#define _GNU_SOURCE #include "types.h" // IWYU pragma: keep #include "mangle.h" #include "config.h" #include "utils.h" #include "quic.h" #include "logging.h" #include "tls.h" #ifndef KERNEL_SPACE #include #endif int process_packet(const uint8_t *raw_payload, uint32_t raw_payload_len) { if (raw_payload_len > MAX_PACKET_SIZE) { return PKT_ACCEPT; } const struct iphdr *iph; const struct ip6_hdr *ip6h; uint32_t iph_len; const uint8_t *ip_payload; uint32_t ip_payload_len; int transport_proto = -1; int ipver = netproto_version(raw_payload, raw_payload_len); int ret; lgtrace_start(); lgtrace_addp("IPv%d", ipver); if (ipver == IP4VERSION) { ret = ip4_payload_split((uint8_t *)raw_payload, raw_payload_len, (struct iphdr **)&iph, &iph_len, (uint8_t **)&ip_payload, &ip_payload_len); if (ret < 0) goto accept; transport_proto = iph->protocol; } else if (ipver == IP6VERSION && config.use_ipv6) { ret = ip6_payload_split((uint8_t *)raw_payload, raw_payload_len, (struct ip6_hdr **)&ip6h, &iph_len, (uint8_t **)&ip_payload, &ip_payload_len); if (ret < 0) goto accept; transport_proto = ip6h->ip6_nxt; } else { lgtracemsg("Unknown layer 3 protocol version: %d", ipver); goto accept; } int verdict = PKT_CONTINUE; if (transport_proto == IPPROTO_TCP) lgtrace_addp("TCP"); else if (transport_proto == IPPROTO_UDP) lgtrace_addp("UDP"); ITER_CONFIG_SECTIONS(&config, section) { lgtrace_addp("Section #%d", CONFIG_SECTION_NUMBER(section)); switch (transport_proto) { case IPPROTO_TCP: verdict = process_tcp_packet(section, raw_payload, raw_payload_len); break; case IPPROTO_UDP: verdict = process_udp_packet(section, raw_payload, raw_payload_len); break; } if (verdict == PKT_CONTINUE) { lgtrace_addp("continue_flow"); continue; } goto ret_verdict; } accept: verdict = PKT_ACCEPT; ret_verdict: switch (verdict) { case PKT_ACCEPT: lgtrace_addp("accept"); break; case PKT_DROP: lgtrace_addp("drop"); break; default: lgtrace_addp("unknow verdict: %d", verdict); } lgtrace_end(); return verdict; } int process_tcp_packet(const struct section_config_t *section, const uint8_t *raw_payload, uint32_t raw_payload_len) { const void *ipxh; uint32_t iph_len; const struct tcphdr *tcph; uint32_t tcph_len; const uint8_t *data; uint32_t dlen; int ipxv = netproto_version(raw_payload, raw_payload_len); int ret = tcp_payload_split((uint8_t *)raw_payload, raw_payload_len, (void *)&ipxh, &iph_len, (struct tcphdr **)&tcph, &tcph_len, (uint8_t **)&data, &dlen); if (ret < 0) { goto accept; } if (tcph->syn && section->synfake) { lgtrace_addp("TCP syn alter"); NETBUF_ALLOC(payload, MAX_PACKET_SIZE); if (!NETBUF_CHECK(payload)) { lgerror(-ENOMEM, "Allocation error"); goto accept; } memcpy(payload, ipxh, iph_len); memcpy(payload + iph_len, tcph, tcph_len); uint32_t fake_len = section->fake_sni_pkt_sz; if (section->synfake_len) fake_len = min(section->synfake_len, fake_len); memcpy(payload + iph_len + tcph_len, section->fake_sni_pkt, fake_len); struct tcphdr *tcph = (struct tcphdr *)(payload + iph_len); if (ipxv == IP4VERSION) { struct iphdr *iph = (struct iphdr *)payload; iph->tot_len = htons(iph_len + tcph_len + fake_len); set_ip_checksum(payload, iph_len); set_tcp_checksum(tcph, iph, iph_len); } else if (ipxv == IP6VERSION) { struct ip6_hdr *ip6h = (struct ip6_hdr *)payload; ip6h->ip6_plen = ntohs(tcph_len + fake_len); set_ip_checksum(ip6h, iph_len); set_tcp_checksum(tcph, ip6h, iph_len); } ret = instance_config.send_raw_packet(payload, iph_len + tcph_len + fake_len); if (ret < 0) { lgerror(ret, "send_syn_altered"); NETBUF_FREE(payload); goto accept; } NETBUF_FREE(payload); goto drop; } if (tcph->syn) goto continue_flow; if (!section->tls_enabled) goto continue_flow; struct tls_verdict vrd = analyze_tls_data(section, data, dlen); lgtrace_addp("TLS analyzed"); if (vrd.sni_len != 0) { lgtrace_addp("SNI detected: %.