1
0
Files
ollama/rag/chat.py

506 lines
22 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import requests
import json
import time
import sys
from qdrant_client import QdrantClient
from sentence_transformers import SentenceTransformer, CrossEncoder
DEFAULT_CHAT_MODEL = "openchat:7b"
DEFAULT_EMBED_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
# DEFAULT_RANK_MODEL = "cross-encoder/mmarco-mMiniLMv2-L12-H384-v1"
DEFAULT_RANK_MODEL = "cross-encoder/ms-marco-MiniLM-L-6-v2"
# DEFAULT_RANK_MODEL = "cross-encoder/ms-marco-TinyBERT-L-2-v2"
DEFAULT_MD_FOLDER = "data"
DEFAULT_OLLAMA_URL = "http://localhost:11434"
DEFAULT_QDRANT_HOST = "localhost"
DEFAULT_QDRANT_PORT = 6333
DEFAULT_QDRANT_COLLECTION = "rag"
DEFAULT_TOP_K = 30
DEFAULT_USE_RANK = False
DEFAULT_TOP_N = 8
DEFAULT_VERBOSE = False
DEFAULT_SHOW_STATS = False
DEFAULT_STREAM = False
DEFAULT_INTERACTIVE = False
DEFAULT_SHOW_PROMPT = False
DEFAULT_MIN_RANK_SCORE = 0
class RagSystem:
def __init__(self,
ollama_url: str = DEFAULT_OLLAMA_URL,
qdrant_host: str = DEFAULT_QDRANT_HOST,
qdrant_port: int = DEFAULT_QDRANT_PORT,
embed_model: str = DEFAULT_EMBED_MODEL,
rank_model: str = DEFAULT_RANK_MODEL,
use_rank: bool = DEFAULT_USE_RANK,
chat_model: str = DEFAULT_CHAT_MODEL):
self.ollama_url = ollama_url
self.qdrant_host = qdrant_host
self.qdrant_port = qdrant_port
self.chat_model = chat_model
self.emb_model = SentenceTransformer(embed_model)
self.qdrant = QdrantClient(host=args.qdrant_host, port=args.qdrant_port)
self.use_rank = use_rank
if self.use_rank:
self.rank_model = CrossEncoder(rank_model)
self.conversation_history = []
self.load_chat_model()
def load_chat_model(self):
url = f"{self.ollama_url}/api/generate"
body = {"model": self.chat_model}
requests.post(url, json=body, timeout=600)
def search_qdrant(self, query: str, doc_count: int = DEFAULT_TOP_K, collection_name = DEFAULT_QDRANT_COLLECTION):
query_vec = self.emb_model.encode(query, show_progress_bar=False).tolist()
results = self.qdrant.query_points(
collection_name=collection_name,
query=query_vec,
limit=doc_count,
# score_threshold=0.5,
)
docs = []
for point in results.points:
docs.append({
"payload": point.payload,
"score": point.score,
})
return docs
def rank_documents(self, query: str, documents: list, top_n: int = DEFAULT_TOP_N, min_score: int = DEFAULT_MIN_RANK_SCORE):
if not self.use_rank:
return documents
pairs = [[query, doc["payload"]["text"]] for doc in documents]
scores = self.rank_model.predict(pairs)
ranked_docs = []
for i, doc in enumerate(documents):
score = float(scores[i])
doc["rank_score"] = score
if score >= min_score:
ranked_docs.append(doc)
ranked_docs.sort(key=lambda x: x['rank_score'], reverse=True)
return ranked_docs[:top_n]
def generate_answer(self, sys_prompt: str, user_prompt: str):
url = f"{self.ollama_url}/api/chat"
body = {
"model": self.chat_model,
# "system": sys_prompt,
# "prompt": user_prompt,
"messages": self.conversation_history,
"stream": False,
"options": {
"temperature": 0.5,
# "top_p": 0.2,
},
}
response = requests.post(url, json=body, timeout=900)
if response.status_code != 200:
return f"Ошибка генерации ответа: {response.status_code} {response.text}"
self.response = response.json()
return self.response["message"]["content"]
def generate_answer_stream(self, sys_prompt: str, user_prompt: str):
url = f"{self.ollama_url}/api/chat"
body = {
"model": self.chat_model,
# "system": sys_prompt,
# "prompt": user_prompt,
"messages": self.conversation_history,
"stream": True,
"options": {
"temperature": 0.5,
# "top_p": 0.2,
},
}
resp = requests.post(url, json=body, stream=True, timeout=900)
if resp.status_code != 200:
raise RuntimeError(f"Ошибка генерации ответа: {resp.status_code} {resp.text}")
answer = ""
for chunk in resp.iter_lines():
if chunk:
try:
decoded_chunk = chunk.decode('utf-8')
data = json.loads(decoded_chunk)
if "response" in data:
yield data["response"]
answer += data["response"]
if "done" in data and data["done"] is True:
self.response = data
break
elif "error" in data:
answer += f" | Ошибка стриминга ответа: {data['error']}"
break
except json.JSONDecodeError as e:
answer += f" | Ошибка конвертации чанка: {chunk.decode('utf-8')} - {e}"
except Exception as e:
answer += f" | Ошибка обработки чанка: {e}"
def get_prompt_eval_count(self):
if not self.response["prompt_eval_count"]:
return 0
return self.response["prompt_eval_count"]
def get_prompt_eval_duration(self):
if not self.response["prompt_eval_duration"]:
return 0
return self.response["prompt_eval_duration"] / (10 ** 9)
def get_eval_count(self):
if not self.response["eval_count"]:
return 0
return self.response["eval_count"]
def get_eval_duration(self):
if not self.response["eval_duration"]:
return 0
return self.response["eval_duration"] / (10 ** 9)
def get_total_duration(self):
if not self.response["total_duration"]:
return 0
return self.response["total_duration"] / (10 ** 9)
def get_tps(self):
eval_count = self.get_eval_count()
eval_duration = self.get_eval_duration()
if eval_count == 0 or eval_duration == 0:
return 0
return eval_count / eval_duration
class App:
def __init__(
self,
args: list = []
):
if not args.query and not args.interactive:
print("Ошибка: укажите запрос (--query) и/или используйте интерактивный режим (--interactive)")
sys.exit(1)
self.args = args
self.print_v(text=f"Включить интерактивный режим диалога: {args.interactive}")
self.print_v(text=f"Включить потоковый вывод: {args.stream}")
if self.is_custom_sys_prompt():
self.print_v(text=f"Системный промпт: {args.sys_prompt}")
else:
self.print_v(text=f"Системный промпт: по умолчанию")
self.print_v(text=f"Показать сист. промпт перед запросом: {args.show_prompt}")
self.print_v(text=f"Выводить служебные сообщения: {args.verbose}")
self.print_v(text=f"Выводить статистику об ответе: {args.show_stats}")
self.print_v(text=f"Адрес хоста Qdrant: {args.qdrant_host}")
self.print_v(text=f"Номер порта Qdrant: {args.qdrant_port}")
self.print_v(text=f"Название коллекции для поиска документов: {args.qdrant_collection}")
self.print_v(text=f"Ollama API URL: {args.ollama_url}")
self.print_v(text=f"Модель генерации Ollama: {args.chat_model}")
self.print_v(text=f"Модель эмбеддинга: {args.emb_model}")
self.print_v(text=f"Количество документов для поиска: {args.topk}")
self.print_v(text=f"Включить ранжирование: {args.use_rank}")
self.print_v(text=f"Модель ранжирования: {args.rank_model}")
self.print_v(text=f"Количество документов после ранжирования: {args.topn}")
self.init_rag()
def print_v(self, text: str = "\n"):
if self.args.verbose:
print(f"{text}")
def init_rag(self):
self.print_v(text="\nИнициализация моделей...")
self.rag = RagSystem(
ollama_url = self.args.ollama_url,
qdrant_host = self.args.qdrant_host,
qdrant_port = self.args.qdrant_port,
embed_model = self.args.emb_model,
rank_model = self.args.rank_model,
use_rank = self.args.use_rank,
chat_model = self.args.chat_model
)
self.print_v(text=f"Модели загружены. Если ответ плохой, переформулируйте запрос, укажите --chat-model или улучшите исходные данные RAG")
def init_query(self):
self.query = None
if args.interactive:
self.print_v(text="\nИНТЕРАКТИВНЫЙ РЕЖИМ")
self.print_v(text="Можете вводить запрос (или 'exit' для выхода)\n")
if self.args.query:
self.query = self.args.query.strip()
print(f">>> {self.query}")
elif args.interactive:
self.query = input(">>> ").strip()
def process_help(self):
print("<<< Команды итерактивного режима:")
print("save -- сохранить диалог в файл")
print("exit -- выход\n")
self.query = None
self.args.query = None
def process_save(self):
import datetime
timestamp = int(time.time())
dt = datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%dT%H:%M:%SZ')
filename = f"chats/chat-{timestamp}-{self.args.chat_model}.md"
markdown_content = f"# История диалога от {dt}\n\n"
markdown_content += f"## Параметры диалога\n"
markdown_content += f"```\nargs = {self.args}\n```\n"
markdown_content += f"```\nemb_model = {self.rag.emb_model}\n```\n"
markdown_content += f"```\nrank_model = {self.rag.rank_model}\n```\n"
for entry in self.rag.conversation_history:
if entry['role'] == 'user':
markdown_content += f"## Пользователь\n\n"
elif entry['role'] == 'assistant':
markdown_content += f"## Модель\n\n"
docs = self.rag.prepare_ctx_sources(entry['docs']).replace("```", "")
markdown_content += f"```\n{docs}\n```\n\n"
markdown_content += f"{entry['content']}\n\n"
os.makedirs('chats', exist_ok=True)
with open(filename, 'w') as fp:
fp.write(markdown_content)
print(f"<<< Диалог сохранён в файл: {filename}\n")
self.query = None
def find_docs(self, query: str, top_k: int, collection_name: str):
self.print_v(text="\nПоиск документов...")
