#define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NOUSE_GSO #define USE_GSO #endif #ifndef USE_IP_FRAGMENTATION #define USE_TCP_SEGMENTATION #endif #define RAWSOCKET_MARK 0xfc70 #define MAX_THREADS 16 #ifndef THREADS_NUM #define THREADS_NUM 1 #endif #if THREADS_NUM > MAX_THREADS #error "Too much threads" #endif #ifndef __linux__ #error "The package is linux only!" #endif static struct { uint32_t queue_start_num; int rawsocket; pthread_mutex_t rawsocket_lock; int threads; } config = { .rawsocket = -2, .threads=THREADS_NUM }; static int parse_args(int argc, const char *argv[]) { int err; char *end; if (argc != 2) { errno = EINVAL; goto errormsg_help; } uint32_t queue_num = strtoul(argv[1], &end, 10); if (errno != 0 || *end != '\0') goto errormsg_help; config.queue_start_num = queue_num; return 0; errormsg_help: err = errno; printf("Usage: %s [queue_num]\n", argv[0]); errno = err; if (errno == 0) errno = EINVAL; return -1; } static int open_socket(struct mnl_socket **_nl) { struct mnl_socket *nl = NULL; nl = mnl_socket_open(NETLINK_NETFILTER); if (nl == NULL) { perror("mnl_socket_open"); return -1; } if (mnl_socket_bind(nl, 0, MNL_SOCKET_AUTOPID) < 0) { perror("mnl_socket_bind"); mnl_socket_close(nl); return -1; } *_nl = nl; return 0; } static int close_socket(struct mnl_socket **_nl) { struct mnl_socket *nl = *_nl; if (nl == NULL) return 1; if (mnl_socket_close(nl) < 0) { perror("mnl_socket_close"); return -1; } *_nl = NULL; return 0; } static int open_raw_socket(void) { if (config.rawsocket != -2) { errno = EALREADY; perror("Raw socket is already opened"); return -1; } config.rawsocket = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); if (config.rawsocket == -1) { perror("Unable to create raw socket"); return -1; } int one = 1; const int *val = &one; if (setsockopt(config.rawsocket, IPPROTO_IP, IP_HDRINCL, val, sizeof(one)) < 0) { fprintf(stderr, "setsockopt(IP_HDRINCL, 1) failed\n"); return -1; } int mark = RAWSOCKET_MARK; if (setsockopt(config.rawsocket, SOL_SOCKET, SO_MARK, &mark, sizeof(mark)) < 0) { fprintf(stderr, "setsockopt(SO_MARK, %d) failed\n", mark); return -1; } int mst = pthread_mutex_init(&config.rawsocket_lock, NULL); if (mst) { fprintf(stderr, "Mutex err: %d\n", mst); close(config.rawsocket); errno = mst; return -1; } return config.rawsocket; } static int close_raw_socket(void) { if (config.rawsocket < 0) { errno = EALREADY; perror("Raw socket is not set"); return -1; } if (close(config.rawsocket)) { perror("Unable to close raw socket"); pthread_mutex_destroy(&config.rawsocket_lock); return -1; } pthread_mutex_destroy(&config.rawsocket_lock); config.rawsocket = -2; return 0; } // split packet to two ipv4 fragments. static int ipv4_frag(struct pkt_buff *pktb, size_t payload_offset, struct pkt_buff **frag1, struct pkt_buff **frag2) { uint8_t buff1[MNL_SOCKET_BUFFER_SIZE]; uint8_t buff2[MNL_SOCKET_BUFFER_SIZE]; struct iphdr *hdr = nfq_ip_get_hdr(pktb); size_t hdr_len = hdr->ihl * 4; uint8_t *payload = pktb_data(pktb) + hdr_len; size_t plen = pktb_len(pktb) - hdr_len; if (hdr == NULL || payload == NULL || plen <= payload_offset) { errno = EINVAL; return -1; } if (payload_offset & ((1 << 3) - 1)) { fprintf(stderr, "Payload offset MUST be a multiply of 8!