*s", vrd.sni_len, data + vrd.sni_offset); } if (vrd.target_sni) { lgdebugmsg("Target SNI detected: %.*s", vrd.sni_len, data + vrd.sni_offset); uint32_t payload_len = raw_payload_len; NETBUF_ALLOC(payload, MAX_PACKET_SIZE); if (!NETBUF_CHECK(payload)) { lgerror(-ENOMEM, "Allocation error"); goto accept; } memcpy(payload, raw_payload, raw_payload_len); void *iph; uint32_t iph_len; struct tcphdr *tcph; uint32_t tcph_len; uint8_t *data; uint32_t dlen; int ret = tcp_payload_split(payload, payload_len, &iph, &iph_len, &tcph, &tcph_len, &data, &dlen); if (ret < 0) { lgerror(ret, "tcp_payload_split in targ_sni"); goto accept_lc; } if (section->fk_winsize) { tcph->window = htons(section->fk_winsize); set_tcp_checksum(tcph, iph, iph_len); } if (0) { int delta = 2; ret = seqovl_packet(payload, &payload_len, delta); int ret = tcp_payload_split(payload, payload_len, &iph, &iph_len, &tcph, &tcph_len, &data, &dlen); if (ret < 0) { lgerror(ret, "seqovl_packet delta %d", delta); } } if (dlen > 1480 && config.verbose) { lgdebugmsg("WARNING! Client Hello packet is too big and may cause issues!"); } if (section->fake_sni) { post_fake_sni(args_default_fake_type(section), iph, iph_len, tcph, tcph_len); } size_t ipd_offset; size_t mid_offset; switch (section->fragmentation_strategy) { case FRAG_STRAT_TCP: { ipd_offset = vrd.sni_target_offset; mid_offset = ipd_offset + vrd.sni_target_len / 2; uint32_t poses[2]; int cnt = 0; if (section->frag_sni_pos && dlen > section->frag_sni_pos) { poses[cnt++] = section->frag_sni_pos; } if (section->frag_middle_sni) { poses[cnt++] = mid_offset; } if (cnt > 1 && poses[0] > poses[1]) { uint32_t tmp = poses[0]; poses[0] = poses[1]; poses[1] = tmp; } ret = send_tcp_frags(section, payload, payload_len, poses, cnt, 0); if (ret < 0) { lgerror(ret, "tcp4 send frags"); goto accept_lc; } goto drop_lc; } break; case FRAG_STRAT_IP: if (ipxv == IP4VERSION) { ipd_offset = ((char *)data - (char *)tcph) + vrd.sni_target_offset; mid_offset = ipd_offset + vrd.sni_target_len / 2; mid_offset += 8 - mid_offset % 8; uint32_t poses[2]; int cnt = 0; if (section->frag_sni_pos && dlen > section->frag_sni_pos) { poses[cnt] = section->frag_sni_pos + ((char *)data - (char *)tcph); poses[cnt] += 8 - poses[cnt] % 8; cnt++; } if (section->frag_middle_sni) { poses[cnt++] = mid_offset; } if (cnt > 1 && poses[0] > poses[1]) { uint32_t tmp = poses[0]; poses[0] = poses[1]; poses[1] = tmp; } ret = send_ip4_frags(section, payload, payload_len, poses, cnt, 0); if (ret < 0) { lgerror(ret, "ip4 send frags"); goto accept_lc; } goto drop_lc; } else { lginfo("WARNING: IP fragmentation is supported only for IPv4\n"); goto default_send; } default: default_send: ret = instance_config.send_raw_packet(payload, payload_len); if (ret < 0) { lgerror(ret, "raw pack send"); goto accept_lc; } goto drop_lc; } goto drop_lc; accept_lc: NETBUF_FREE(payload); goto accept; drop_lc: NETBUF_FREE(payload); goto drop; } continue_flow: return PKT_CONTINUE; accept: return PKT_ACCEPT; drop: return PKT_DROP; } int process_udp_packet(const struct section_config_t *section, const uint8_t *pkt, uint32_t pktlen) { const void *iph; uint32_t iph_len; const struct udphdr *udph; const uint8_t *data; uint32_t dlen; int ret = udp_payload_split((uint8_t *)pkt, pktlen, (void **)&iph, &iph_len, (struct udphdr **)&udph, (uint8_t **)&data, &dlen); if (ret < 0) { lgtrace_addp("undefined"); goto accept; } if (dlen > 10 && config.verbose == VERBOSE_TRACE) { char logging_buf[128]; char *bufpt = logging_buf; bufpt += sprintf(bufpt, "UDP payload start: [ "); for (int i = 0; i < 10; i++) { bufpt += sprintf(bufpt, "%02x ", data[i]); } bufpt += sprintf(bufpt, "]"); lgtrace_addp("%s", logging_buf); } if (!detect_udp_filtered(section, pkt, pktlen)) goto