIFT_R_NDPA_BW_8821C)
#define BIT_CLEAR_R_NDPA_BW_8821C(x) ((x) & (~BITS_R_NDPA_BW_8821C))
#define BIT_SET_R_NDPA_BW_8821C(x, v) (BIT_CLEAR_R_NDPA_BW_8821C(x) | BIT_R_NDPA_BW_8821C(v))
/* REG_ASSOCIATED_BFMEE_SEL (Offset 0x714) */
#define BITS_AID1_8821C (BIT_MASK_AID1_8821C << BIT_SHIFT_AID1_8821C)
#define BIT_CLEAR_AID1_8821C(x) ((x) & (~BITS_AID1_8821C))
#define BIT_SET_AID1_8821C(x, v) (BIT_CLEAR_AID1_8821C(x) | BIT_AID1_8821C(v))
#define BITS_AID0_8821C (BIT_MASK_AID0_8821C << BIT_SHIFT_AID0_8821C)
#define BIT_CLEAR_AID0_8821C(x) ((x) & (~BITS_AID0_8821C))
#define BIT_SET_AID0_8821C(x, v) (BIT_CLEAR_AID0_8821C(x) | BIT_AID0_8821C(v))
/* REG_MU_TX_CTL (Offset 0x14C0) */
#define BIT_R_MU_P1_WAIT_STATE_EN_8821C BIT(16)
#define BIT_SHIFT_R_MU_RL_8821C 12
#define BITS_R_MU_RL_8821C (BIT_MASK_R_MU_RL_8821C << BIT_SHIFT_R_MU_RL_8821C)
#define BIT_R_MU_RL_8821C(x) (((x) & BIT_MASK_R_MU_RL_8821C) << BIT_SHIFT_R_MU_RL_8821C)
#define BIT_CLEAR_R_MU_RL_8821C(x) ((x) & (~BITS_R_MU_RL_8821C))
#define BIT_SET_R_MU_RL_8821C(x, v) (BIT_CLEAR_R_MU_RL_8821C(x) | BIT_R_MU_RL_8821C(v))
#define BIT_SHIFT_R_MU_TAB_SEL_8821C 8
#define BIT_MASK_R_MU_TAB_SEL_8821C 0x7
#define BITS_R_MU_TAB_SEL_8821C (BIT_MASK_R_MU_TAB_SEL_8821C << BIT_SHIFT_R_MU_TAB_SEL_8821C)
#define BIT_R_MU_TAB_SEL_8821C(x) (((x) & BIT_MASK_R_MU_TAB_SEL_8821C) << BIT_SHIFT_R_MU_TAB_SEL_8821C)
#define BIT_CLEAR_R_MU_TAB_SEL_8821C(x) ((x) & (~BITS_R_MU_TAB_SEL_8821C))
#define BIT_SET_R_MU_TAB_SEL_8821C(x, v) (BIT_CLEAR_R_MU_TAB_SEL_8821C(x) | BIT_R_MU_TAB_SEL_8821C(v))
#define BIT_R_EN_MU_MIMO_8821C BIT(7)
#define BITS_R_MU_TABLE_VALID_8821C (BIT_MASK_R_MU_TABLE_VALID_8821C << BIT_SHIFT_R_MU_TABLE_VALID_8821C)
#define BIT_CLEAR_R_MU_TABLE_VALID_8821C(x) ((x) & (~BITS_R_MU_TABLE_VALID_8821C))
#define BIT_SET_R_MU_TABLE_VALID_8821C(x, v) (BIT_CLEAR_R_MU_TABLE_VALID_8821C(x) | BIT_R_MU_TABLE_VALID_8821C(v))
/* REG_WMAC_MU_BF_CTL (Offset 0x1680) */
#define BITS_WMAC_MU_BFRPTSEG_SEL_8821C (BIT_MASK_WMAC_MU_BFRPTSEG_SEL_8821C << BIT_SHIFT_WMAC_MU_BFRPTSEG_SEL_8821C)
#define BIT_CLEAR_WMAC_MU_BFRPTSEG_SEL_8821C(x) ((x) & (~BITS_WMAC_MU_BFRPTSEG_SEL_8821C))
#define BIT_SET_WMAC_MU_BFRPTSEG_SEL_8821C(x, v) (BIT_CLEAR_WMAC_MU_BFRPTSEG_SEL_8821C(x) | BIT_WMAC_MU_BFRPTSEG_SEL_8821C(v))
#define BITS_WMAC_MU_BF_MYAID_8821C (BIT_MASK_WMAC_MU_BF_MYAID_8821C << BIT_SHIFT_WMAC_MU_BF_MYAID_8821C)
#define BIT_CLEAR_WMAC_MU_BF_MYAID_8821C(x) ((x) & (~BITS_WMAC_MU_BF_MYAID_8821C))
#define BIT_SET_WMAC_MU_BF_MYAID_8821C(x, v) (BIT_CLEAR_WMAC_MU_BF_MYAID_8821C(x) | BIT_WMAC_MU_BF_MYAID_8821C(v))
/* REG_WMAC_ASSOCIATED_MU_BFMEE7 (Offset 0x168E) */