\n"); errno = EINVAL; return -1; } size_t f1_plen = payload_offset; size_t f1_dlen = f1_plen + hdr_len; size_t f2_plen = plen - payload_offset; size_t f2_dlen = f2_plen + hdr_len; memcpy(buff1, hdr, hdr_len); memcpy(buff2, hdr, hdr_len); memcpy(buff1 + hdr_len, payload, f1_plen); memcpy(buff2 + hdr_len, payload + payload_offset, f2_plen); struct iphdr *f1_hdr = (void *)buff1; struct iphdr *f2_hdr = (void *)buff2; uint16_t f1_frag_off = ntohs(f1_hdr->frag_off); uint16_t f2_frag_off = ntohs(f2_hdr->frag_off); f1_frag_off &= IP_OFFMASK; f1_frag_off |= IP_MF; if ((f2_frag_off & ~IP_OFFMASK) == IP_MF) { f2_frag_off &= IP_OFFMASK; f2_frag_off |= IP_MF; } else { f2_frag_off &= IP_OFFMASK; } f2_frag_off += (uint16_t)payload_offset / 8; f1_hdr->frag_off = htons(f1_frag_off); f1_hdr->tot_len = htons(f1_dlen); f2_hdr->frag_off = htons(f2_frag_off); f2_hdr->tot_len = htons(f2_dlen); #ifdef DEBUG printf("Packet split in portion %zu %zu\n", f1_dlen, f2_dlen); #endif nfq_ip_set_checksum(f1_hdr); nfq_ip_set_checksum(f2_hdr); *frag1 = pktb_alloc(AF_INET, buff1, f1_dlen, 0); if (*frag1 == NULL) return -1; *frag2 = pktb_alloc(AF_INET, buff2, f2_dlen, 0); if (*frag2 == NULL) { pktb_free(*frag1); return -1; } return 0; } // split packet to two tcp-on-ipv4 segments. static int tcp4_frag(struct pkt_buff *pktb, size_t payload_offset, struct pkt_buff **seg1, struct pkt_buff **seg2) { uint8_t buff1[MNL_SOCKET_BUFFER_SIZE]; uint8_t buff2[MNL_SOCKET_BUFFER_SIZE]; struct iphdr *hdr = nfq_ip_get_hdr(pktb); size_t hdr_len = hdr->ihl * 4; if (hdr == NULL) {errno = EINVAL; return -1;} if (hdr->protocol != IPPROTO_TCP || !(ntohs(hdr->frag_off) & IP_DF)) { errno = EINVAL; return -1; } if (nfq_ip_set_transport_header(pktb, hdr)) return -1; struct tcphdr *tcph = nfq_tcp_get_hdr(pktb); size_t tcph_len = tcph->doff * 4; if (tcph == NULL) { errno = EINVAL; return -1; } uint8_t *payload = nfq_tcp_get_payload(tcph, pktb); size_t plen = nfq_tcp_get_payload_len(tcph, pktb); if (hdr == NULL || payload == NULL || plen <= payload_offset) { errno = EINVAL; return -1; } size_t s1_plen = payload_offset; size_t s1_dlen = s1_plen + hdr_len + tcph_len; size_t s2_plen = plen - payload_offset; size_t s2_dlen = s2_plen + hdr_len + tcph_len; memcpy(buff1, hdr, hdr_len); memcpy(buff2, hdr, hdr_len); memcpy(buff1 + hdr_len, tcph, tcph_len); memcpy(buff2 + hdr_len, tcph, tcph_len); memcpy(buff1 + hdr_len + tcph_len, payload, s1_plen); memcpy(buff2 + hdr_len + tcph_len, payload + payload_offset, s2_plen); struct iphdr *s1_hdr = (void *)buff1; struct iphdr *s2_hdr = (void *)buff2; struct tcphdr *s1_tcph = (void *)(buff1 + hdr_len); struct tcphdr *s2_tcph = (void *)(buff2 + hdr_len); s1_hdr->tot_len = htons(s1_dlen); s2_hdr->tot_len = htons(s2_dlen); // s2_hdr->id = htons(ntohs(s1_hdr->id) + 1); s2_tcph->seq = htonl(ntohl(s2_tcph->seq) + payload_offset); // printf("%zu %du %du\n", payload_offset, ntohs(s1_tcph->seq), ntohs(s2_tcph->seq)); #ifdef DEBUG printf("Packet split in portion %zu %zu\n", s1_dlen, s2_dlen); #endif nfq_tcp_compute_checksum_ipv4(s1_tcph, s1_hdr); nfq_tcp_compute_checksum_ipv4(s2_tcph, s2_hdr); *seg1 = pktb_alloc(AF_INET, buff1, s1_dlen, 0); if (*seg1 == NULL) return -1; *seg2 = pktb_alloc(AF_INET, buff2, s2_dlen, 0); if (*seg2 == NULL) { pktb_free(*seg1); return -1; } return 0; } #define AVAILABLE_MTU 1384 static int send_raw_socket(struct pkt_buff *pktb) { if (pktb_len(pktb) > AVAILABLE_MTU) { #ifdef DEBUG printf("Split packet!