#define _GNU_SOURCE #ifndef __linux__ #error "The package is linux only!" #endif #ifdef KERNEL_SPACE #error "The build aims to the kernel, not userspace" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include "mangle.h" static struct { uint32_t queue_start_num; int rawsocket; pthread_mutex_t rawsocket_lock; int threads; bool use_gso; int fragmentation_strategy; uint8_t fake_sni_ttl; int fake_sni_strategy; bool verbose; uint32_t seg2_delay; } config = { .rawsocket = -2, .threads = THREADS_NUM, .fragmentation_strategy = FRAGMENTATION_STRATEGY, .fake_sni_strategy = FAKE_SNI_STRATEGY, .fake_sni_ttl = FAKE_SNI_TTL, #ifdef SEG2_DELAY .seg2_delay = SEG2_DELAY, #else .seg2_delay = 0, #endif #ifdef USE_GSO .use_gso = true, #else .use_gso = false, #endif #ifdef DEBUG .verbose = true, #else .verbose = false, #endif }; const char* get_value(const char *option, const char *prefix) { size_t prefix_len = strlen(prefix); size_t option_len = strlen(option); if (option_len < prefix_len || memcmp(prefix, option, prefix_len)) return 0; return option + prefix_len; } bool parse_bool_option(const char *value) { errno = 0; if (strcmp(value, "1") == 0) { return true; } else if (strcmp(value, "0") == 0) { return false; } errno = EINVAL; return false; } uint32_t parse_uint_option(const char* value) { char* end; uint32_t result = strtoul(value, &end, 10); if (*end != '\0') { errno = EINVAL; return -1; } return result; } bool parse_option(const char* option) { const char* value; if ((value = get_value(option, "--gso=")) != 0) { config.use_gso = parse_bool_option(value); return errno == 0; } if ((value = get_value(option, "--verbose=")) != 0) { config.verbose = parse_bool_option(value); return errno == 0; } if ((value = get_value(option, "--frag=")) != 0) { if (strcmp(value, "tcp") == 0) { config.fragmentation_strategy = FRAG_STRAT_TCP; } else if (strcmp(value, "ip") == 0) { config.fragmentation_strategy = FRAG_STRAT_IP; } else if (strcmp(value, "none") == 0) { config.fragmentation_strategy = FRAG_STRAT_NONE; } else { return false; } return true; } if ((value = get_value(option, "--fake-sni=")) != 0) { if (strcmp(value, "ack") == 0) { config.fake_sni_strategy = FKSN_STRAT_ACK_SEQ; } else if (strcmp(value, "ttl") == 0) { config.fake_sni_strategy = FKSN_STRAT_TTL; } else if (strcmp(value, "none") == 0) { config.fake_sni_strategy = FKSN_STRAT_NONE; } else { return false; } return true; } if ((value = get_value(option, "--seg2delay=")) != 0) { config.seg2_delay = parse_uint_option(value); return errno == 0; } if ((value = get_value(option, "--threads=")) != 0) { config.threads = parse_uint_option(value); return errno == 0 && config.threads <= MAX_THREADS; } if ((value = get_value(option, "--fake-sni-ttl=")) != 0) { config.fake_sni_ttl = parse_uint_option(value); return errno == 0; } return false; } static int parse_args(int argc, const char *argv[]) { int err; char *end; if (argc != 2) { errno = EINVAL; goto errormsg_help; } config.queue_start_num = parse_uint_option(argv[1]); if (errno != 0) goto errormsg_help; for (int i = 2; i < argc; i++) { if (!parse_option(argv[i])) { printf("Invalid option %s\n", argv[i]); goto errormsg_help; } } return 0; errormsg_help: err = errno; printf("Usage: %s [OPTIONS]\n", argv[0]); printf("Options:\n"); printf("\t--gso={0,1}\n"); printf("\t--fake-sni={ack,ttl,none}\n"); printf("\t--fake-sni-ttl=\n"); printf("\t--frag={tcp,ip,none}\n"); printf("\t--seg2delay=\n"); printf("\t--threads=\n"); printf("\t--verbose={0,1}\n"); errno = err; if (errno == 0) errno = EINVAL; return -1; } static int open_socket(struct mnl_socket **_nl) { struct mnl_socket *nl = NULL; nl = mnl_socket_open(NETLINK_NETFILTER); if (nl == NULL) { perror("mnl_socket_open"); return -1; } if (mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID) < 0) { perror("mnl_socket_bind"); mnl_socket_close(nl); return -1; } *_nl = nl; return 0; } static int close_socket(struct mnl_socket **_nl) { struct mnl_socket *nl = *_nl; if (nl == NULL) return 1; if (mnl_socket_close(nl) < 0) { perror("mnl_socket_close"); return -1; } *_nl = NULL; return 0; } static int open_raw_socket(void) { if (config.rawsocket != -2) { errno = EALREADY; perror("Raw socket is already opened"); return -1; } config.rawsocket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); if (config.rawsocket == -1) { perror("Unable to create raw socket"); return -1; } int mark = RAWSOCKET_MARK; if (setsockopt(config.rawsocket, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) { fprintf(stderr, "setsockopt(SO_MARK, %d) failed\n", mark); return -1; } int mst = pthread_mutex_init(&config.rawsocket_lock, NULL); if (mst) { fprintf(stderr, "Mutex err: %d\n", mst); close(config.rawsocket); errno = mst; return -1; } return config.rawsocket; } static int close_raw_socket(void) { if (config.rawsocket < 0) { errno = EALREADY; perror("Raw socket is not set"); return -1; } if (close(config.rawsocket)) { perror("Unable to close raw socket"); pthread_mutex_destroy(&config.rawsocket_lock); return -1; } pthread_mutex_destroy(&config.rawsocket_lock); config.rawsocket = -2; return 0; } static int send_raw_socket(const uint8_t *pkt, uint32_t pktlen) { int ret; if (pktlen > AVAILABLE_MTU) { if (config.verbose) printf("Split packet!\n"); uint8_t buff1[MNL_SOCKET_BUFFER_SIZE]; uint32_t buff1_size = MNL_SOCKET_BUFFER_SIZE; uint8_t buff2[MNL_SOCKET_BUFFER_SIZE]; uint32_t buff2_size = MNL_SOCKET_BUFFER_SIZE; switch (config.fragmentation_strategy) { case FRAG_STRAT_TCP: if ((ret = tcp4_frag(pkt, pktlen, AVAILABLE_MTU-128, buff1, &buff1_size, buff2, &buff2_size)) < 0) { errno = -ret; return ret; } break; case FRAG_STRAT_IP: if ((ret = ip4_frag(pkt, pktlen, AVAILABLE_MTU-128, buff1, &buff1_size, buff2, &buff2_size)) < 0) { errno = -ret; return ret; } break; default: errno = EINVAL; printf("send_raw_socket: Packet is too big but fragmentation is disabled! " "Pass -DRAWSOCK_TCP_FSTRAT or -DRAWSOCK_IP_FSTRAT as CFLAGS " "To enable it only for raw socket\n"); return -EINVAL; } int sent = 0; int status = send_raw_socket(buff1, buff1_size); if (status >= 0) sent += status; else { return status; } status = send_raw_socket(buff2, buff2_size); if (status >= 0) sent += status; else { return status; } return sent; } struct iphdr *iph; if ((ret = ip4_payload_split( (uint8_t *)pkt, pktlen, &iph, NULL, NULL, NULL)) < 0) { errno = -ret; return ret; } struct sockaddr_in daddr = { .sin_family = AF_INET, /* Always 0 for raw socket */ .sin_port = 0, .sin_addr = { .s_addr = iph->daddr } }; pthread_mutex_lock(&config.rawsocket_lock); int sent = sendto(config.rawsocket, pkt, pktlen, 0, (struct sockaddr *)&daddr, sizeof(daddr)); pthread_mutex_unlock(&config.rawsocket_lock); /* The function will return -errno on error as well as errno value set itself */ if (sent < 0) sent = -errno; return sent; } struct packet_data { uint32_t id; uint16_t hw_proto; uint8_t hook; void *payload; uint16_t payload_len; }; // Per-queue data. Passed to queue_cb. struct queue_data { struct mnl_socket **_nl; int queue_num; }; /** * Used to accept unsupported packets (GSOs) */ static int fallback_accept_packet(uint32_t id, struct queue_data qdata) { char buf[MNL_SOCKET_BUFFER_SIZE]; struct nlmsghdr *verdnlh; verdnlh = nfq_nlmsg_put(buf, NFQNL_MSG_VERDICT, qdata.queue_num); nfq_nlmsg_verdict_put(verdnlh, id, NF_ACCEPT); if (mnl_socket_sendto(*qdata._nl, verdnlh, verdnlh->nlmsg_len) < 0) { perror("mnl_socket_send"); return MNL_CB_ERROR; } return MNL_CB_OK; } struct dps_t { uint8_t *pkt; uint32_t pktlen; // Time for the packet in milliseconds uint32_t timer; }; // Note that the thread will automatically release dps_t and pkt_buff void *delay_packet_send(void *data) { struct dps_t *dpdt = data; uint8_t *pkt = dpdt->pkt; uint32_t pktlen = dpdt->pktlen; usleep(dpdt->timer * 1000); int ret = send_raw_socket(pkt, pktlen); if (ret < 0) { errno = -ret; perror("send delayed raw packet"); } free(pkt); free(dpdt); return NULL; } static int process_packet(const struct packet_data packet, struct queue_data qdata) { char buf[MNL_SOCKET_BUFFER_SIZE]; struct nlmsghdr *verdnlh; #ifdef DEBUG_LOGGING printf("packet received (id=%u hw=0x%04x hook=%u, payload len %u)\n", packet.id, packet.hw_proto, packet.hook, packet.payload_len); #endif if (packet.hw_proto != ETH_P_IP) { return fallback_accept_packet(packet.id, qdata); } const int family = AF_INET; const uint8_t *raw_payload = packet.payload; size_t raw_payload_len = packet.payload_len; const struct iphdr *iph; uint32_t iph_len; const struct tcphdr *tcph; uint32_t tcph_len; const uint8_t *data; uint32_t dlen; int ret = tcp4_payload_split((uint8_t *)raw_payload, raw_payload_len, (struct iphdr **)&iph, &iph_len, (struct tcphdr **)&tcph, &tcph_len, (uint8_t **)&data, &dlen); if (ret < 0) { goto fallback; } struct verdict vrd = analyze_tls_data(data, dlen); verdnlh = nfq_nlmsg_put(buf, NFQNL_MSG_VERDICT, qdata.queue_num); nfq_nlmsg_verdict_put(verdnlh, packet.id, NF_ACCEPT); if (vrd.gvideo_hello) { if (config.verbose) printf("Google video!\n"); if (dlen > 1480) { if (config.verbose) fprintf(stderr, "WARNING! Google video packet is too big and may cause issues!\n"); } uint8_t fake_sni[MNL_SOCKET_BUFFER_SIZE]; uint32_t fsn_len = MNL_SOCKET_BUFFER_SIZE; uint8_t frag1[MNL_SOCKET_BUFFER_SIZE]; uint8_t frag2[MNL_SOCKET_BUFFER_SIZE]; uint32_t f1len = MNL_SOCKET_BUFFER_SIZE; uint32_t f2len = MNL_SOCKET_BUFFER_SIZE; nfq_nlmsg_verdict_put(verdnlh, packet.id, NF_DROP); int ret = 0; nfq_ip_set_checksum((struct iphdr *)iph); nfq_tcp_compute_checksum_ipv4( (struct tcphdr *)tcph, (struct iphdr *)iph); if (config.fake_sni_strategy != FKSN_STRAT_NONE) { ret = gen_fake_sni(iph, tcph, fake_sni, &fsn_len); if (ret < 0) { errno = -ret; perror("gen_fake_sni"); goto fallback; } ret = send_raw_socket(fake_sni, fsn_len); if (ret < 0) { errno = -ret; perror("send fake sni"); goto