#define BIT_STATUS_BFEE7_8821C BIT(10)
static u8 _bf_get_nrx(PADAPTER adapter)
{
u8 nrx = 0;
nrx = GET_HAL_RX_NSS(adapter);
return (nrx - 1);
}
static void _config_beamformer_su(PADAPTER adapter, struct beamformer_entry *bfer)
{
/* Beamforming */
u8 nc_index = 0, nr_index = 0;
u8 grouping = 0, codebookinfo = 0, coefficientsize = 0;
u32 addr_bfer_info, addr_csi_rpt;
u32 csi_param;
/* Misc */
u8 i;
RTW_INFO("%s: Config SU BFer entry HW setting\n", __FUNCTION__);
if (bfer->su_reg_index == 0) {
addr_bfer_info = REG_ASSOCIATED_BFMER0_INFO_8821C;
addr_csi_rpt = REG_TX_CSI_RPT_PARAM_BW20_8821C;
} else {
addr_bfer_info = REG_ASSOCIATED_BFMER1_INFO_8821C;
addr_csi_rpt = REG_TX_CSI_RPT_PARAM_BW20_8821C + 2;
}
/* Sounding protocol control */
rtw_write8(adapter, REG_SND_PTCL_CTRL_8821C, 0xDB);
/* MAC address/Partial AID of Beamformer */
for (i = 0; i < ETH_ALEN; i++)
rtw_write8(adapter, addr_bfer_info+i, bfer->mac_addr[i]);
/* CSI report parameters of Beamformer */
nc_index = _bf_get_nrx(adapter);
/*
* 0x718[7] = 1 use Nsts
* 0x718[7] = 0 use reg setting
* As Bfee, we use Nsts, so nr_index don't care
*/
nr_index = bfer->NumofSoundingDim;
grouping = 0;
/* for ac = 1, for n = 3 */
if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_SU))
codebookinfo = 1;
else if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_HT_EXPLICIT))
codebookinfo = 3;
coefficientsize = 3;
csi_param = (u16)((coefficientsize<<10)|(codebookinfo<<8)|(grouping<<6)|(nr_index<<3)|(nc_index));
rtw_write16(adapter, addr_csi_rpt, csi_param);
RTW_INFO("%s: nc=%d nr=%d group=%d codebookinfo=%d coefficientsize=%d\n",
__FUNCTION__, nc_index, nr_index, grouping, codebookinfo, coefficientsize);
RTW_INFO("%s: csi=0x%04x\n", __FUNCTION__, csi_param);
/* ndp_rx_standby_timer */
rtw_write8(adapter, REG_SND_PTCL_CTRL_8821C+3, 0x70);
}
static void _config_beamformer_mu(PADAPTER adapter, struct beamformer_entry *bfer)
{
/* General */
PHAL_DATA_TYPE hal;
/* Beamforming */
struct beamforming_info *bf_info;
u8 nc_index = 0, nr_index = 0;
u8 grouping = 0, codebookinfo = 0, coefficientsize = 0;
u32 csi_param;
/* Misc */
u8 i, val8;
u16 val16;
RTW_INFO("%s: Config MU BFer entry HW setting\n", __FUNCTION__);
hal = GET_HAL_DATA(adapter);
bf_info = GET_BEAMFORM_INFO(adapter);
/* Reset GID table */
for (i = 0; i < 8; i++)
bfer->gid_valid[i] = 0;
for (i = 0; i < 16; i++)
bfer->user_position[i] = 0;
/* CSI report parameters of Beamformer */
nc_index = _bf_get_nrx(adapter);
nr_index = 1; /* 0x718[7] = 1 use Nsts, 0x718[7] = 0 use reg setting. as Bfee, we use Nsts, so Nr_index don't care */
grouping = 0; /* no grouping */