\n"); #endif struct pkt_buff *buff1; struct pkt_buff *buff2; #ifdef USE_TCP_SEGMENTATION if (tcp4_frag(pktb, AVAILABLE_MTU-128, &buff1, &buff2) < 0) return -1; #else if (ipv4_frag(pktb, AVAILABLE_MTU-128, &buff1, &buff2) < 0) return -1; #endif int sent = 0; int status = send_raw_socket(buff1); if (status >= 0) sent += status; else { pktb_free(buff1); pktb_free(buff2); return status; } pktb_free(buff1); status = send_raw_socket(buff2); if (status >= 0) sent += status; else { pktb_free(buff2); return status; } pktb_free(buff2); return sent; } struct iphdr *iph = nfq_ip_get_hdr(pktb); if (iph == NULL) return -1; if(nfq_ip_set_transport_header(pktb, iph)) return -1; int sin_port = 0; struct tcphdr *tcph = nfq_tcp_get_hdr(pktb); struct udphdr *udph = nfq_udp_get_hdr(pktb); if (tcph != NULL) { sin_port = tcph->dest; errno = 0; } else if (udph != NULL) { sin_port = udph->dest; } else { return -1; } struct sockaddr_in daddr = { .sin_family = AF_INET, .sin_port = sin_port, .sin_addr = { .s_addr = iph->daddr } }; pthread_mutex_lock(&config.rawsocket_lock); int sent = sendto(config.rawsocket, pktb_data(pktb), pktb_len(pktb), 0, (struct sockaddr *)&daddr, sizeof(daddr)); pthread_mutex_unlock(&config.rawsocket_lock); return sent; } struct packet_data { uint32_t id; uint16_t hw_proto; uint8_t hook; void *payload; uint16_t payload_len; }; #define TLS_CONTENT_TYPE_HANDSHAKE 0x16 #define TLS_HANDSHAKE_TYPE_CLIENT_HELLO 0x01 #define TLS_EXTENSION_SNI 0x0000 #define TLS_EXTENSION_CLIENT_HELLO_ENCRYPTED 0xfe0d const char googlevideo_ending[] = "googlevideo.com"; const int googlevideo_len = 15; #define GOOGLEVIDEO_MARK 0xfc74 struct verdict { int gvideo_hello; /* google video hello packet */ int sni_offset; /* offset from start of tcp _payload_ */ int sni_len; }; /** * Processes tls payload of the tcp request. * * data Payload data of TCP. * dlen Length of `data`. */ static struct verdict analyze_tls_data( const uint8_t *data, uint32_t dlen) { struct verdict vrd = {0}; size_t i = 0; const uint8_t *data_end = data + dlen; while (i + 4 < dlen) { const uint8_t *msgData = data + i; uint8_t tls_content_type = *msgData; uint8_t tls_vmajor = *(msgData + 1); uint8_t tls_vminor = *(msgData + 2); uint16_t message_length = ntohs(*(uint16_t *)(msgData + 3)); const uint8_t *message_length_ptr = msgData + 3; if (i + 5 + message_length > dlen) break; if (tls_content_type != TLS_CONTENT_TYPE_HANDSHAKE) goto nextMessage; const uint8_t *handshakeProto = msgData + 5; if (handshakeProto + 1 >= data_end) break; uint8_t handshakeType = *handshakeProto; if (handshakeType != TLS_HANDSHAKE_TYPE_CLIENT_HELLO) goto nextMessage; const uint8_t *msgPtr = handshakeProto; msgPtr += 1; const uint8_t *handshakeProto_length_ptr = msgPtr + 1; msgPtr += 3 + 2 + 32; if (msgPtr + 1 >= data_end) break; uint8_t sessionIdLength = *msgPtr; msgPtr++; msgPtr += sessionIdLength; if (msgPtr + 2 >= data_end) break; uint16_t ciphersLength = ntohs(*(uint16_t *)msgPtr); msgPtr += 2; msgPtr += ciphersLength; if (msgPtr + 1 >= data_end) break; uint8_t compMethodsLen = *msgPtr; msgPtr++; msgPtr += compMethodsLen; if (msgPtr + 2 >= data_end) break; uint16_t extensionsLen = ntohs(*(uint16_t *)msgPtr); const uint8_t *extensionsLen_ptr = msgPtr; msgPtr += 2; const uint8_t *extensionsPtr = msgPtr; const uint8_t *extensions_end = extensionsPtr + extensionsLen; if (extensions_end > data_end) break; while (extensionsPtr < extensions_end) { const uint8_t *extensionPtr = extensionsPtr; if (extensionPtr + 4 >= extensions_end) break; uint16_t extensionType = ntohs(*(uint16_t *)extensionPtr); extensionPtr += 2; uint16_t extensionLen = ntohs(*(uint16_t *)extensionPtr); const uint8_t *extensionLen_ptr = extensionPtr; extensionPtr += 2; if (extensionPtr + extensionLen > extensions_end) break; if (extensionType != TLS_EXTENSION_SNI) goto nextExtension; const uint8_t *sni_ext_ptr = extensionPtr; if (sni_ext_ptr + 2 >= extensions_end) break; uint16_t sni_ext_dlen = ntohs(*(uint16_t *)sni_ext_ptr); const uint8_t *sni_ext_dlen_ptr = sni_ext_ptr; sni_ext_ptr += 2; const uint8_t *sni_ext_end = sni_ext_ptr + sni_ext_dlen; if (sni_ext_end >= extensions_end) break; if (sni_ext_ptr + 3 >= sni_ext_end) break; uint8_t sni_type = *sni_ext_ptr++; uint16_t sni_len = ntohs(*(uint16_t *)sni_ext_ptr); sni_ext_ptr += 2; if (sni_ext_ptr + sni_len > sni_ext_end) break; char *sni_name = (char *)sni_ext_ptr; // sni_len vrd.sni_offset = (uint8_t *)sni_name - data; vrd.sni_len = sni_len; char *gv_startp = sni_name + sni_len - googlevideo_len; if (sni_len >= googlevideo_len && sni_len < 128 && !strncmp(gv_startp, googlevideo_ending, googlevideo_len)) { vrd.gvideo_hello = 1; } nextExtension: extensionsPtr += 2 + 2 + extensionLen; } nextMessage: i += 5 + message_length; } return vrd; } // Per-queue data. Passed to queue_cb. struct queue_data { struct mnl_socket **_nl; int queue_num; }; /** * Used to accept unsupported packets (GSOs) */ static int fallback_accept_packet(uint32_t id, struct queue_data qdata) { char buf[MNL_SOCKET_BUFFER_SIZE]; struct nlmsghdr *verdnlh; verdnlh = nfq_nlmsg_put(buf, NFQNL_MSG_VERDICT, qdata.queue_num); nfq_nlmsg_verdict_put(verdnlh, id, NF_ACCEPT); if (mnl_socket_sendto(*qdata._nl, verdnlh, verdnlh->nlmsg_len) < 0) { perror("mnl_socket_send"); return MNL_CB_ERROR; } return MNL_CB_OK; } static int process_packet(const struct packet_data packet, struct queue_data qdata) { char buf[MNL_SOCKET_BUFFER_SIZE]; struct nlmsghdr *verdnlh; #ifdef DEBUG_LOGGING printf("packet received (id=%u hw=0x%04x hook=%u, payload len %u)\n", packet.id, packet.hw_proto, packet.hook, packet.payload_len); #endif if (packet.hw_proto != ETH_P_IP) { return fallback_accept_packet(packet.id, qdata); } const int family = AF_INET; const uint8_t *raw_payload = packet.payload; size_t raw_payload_len = packet.payload_len; if (raw_payload == NULL) return MNL_CB_ERROR; const struct iphdr *ip_header = (const void *)raw_payload; if (ip_header->version != IPPROTO_IPIP || ip_header->protocol != IPPROTO_TCP) goto fallback; int iph_len = ip_header->ihl * 4; const struct tcphdr *tcph = (const void *)(raw_payload + iph_len); if ((const uint8_t *)tcph + 20 > raw_payload + raw_payload_len) { printf("LZ\n"); goto fallback; } int