fallback; } } size_t ipd_offset; size_t mid_offset; switch (config.fragmentation_strategy) { case FRAG_STRAT_TCP: ipd_offset = vrd.sni_offset; mid_offset = ipd_offset + vrd.sni_len / 2; if ((ret = tcp4_frag(raw_payload, raw_payload_len, mid_offset, frag1, &f1len, frag2, &f2len)) < 0) { errno = -ret; perror("tcp4_frag"); goto send_verd; } break; case FRAG_STRAT_IP: ipd_offset = ((char *)data - (char *)tcph) + vrd.sni_offset; mid_offset = ipd_offset + vrd.sni_len / 2; mid_offset += 8 - mid_offset % 8; if ((ret = ip4_frag(raw_payload, raw_payload_len, mid_offset, frag1, &f1len, frag2, &f2len)) < 0) { errno = -ret; perror("ip4_frag"); goto send_verd; } break; default: ret = send_raw_socket(raw_payload, raw_payload_len); if (ret < 0) { errno = -ret; perror("raw pack send"); } goto send_verd; } ret = send_raw_socket(frag2, f2len); if (ret < 0) { errno = -ret; perror("raw frags send: frag2"); goto send_verd; } if (config.seg2_delay) { struct dps_t *dpdt = malloc(sizeof(struct dps_t)); dpdt->pkt = malloc(f1len); memcpy(dpdt->pkt, frag1, f1len); dpdt->pktlen = f1len; dpdt->timer = config.seg2_delay; pthread_t thr; pthread_create(&thr, NULL, delay_packet_send, dpdt); pthread_detach(thr); } else { ret = send_raw_socket(frag1, f1len); if (ret < 0) { errno = -ret; perror("raw frags send: frag1"); goto send_verd; } } } /* if (pktb_mangled(pktb)) { if (config.versose) printf("Mangled!\n"); nfq_nlmsg_verdict_put_pkt( verdnlh, pktb_data(pktb), pktb_len(pktb)); } */ send_verd: if (mnl_socket_sendto(*qdata._nl, verdnlh, verdnlh->nlmsg_len) < 0) { perror("mnl_socket_send"); goto error; } return MNL_CB_OK; fallback: return fallback_accept_packet(packet.id, qdata); error: return MNL_CB_ERROR; } static int queue_cb(const struct nlmsghdr *nlh, void *data) { struct queue_data *qdata = data; struct nfqnl_msg_packet_hdr *ph = NULL; struct nlattr *attr[NFQA_MAX+1] = {0}; struct packet_data packet = {0}; if (nfq_nlmsg_parse(nlh, attr) < 0) { perror("Attr parse"); return MNL_CB_ERROR; } if (attr[NFQA_PACKET_HDR] == NULL) { errno = ENODATA; perror("Metaheader not set"); return MNL_CB_ERROR; } ph = mnl_attr_get_payload(attr[NFQA_PACKET_HDR]); packet.id = ntohl(ph->packet_id); packet.hw_proto = ntohs(ph->hw_protocol); packet.hook = ph->hook; packet.payload_len = mnl_attr_get_payload_len(attr[NFQA_PAYLOAD]); packet.payload = mnl_attr_get_payload(attr[NFQA_PAYLOAD]); if (attr[NFQA_CAP_LEN] != NULL && ntohl(mnl_attr_get_u32(attr[NFQA_CAP_LEN])) != packet.payload_len) { fprintf(stderr, "The packet was truncated! Skip!\n"); return fallback_accept_packet(packet.id, *qdata); } if (attr[NFQA_MARK] != NULL) { // Skip packets sent by rawsocket to escape infinity loop. if ((ntohl(mnl_attr_get_u32(attr[NFQA_MARK])) & RAWSOCKET_MARK) == RAWSOCKET_MARK) { return fallback_accept_packet(packet.id, *qdata); } } return process_packet(packet, *qdata); } #define BUF_SIZE (0xffff + (MNL_SOCKET_BUFFER_SIZE / 2)) int init_queue(int queue_num) { struct mnl_socket *nl; if (open_socket(&nl)) { perror("Unable to open socket"); return -1; } uint32_t portid = mnl_socket_get_portid(nl); struct nlmsghdr *nlh; char buf[BUF_SIZE]; nlh = nfq_nlmsg_put(buf, NFQNL_MSG_CONFIG, queue_num); nfq_nlmsg_cfg_put_cmd(nlh, AF_INET, NFQNL_CFG_CMD_BIND); if (mnl_socket_sendto(nl, nlh, nlh->nlmsg_len) < 