codebookinfo = 1; /* 7 bit for psi, 9 bit for phi */
coefficientsize = 0; /* This is nothing really matter */
csi_param = (u16)((coefficientsize<<10)|(codebookinfo<<8)|
(grouping<<6)|(nr_index<<3)|(nc_index));
RTW_INFO("%s: nc=%d nr=%d group=%d codebookinfo=%d coefficientsize=%d\n",
__func__, nc_index, nr_index, grouping, codebookinfo,
coefficientsize);
RTW_INFO("%s: csi=0x%04x\n", __func__, csi_param);
rtw_halmac_bf_add_mu_bfer(adapter_to_dvobj(adapter), bfer->p_aid,
csi_param, bfer->aid & 0xfff, HAL_CSI_SEG_4K,
bfer->mac_addr);
bf_info->cur_csi_rpt_rate = HALMAC_OFDM6;
rtw_halmac_bf_cfg_sounding(adapter_to_dvobj(adapter), HAL_BFEE,
bf_info->cur_csi_rpt_rate);
/* Set 0x6A0[14] = 1 to accept action_no_ack */
val8 = rtw_read8(adapter, REG_RXFLTMAP0_8821C+1);
val8 |= (BIT_MGTFLT14EN_8821C >> 8);
rtw_write8(adapter, REG_RXFLTMAP0_8821C+1, val8);
/* Set 0x6A2[5:4] = 1 to NDPA and BF report poll */
val8 = rtw_read8(adapter, REG_RXFLTMAP1_8821C);
val8 |= BIT_CTRLFLT4EN_8821C | BIT_CTRLFLT5EN_8821C;
rtw_write8(adapter, REG_RXFLTMAP1_8821C, val8);
/* for B-Cut */
if (IS_B_CUT(hal->version_id)) {
phy_set_bb_reg(adapter, REG_RXFLTMAP0_8821C, BIT(20), 0);
phy_set_bb_reg(adapter, REG_RXFLTMAP3_8821C, BIT(20), 0);
}
}
static void _reset_beamformer_su(PADAPTER adapter, struct beamformer_entry *bfer)
{
/* Beamforming */
struct beamforming_info *info;
u8 idx;
info = GET_BEAMFORM_INFO(adapter);
/* SU BFer */
idx = bfer->su_reg_index;
if (idx == 0) {
rtw_write32(adapter, REG_ASSOCIATED_BFMER0_INFO_8821C, 0);
rtw_write16(adapter, REG_ASSOCIATED_BFMER0_INFO_8821C+4, 0);
rtw_write16(adapter, REG_TX_CSI_RPT_PARAM_BW20_8821C, 0);
} else {
rtw_write32(adapter, REG_ASSOCIATED_BFMER1_INFO_8821C, 0);
rtw_write16(adapter, REG_ASSOCIATED_BFMER1_INFO_8821C+4, 0);
rtw_write16(adapter, REG_TX_CSI_RPT_PARAM_BW20_8821C+2, 0);
}
info->beamformer_su_reg_maping &= ~BIT(idx);
bfer->su_reg_index = 0xFF;
RTW_INFO("%s: Clear SU BFer entry(%d) HW setting\n", __FUNCTION__, idx);
}
static void _reset_beamformer_mu(PADAPTER adapter, struct beamformer_entry *bfer)
{
struct beamforming_info *bf_info;
bf_info = GET_BEAMFORM_INFO(adapter);
rtw_halmac_bf_del_mu_bfer(adapter_to_dvobj(adapter));
if (bf_info->beamformer_su_cnt == 0 &&
bf_info->beamformer_mu_cnt == 0)
rtw_halmac_bf_del_sounding(adapter_to_dvobj(adapter), HAL_BFEE);
RTW_INFO("%s: Clear MU BFer entry HW setting\n", __FUNCTION__);
}
void rtl8821c_phy_bf_init(PADAPTER adapter)
{
u8 v8;
u32 v32;
v32 = rtw_read32(adapter, REG_MU_TX_CTL_8821C);
/* Enable P1 aggr new packet according to P0 transfer time */
v32 |= BIT_R_MU_P1_WAIT_STATE_EN_8821C;