context_docs = self.rag.search_qdrant(query, top_k, collection_name)
self.print_v(text=f"Найдено {len(context_docs)} документов")
return context_docs
def rank_docs(self, docs: list = [], top_n = DEFAULT_TOP_N, min_score: int = DEFAULT_MIN_RANK_SCORE):
self.print_v(text="\nРанжирование документов...")
ranked_docs = self.rag.rank_documents(self.query, docs, top_n, min_score)
self.print_v(text=f"После ранжирования осталось {len(ranked_docs)} документов")
return ranked_docs
def prepare_ctx_sources(self, docs: list):
sources = ""
for idx, doc in enumerate(docs, start=1):
text = doc['payload'].get("text", "").strip()
sources = f"{sources}\n<source id=\"{idx}\">\n{text}\n</source>\n"
return sources
def prepare_cli_sources(self, docs: list):
sources = "\nИсточники:\n"
for idx, doc in enumerate(docs, start=1):
title = doc['payload'].get("filename", None)
url = doc['payload'].get("url", None)
date = doc['payload'].get("date", None)
version = doc['payload'].get("version", None)
author = doc['payload'].get("author", None)
if url is None:
url = "(нет веб-ссылки)"
if date is None:
date = "(неизвестно)"
if version is None:
version = "0"
if author is None:
author = "(неизвестен)"
sources += f"{idx}. {title}\n"
sources += f" {url}\n"
sources += f" Версия {version} от {author}, актуальная на {date}\n"
if doc['rank_score']:
sources += f" score = {doc['score']} | rank_score = {doc['rank_score']}\n"
else:
sources += f" score = {doc['score']}\n"
return sources
def prepare_sys_prompt(self, query: str, docs: list):
if self.is_custom_sys_prompt():
with open(self.args.sys_prompt, 'r') as fp:
prompt = fp.read()
else:
prompt = """You are a helpful assistant that can answer questions based on the provided context.
Your user is the person asking the source-related question.
Your job is to answer the question based on the context alone.
If the context doesn't provide much information, answer "I don't know."
Adhere to this in all languages.
Context:
-----------------------------------------
{{sources}}
-----------------------------------------
"""
sources = self.prepare_ctx_sources(docs)
return prompt.replace("{{sources}}", sources).replace("{{query}}", query)
def show_prompt(self, sys_prompt: str):
print("\n================ Системный промпт ==================")
print(f"{sys_prompt}\n============ Конец системного промпта ==============\n")
def process_query(self, sys_prompt: str, user_prompt: str, streaming: bool = DEFAULT_STREAM):
answer = ""
# try:
if streaming:
self.print_v(text="\nГенерация потокового ответа (^C для остановки)...\n")
print(f"<<< ", end='', flush=True)
for token in self.rag.generate_answer_stream(sys_prompt, user_prompt):
answer += token
print(token, end='', flush=True)
else:
self.print_v(text="\nГенерация ответа (^C для остановки)...\n")
answer = self.rag.generate_answer(sys_prompt, user_prompt)
print(f"<<< {answer}\n")
# except RuntimeError as e:
# answer = str(e)
print(f"\n===================================================")
return answer
def is_custom_sys_prompt(self):
return self.args.sys_prompt and os.path.exists(self.args.sys_prompt)
def print_stats(self):
print(f"* Time: {self.rag.get_total_duration()}s")
print(f"* TPS: {self.rag.get_tps()}")
print(f"* PEC: {self.rag.get_prompt_eval_count()}")
print(f"* PED: {self.rag.get_prompt_eval_duration()}s")
print(f"* EC: {self.rag.get_eval_count()}")
print(f"* ED: {self.rag.get_eval_duration()}s\n")
self.query = None
self.args.query = None
def process(self):
while True:
try:
self.init_query()
if not self.query or self.query == "":
continue
if self.query.lower() == "help":
self.process_help()
continue
if self.query.strip().lower() == "save":
self.process_save()
continue
if self.query.strip().lower() == "stats":
print("\n<<< Статистика:")
self.print_stats()
continue
if self.query.strip().lower() == "exit":
self.print_v(text="\n*** Завершение работы")
sys.exit(0)