tcph_len = tcph->doff * 4; if ((const uint8_t *)tcph + tcph_len > raw_payload + raw_payload_len) { printf("LZ\n"); goto fallback; } int data_len = ntohs(ip_header->tot_len) - iph_len - tcph_len; const uint8_t *data = (const uint8_t *)(raw_payload + iph_len + tcph_len); struct verdict vrd = analyze_tls_data(data, data_len); verdnlh = nfq_nlmsg_put(buf, NFQNL_MSG_VERDICT, qdata.queue_num); nfq_nlmsg_verdict_put(verdnlh, packet.id, NF_ACCEPT); if (vrd.gvideo_hello) { #ifdef DEBUG printf("Google video!\n"); #endif if (data_len > 1480) { #ifdef DEBUG fprintf(stderr, "WARNING! Google video packet is too big and may cause issues!\n"); #endif } struct pkt_buff *frag1; struct pkt_buff *frag2; nfq_nlmsg_verdict_put(verdnlh, packet.id, NF_DROP); #ifdef USE_TCP_SEGMENTATION size_t ipd_offset = vrd.sni_offset; size_t mid_offset = ipd_offset + vrd.sni_len / 2; struct pkt_buff *pktb = pktb_alloc( family, packet.payload, packet.payload_len, 0); if (tcp4_frag(pktb, mid_offset, &frag1, &frag2) < 0) { perror("tcp4_frag"); pktb_free(pktb); goto fallback; } if ((send_raw_socket(frag2) == -1) || (send_raw_socket(frag1) == -1)) { perror("raw frags send"); } pktb_free(frag1); pktb_free(frag2); pktb_free(pktb); #else // TODO: Implement compute of tcp checksum // GSO may turn kernel to not compute the tcp checksum. // Also it will never be meaningless to ensure the // checksum is right. // nfq_tcp_compute_checksum_ipv4(tcph, ip_header); size_t ipd_offset = ((char *)data - (char *)tcph) + vrd.sni_offset; size_t mid_offset = ipd_offset + vrd.sni_len / 2; mid_offset += 8 - mid_offset % 8; if (ipv4_frag(pktb, mid_offset, &frag1, &frag2) < 0) { perror("ipv4_frag"); goto fallback; } if ((send_raw_socket(frag1) == -1) || (send_raw_socket(frag2) == -1)) { perror("raw frags send"); } pktb_free(frag1); pktb_free(frag2); #endif } /* if (pktb_mangled(pktb)) { #ifdef DEBUG printf("Mangled!\n"); #endif nfq_nlmsg_verdict_put_pkt( verdnlh, pktb_data(pktb), pktb_len(pktb)); } */ if (mnl_socket_sendto(*qdata._nl, verdnlh, verdnlh->nlmsg_len) < 0) { perror("mnl_socket_send"); goto error; } return MNL_CB_OK; fallback: return fallback_accept_packet(packet.id, qdata); error: return MNL_CB_ERROR; } static int queue_cb(const struct nlmsghdr *nlh, void *data) { struct queue_data *qdata = data; struct nfqnl_msg_packet_hdr *ph = NULL; struct nlattr *attr[NFQA_MAX+1] = {0}; struct packet_data packet = {0}; if (nfq_nlmsg_parse(nlh, attr) < 0) { perror("Attr parse"); return MNL_CB_ERROR; } if (attr[NFQA_PACKET_HDR] == NULL) { errno = ENODATA; perror("Metaheader not set"); return MNL_CB_ERROR; } ph = mnl_attr_get_payload(attr[NFQA_PACKET_HDR]); packet.id = ntohl(ph->packet_id); packet.hw_proto = ntohs(ph->hw_protocol); packet.hook = ph->hook; packet.payload_len = mnl_attr_get_payload_len(attr[NFQA_PAYLOAD]); packet.payload = mnl_attr_get_payload(attr[NFQA_PAYLOAD]); if (attr[NFQA_CAP_LEN] != NULL && ntohl(mnl_attr_get_u32(attr[NFQA_CAP_LEN])) != packet.payload_len) { fprintf(stderr, "The packet was truncated! Skip!