/* MU Retry Limit */
v32 = BIT_SET_R_MU_RL_8821C(v32, 0xA);
/* Disable Tx MU-MIMO until sounding done */
v32 &= ~BIT_R_EN_MU_MIMO_8821C;
/* Clear validity of MU STAs */
v32 = BIT_SET_R_MU_TABLE_VALID_8821C(v32, 0);
rtw_write32(adapter, REG_MU_TX_CTL_8821C, v32);
/* MU-MIMO Option as default value */
v8 = BIT_WMAC_TXMU_ACKPOLICY_8821C(3);
v8 |= BIT_WMAC_TXMU_ACKPOLICY_EN_8821C;
rtw_write8(adapter, REG_MU_BF_OPTION_8821C, v8);
/* MU-MIMO Control as default value */
rtw_write16(adapter, REG_WMAC_MU_BF_CTL_8821C, 0);
/* Set MU NDPA rate & BW source */
/* 0x42C[30] = 1 (0: from Tx desc, 1: from 0x45F) */
v8 = rtw_read8(adapter, REG_TXBF_CTRL_8821C+3);
v8 |= (BIT_USE_NDPA_PARAMETER_8821C >> 24);
rtw_write8(adapter, REG_TXBF_CTRL_8821C+3, v8);
/* 0x45F[7:0] = 0x10 (Rate=OFDM_6M, BW20) */
rtw_write8(adapter, REG_NDPA_OPT_CTRL_8821C, 0x10);
/* Temp Settings */
/* STA2's CSI rate is fixed at 6M */
v8 = rtw_read8(adapter, 0x6DF);
v8 = (v8 & 0xC0) | 0x4;
rtw_write8(adapter, 0x6DF, v8);
/* Grouping bitmap parameters */
rtw_write32(adapter, 0x1C94, 0xAFFFAFFF);
}
void rtl8821c_phy_bf_enter(PADAPTER adapter, struct sta_info *sta)
{
struct beamforming_info *info;
struct beamformer_entry *bfer;
RTW_INFO("+%s: " MAC_FMT "\n", __FUNCTION__, MAC_ARG(sta->cmn.mac_addr));
info = GET_BEAMFORM_INFO(adapter);
bfer = rtw_bf_bfer_get_entry_by_addr(adapter, sta->cmn.mac_addr);
info->bSetBFHwConfigInProgess = _TRUE;
if (bfer) {
bfer->state = BEAMFORM_ENTRY_HW_STATE_ADDING;
if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_MU))
_config_beamformer_mu(adapter, bfer);
else if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_SU|BEAMFORMER_CAP_HT_EXPLICIT))
_config_beamformer_su(adapter, bfer);
bfer->state = BEAMFORM_ENTRY_HW_STATE_ADDED;
}
info->bSetBFHwConfigInProgess = _FALSE;
RTW_INFO("-%s\n", __FUNCTION__);
}
void rtl8821c_phy_bf_leave(PADAPTER adapter, u8 *addr)
{
struct beamforming_info *info;
struct beamformer_entry *bfer;
RTW_INFO("+%s: " MAC_FMT "\n", __FUNCTION__, MAC_ARG(addr));
info = GET_BEAMFORM_INFO(adapter);
bfer = rtw_bf_bfer_get_entry_by_addr(adapter, addr);
/* Clear P_AID of Beamformee */
/* Clear MAC address of Beamformer */
/* Clear Associated Bfmee Sel */
if (bfer) {
bfer->state = BEAMFORM_ENTRY_HW_STATE_DELETING;
rtw_write8(adapter, REG_SND_PTCL_CTRL_8821C, 0xD8);
if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_MU))
_reset_beamformer_mu(adapter, bfer);
else if (TEST_FLAG(bfer->cap, BEAMFORMER_CAP_VHT_SU|BEAMFORMER_CAP_HT_EXPLICIT))
_reset_beamformer_su(adapter, bfer);
bfer->state = BEAMFORM_ENTRY_HW_STATE_NONE;
bfer->cap = BEAMFORMING_CAP_NONE;
bfer->used = _FALSE;