context_docs = self.find_docs(self.query, self.args.topk, self.args.qdrant_collection)
if not context_docs:
if args.interactive:
print("<<< Релевантные документы не найдены")
self.query = None
self.args.query = None
continue
else:
break
ranked_docs = self.rank_docs(context_docs, self.args.topn, self.args.min_rank_score)
if not ranked_docs:
if args.interactive:
print("<<< Документы были отсеяны полностью")
#TODO сделать ещё 2 попытки перезапроса+реранка других документов без учёта нерелевантных context_docs
self.query = None
self.args.query = None
continue
else:
break
# ctx = self.prepare_ctx_sources(ranked_docs)
sys_prompt = self.prepare_sys_prompt(self.query, ranked_docs)
if self.args.show_prompt:
self.show_prompt(sys_prompt)
# self.rag.conversation_history.append({
# "role": "system",
# "content": sys_prompt,
# })
self.rag.conversation_history.append({
"role": "system",
"content": sys_prompt,
})
self.rag.conversation_history.append({
"role": "user",
"content": self.query,
})
try:
answer = self.process_query(sys_prompt, self.query, self.args.stream)
except KeyboardInterrupt:
print("\n*** Генерация ответа прервана")
self.query = None
self.args.query = None
print(self.prepare_cli_sources(ranked_docs))
if self.args.show_stats:
print("\nСтатистика:")
self.print_stats()
continue
print(self.prepare_cli_sources(ranked_docs))
if self.args.show_stats:
print("\nСтатистика:")
self.print_stats()
self.rag.conversation_history.append({
"role": "assistant",
"docs": ranked_docs,
"content": answer,
})
if args.interactive:
self.query = None
self.args.query = None
else:
break
except KeyboardInterrupt:
print("\n*** Завершение работы")
break
except Exception as e:
print(f"Ошибка: {e}")
break
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="RAG-система с использованием Ollama и Qdrant")
parser.add_argument("--query", type=str, help="Запрос к RAG")
parser.add_argument("--interactive", default=DEFAULT_INTERACTIVE, action=argparse.BooleanOptionalAction, help="Включить интерактивный режим диалога")
parser.add_argument("--stream", default=DEFAULT_STREAM, action=argparse.BooleanOptionalAction, help="Включить потоковый вывод")
parser.add_argument("--sys-prompt", type=str, help="Путь к файлу шаблона системного промпта")
parser.add_argument("--show-prompt", default=DEFAULT_SHOW_PROMPT, action=argparse.BooleanOptionalAction, help="Показать сист. промпт перед запросом")
parser.add_argument("--verbose", default=DEFAULT_VERBOSE, action=argparse.BooleanOptionalAction, help="Выводить служебные сообщения")
parser.add_argument("--show-stats", default=DEFAULT_SHOW_STATS, action=argparse.BooleanOptionalAction, help="Выводить статистику об ответе (не работает с --stream)")
parser.add_argument("--qdrant-host", default=DEFAULT_QDRANT_HOST, help="Адрес хоста Qdrant")
parser.add_argument("--qdrant-port", type=int, default=DEFAULT_QDRANT_PORT, help="Номер порта Qdrant")
parser.add_argument("--qdrant-collection", type=str, default=DEFAULT_QDRANT_COLLECTION, help="Название коллекции для поиска документов")
parser.add_argument("--ollama-url", default=DEFAULT_OLLAMA_URL, help="Ollama API URL")
parser.add_argument("--chat-model", default=DEFAULT_CHAT_MODEL, help="Модель генерации Ollama")
parser.add_argument("--emb-model", default=DEFAULT_EMBED_MODEL, help="Модель эмбеддинга")
parser.add_argument("--topk", type=int, default=DEFAULT_TOP_K, help="Количество документов для поиска")
parser.add_argument("--use-rank", default=DEFAULT_USE_RANK, action=argparse.BooleanOptionalAction, help="Включить ранжирование")
parser.add_argument("--rank-model", type=str, default=DEFAULT_RANK_MODEL, help="Модель ранжирования")
parser.add_argument("--min-rank-score", type=int, default=DEFAULT_MIN_RANK_SCORE, help="Минимальный ранк документа")
parser.add_argument("--topn", type=int, default=DEFAULT_TOP_N, help="Количество документов после ранжирования")
args = parser.parse_args()
app = App(args)
app.process()