\n"); return fallback_accept_packet(packet.id, *qdata); } if (attr[NFQA_MARK] != NULL) { // Skip packets sent by rawsocket to escape infinity loop. if (ntohl(mnl_attr_get_u32(attr[NFQA_MARK])) == RAWSOCKET_MARK) { return fallback_accept_packet(packet.id, *qdata); } } return process_packet(packet, *qdata); } int init_queue(int queue_num) { struct mnl_socket *nl; if (open_socket(&nl)) { perror("Unable to open socket"); return -1; } uint32_t portid = mnl_socket_get_portid(nl); struct nlmsghdr *nlh; char *buf; size_t buf_size = 0xffff + (MNL_SOCKET_BUFFER_SIZE / 2); buf = malloc(buf_size); if (!buf) { perror("Allocate recieve buffer"); goto die_sock; } nlh = nfq_nlmsg_put(buf, NFQNL_MSG_CONFIG, queue_num); nfq_nlmsg_cfg_put_cmd(nlh, AF_INET, NFQNL_CFG_CMD_BIND); if (mnl_socket_sendto(nl, nlh, nlh->nlmsg_len) < 0) { perror("mnl_socket_send"); goto die; } nlh = nfq_nlmsg_put(buf, NFQNL_MSG_CONFIG, queue_num); nfq_nlmsg_cfg_put_params(nlh, NFQNL_COPY_PACKET, 0xffff); #ifdef USE_GSO mnl_attr_put_u32(nlh, NFQA_CFG_FLAGS, htonl(NFQA_CFG_F_GSO)); mnl_attr_put_u32(nlh, NFQA_CFG_MASK, htonl(NFQA_CFG_F_GSO)); #endif if (mnl_socket_sendto(nl, nlh, nlh->nlmsg_len) < 0) { perror("mnl_socket_send"); goto die; } /* ENOBUFS is signalled to userspace when packets were lost * on kernel side. In most cases, userspace isn't interested * in this information, so turn it off. */ int ret = 1; mnl_socket_setsockopt(nl, NETLINK_NO_ENOBUFS, &ret, sizeof(int)); struct queue_data qdata = { ._nl = &nl, .queue_num = queue_num }; printf("Queue %d started!\n", qdata.queue_num); while (1) { ret = mnl_socket_recvfrom(nl, buf, buf_size); if (ret == -1) { perror("mnl_socket_recvfrom"); continue; } ret = mnl_cb_run(buf, ret, 0, portid, queue_cb, &qdata); if (ret < 0) { perror("mnl_cb_run"); } } free(buf); close_socket(&nl); return 0; die: free(buf); die_sock: close_socket(&nl); return -1; } // Per-queue config. Used to initialize a queue. Passed to wrapper struct queue_conf { uint16_t i; int queue_num; }; struct queue_res { int status; }; static struct queue_res threads_reses[MAX_THREADS]; void *init_queue_wrapper(void *qdconf) { struct queue_conf *qconf = qdconf; struct queue_res *thres = threads_reses + qconf->i; thres->status = init_queue(qconf->queue_num); fprintf(stderr, "Thread %d exited with status %d\n", qconf->i, thres->status); return thres; } int main(int argc, const char *argv[]) { if (parse_args(argc, argv)) { perror("Unable to parse args"); exit(EXIT_FAILURE); } #ifdef USE_TCP_SEGMENTATION printf("Using TCP segmentation!\n"); #else printf("Using IP fragmentation!\n"); #endif #ifdef USE_GSO printf("GSO is enabled!\n"); #endif if (open_raw_socket() < 0) { perror("Unable to open raw socket"); exit(EXIT_FAILURE); } #if THREADS_NUM == 1 struct queue_conf tconf = { .i = 0, .queue_num = config.queue_start_num }; struct queue_res *qres = init_queue_wrapper(&tconf); #else struct queue_conf thread_confs[MAX_THREADS]; pthread_t threads[MAX_THREADS]; for (int i = 0; i < config.threads; i++) { struct queue_conf *tconf = thread_confs + i; pthread_t *thr = threads + i; tconf->queue_num = config.queue_start_num + i; tconf->i = i; pthread_create(thr, NULL, init_queue_wrapper, tconf); } void *res; for (int i = 0; i < config.threads; i++) { pthread_join(threads[i], &res); struct queue_res *qres = res; } #endif if (close_raw_socket() < 0) { perror("Unable to close raw socket"); exit(EXIT_FAILURE); } return qres->status; }