}
RTW_INFO("-%s\n", __FUNCTION__);
}
void rtl8821c_phy_bf_set_gid_table(PADAPTER adapter,
struct beamformer_entry *bfer_info)
{
struct beamformer_entry *bfer;
struct beamforming_info *info;
u32 gid_valid[2] = {0};
u32 user_position[4] = {0};
int i;
/* update bfer info */
bfer = rtw_bf_bfer_get_entry_by_addr(adapter, bfer_info->mac_addr);
if (!bfer) {
RTW_INFO("%s: Cannot find BFer entry!!\n", __func__);
return;
}
_rtw_memcpy(bfer->gid_valid, bfer_info->gid_valid, 8);
_rtw_memcpy(bfer->user_position, bfer_info->user_position, 16);
info = GET_BEAMFORM_INFO(adapter);
info->bSetBFHwConfigInProgess = _TRUE;
/* For GID 0~31 */
for (i = 0; i < 4; i++)
gid_valid[0] |= (bfer->gid_valid[i] << (i << 3));
for (i = 0; i < 8; i++) {
if (i < 4)
user_position[0] |= (bfer->user_position[i] << (i << 3));
else
user_position[1] |= (bfer->user_position[i] << ((i - 4) << 3));
}
RTW_INFO("%s: STA0: gid_valid=0x%x, user_position_l=0x%x, user_position_h=0x%x\n",
__func__, gid_valid[0], user_position[0], user_position[1]);
/* For GID 32~64 */
for (i = 4; i < 8; i++)
gid_valid[1] |= (bfer->gid_valid[i] << ((i - 4) << 3));
for (i = 8; i < 16; i++) {
if (i < 12)
user_position[2] |= (bfer->user_position[i] << ((i - 8) << 3));
else
user_position[3] |= (bfer->user_position[i] << ((i - 12) << 3));
}
RTW_INFO("%s: STA1: gid_valid=0x%x, user_position_l=0x%x, user_position_h=0x%x\n",
__func__, gid_valid[1], user_position[2], user_position[3]);
rtw_halmac_bf_cfg_mu_bfee(adapter_to_dvobj(adapter), gid_valid, user_position);
info->bSetBFHwConfigInProgess = _FALSE;
}
#endif /* RTW_BEAMFORMING_VERSION_2 */
#endif /* CONFIG_BEAMFORMING */
#ifdef CONFIG_MP_INCLUDED
/*
* Description:
* Config RF path
*
* Parameters:
* adapter pointer of struct _ADAPTER
*/
void rtl8821c_mp_config_rfpath(PADAPTER adapter)
{
PHAL_DATA_TYPE hal;
PMPT_CONTEXT mpt;
ANTENNA_PATH anttx, antrx;
enum rf_path rxant;
hal = GET_HAL_DATA(adapter);
mpt = &adapter->mppriv.mpt_ctx;
anttx = hal->antenna_tx_path;
antrx = hal->AntennaRxPath;
RTW_INFO("+Config RF Path, tx=0x%x rx=0x%x\n", anttx, antrx);
#if 0 /* phydm not ready */
switch (anttx) {
case ANTENNA_A:
mpt->mpt_rf_path = ODM_RF_A;
break;
case ANTENNA_B:
mpt->mpt_rf_path = ODM_RF_B;
break;
case ANTENNA_AB:
default:
mpt->mpt_rf_path = ODM_RF_A | ODM_RF_B;
break;
}
switch (antrx) {
case ANTENNA_A:
rxant = ODM_RF_A;
break;
case ANTENNA_B:
rxant = ODM_RF_B;
break;
case ANTENNA_AB:
default:
rxant = ODM_RF_A | ODM_RF_B;
break;
}
config_phydm_trx_mode_8821c(GET_PDM_ODM(adapter), mpt->mpt_rf_path, rxant, FALSE);
#endif
RTW_INFO("-Config RF Path Finish\n");
}
#endif /* CONFIG_MP_INCLUDED */