0) { perror("mnl_socket_send"); goto die; } nlh = nfq_nlmsg_put(buf, NFQNL_MSG_CONFIG, queue_num); nfq_nlmsg_cfg_put_params(nlh, NFQNL_COPY_PACKET, 0xffff); if (config.use_gso) { mnl_attr_put_u32(nlh, NFQA_CFG_FLAGS, htonl(NFQA_CFG_F_GSO)); mnl_attr_put_u32(nlh, NFQA_CFG_MASK, htonl(NFQA_CFG_F_GSO)); } if (mnl_socket_sendto(nl, nlh, nlh->nlmsg_len) < 0) { perror("mnl_socket_send"); goto die; } /* ENOBUFS is signalled to userspace when packets were lost * on kernel side. In most cases, userspace isn't interested * in this information, so turn it off. */ int ret = 1; mnl_socket_setsockopt(nl, NETLINK_NO_ENOBUFS, &ret, sizeof(int)); struct queue_data qdata = { ._nl = &nl, .queue_num = queue_num }; printf("Queue %d started!\n", qdata.queue_num); while (1) { ret = mnl_socket_recvfrom(nl, buf, BUF_SIZE); if (ret == -1) { perror("mnl_socket_recvfrom"); continue; } ret = mnl_cb_run(buf, ret, 0, portid, queue_cb, &qdata); if (ret < 0) { perror("mnl_cb_run"); } } close_socket(&nl); return 0; die: close_socket(&nl); return -1; } // Per-queue config. Used to initialize a queue. Passed to wrapper struct queue_conf { uint16_t i; int queue_num; }; struct queue_res { int status; }; static struct queue_res threads_reses[MAX_THREADS]; void *init_queue_wrapper(void *qdconf) { struct queue_conf *qconf = qdconf; struct queue_res *thres = threads_reses + qconf->i; thres->status = init_queue(qconf->queue_num); fprintf(stderr, "Thread %d exited with status %d\n", qconf->i, thres->status); return thres; } int main(int argc, const char *argv[]) { if (parse_args(argc, argv)) { perror("Unable to parse args"); exit(EXIT_FAILURE); } switch (config.fragmentation_strategy) { case FRAG_STRAT_TCP: printf("Using TCP segmentation\n"); break; case FRAG_STRAT_IP: printf("Using IP fragmentation\n"); break; default: printf("SNI fragmentation is disabled\n"); break; } if (config.seg2_delay) printf("Some outgoing googlevideo request segments will be delayed for %d ms as of seg2_delay define\n", config.seg2_delay); switch (config.fake_sni_strategy) { case FKSN_STRAT_TTL: printf("Fake SNI will be sent before each googlevideo request, TTL strategy will be used with TTL %d\n", config.fake_sni_ttl); break; case FRAG_STRAT_IP: printf("Fake SNI will be sent before each googlevideo request, Ack-Seq strategy will be used\n"); break; default: printf("SNI fragmentation is disabled\n"); break; } if (config.use_gso) printf("GSO is enabled\n"); if (open_raw_socket() < 0) { perror("Unable to open raw socket"); exit(EXIT_FAILURE); } struct queue_res *qres; if (config.threads == 1) { struct queue_conf tconf = { .i = 0, .queue_num = config.queue_start_num }; qres = init_queue_wrapper(&tconf); } else { printf("%d threads wil be used\n", config.threads); struct queue_conf thread_confs[MAX_THREADS]; pthread_t threads[MAX_THREADS]; for (int i = 0; i < config.threads; i++) { struct queue_conf *tconf = thread_confs + i; pthread_t *thr = threads + i; tconf->queue_num = config.queue_start_num + i; tconf->i = i; pthread_create(thr, NULL, init_queue_wrapper, tconf); } void *res; for (int i = 0; i < config.threads; i++) { pthread_join(threads[i], &res); qres = res; } } if (close_raw_socket() < 0) { perror("Unable to close raw socket"); exit(EXIT_FAILURE); } return qres->status; }