continue_flow; if (section->udp_mode == UDP_MODE_DROP) goto drop; else if (section->udp_mode == UDP_MODE_FAKE) { for (int i = 0; i < section->udp_fake_seq_len; i++) { NETBUF_ALLOC(fake_udp, MAX_PACKET_SIZE); if (!NETBUF_CHECK(fake_udp)) { lgerror(-ENOMEM, "Allocation error"); return -ENOMEM; } uint32_t fsn_len = MAX_PACKET_SIZE; struct udp_fake_type fake_type = { .fake_len = section->udp_fake_len, .strategy = { .strategy = section->udp_faking_strategy, .faking_ttl = section->faking_ttl, }, }; ret = gen_fake_udp(fake_type, iph, iph_len, udph, fake_udp, &fsn_len); if (ret < 0) { lgerror(ret, "gen_fake_udp"); goto erret_lc; } lgtrace_addp("post fake udp #%d", i + 1); ret = instance_config.send_raw_packet(fake_udp, fsn_len); if (ret < 0) { lgerror(ret, "send fake udp"); goto erret_lc; } NETBUF_FREE(fake_udp); continue; erret_lc: NETBUF_FREE(fake_udp); goto accept; } ret = instance_config.send_raw_packet(pkt, pktlen); goto drop; } continue_flow: return PKT_CONTINUE; accept: return PKT_ACCEPT; drop: return PKT_DROP; } int send_ip4_frags(const struct section_config_t *section, const uint8_t *packet, uint32_t pktlen, const uint32_t *poses, uint32_t poses_sz, uint32_t dvs) { if (poses_sz == 0) { if (section->seg2_delay && ((dvs > 0) ^ section->frag_sni_reverse)) { if (!instance_config.send_delayed_packet) { return -EINVAL; } lgtrace_addp("Sent %d delayed for %d", pktlen, section->seg2_delay); instance_config.send_delayed_packet( packet, pktlen, section->seg2_delay); return 0; } else { lgtrace_addp("Sent %d bytes", pktlen); return instance_config.send_raw_packet( packet, pktlen); } } else { NETBUF_ALLOC(frag1, MAX_PACKET_SIZE); if (!NETBUF_CHECK(frag1)) { lgerror(-ENOMEM, "Allocation error"); return -ENOMEM; } NETBUF_ALLOC(frag2, MAX_PACKET_SIZE); if (!NETBUF_CHECK(frag2)) { lgerror(-ENOMEM, "Allocation error"); NETBUF_FREE(frag1); return -ENOMEM; } /* NETBUF_ALLOC(fake_pad, MAX_PACKET_SIZE); if (!NETBUF_CHECK(fake_pad)) { lgerror(-ENOMEM, "Allocation error"); NETBUF_FREE(frag1); NETBUF_FREE(frag2); return -ENOMEM; } */ uint32_t f1len = MAX_PACKET_SIZE; uint32_t f2len = MAX_PACKET_SIZE; // uint32_t fake_pad_len = MAX_PACKET_SIZE; int ret; if (dvs > poses[0]) { lgerror(-EINVAL, "send_frags: Recursive dvs(%d) is more than poses0(%d)", dvs, poses[0]); ret = -EINVAL; goto erret_lc; } uint32_t frag_pos = poses[0] - dvs; frag_pos += 8 - frag_pos % 8; ret = ip4_frag(packet, pktlen, frag_pos, frag1, &f1len, frag2, &f2len); if (ret < 0) { lgerror(ret, "send_frags: frag: with context packet with size %d, position: %d, recursive dvs: %d", pktlen, poses[0], dvs); goto erret_lc; } dvs += frag_pos; if (section->frag_sni_reverse) goto send_frag2; send_frag1: ret = send_ip4_frags(section, frag1, f1len, NULL, 0, 0); if (ret < 0) { goto erret_lc; } if (section->frag_sni_reverse) goto out_lc; send_fake: /* if (section->frag_sni_faked) { ITER_FAKE_STRAT(section->faking_strategy, strategy) { uint32_t iphfl; fake_pad_len = f2len; ret = ip4_payload_split(frag2, f2len, NULL, &iphfl, NULL, NULL); if (ret < 0) { lgerror("Invalid frag2", ret); goto erret_lc; } memcpy(fake_pad, frag2, iphfl + sizeof(struct udphdr)); memset(fake_pad + iphfl + sizeof(struct udphdr), 0, f2len - iphfl - sizeof(struct udphdr)); ((struct iphdr *)fake_pad)->tot_len = htons(fake_pad_len); ((struct iphdr *)fake_pad)->id = 1; ((struct iphdr *)fake_pad)->ttl = 8; ((struct iphdr *)fake_pad)->frag_off = 0; ip4_set_checksum((struct iphdr*)fake_pad); // *(struct udphdr *)(fake_pad + iphfl) = *(struct udphdr *)(frag2 + iphfl); ret = send_ip4_frags(fake_pad, fake_pad_len, NULL, 0, 0); if (ret < 0) { goto erret_lc; } } } */ if (section->frag_sni_reverse) goto send_frag1; send_frag2: ret = send_ip4_frags(section, frag2, f2len, poses + 1, poses_sz - 1, dvs); if (ret < 0) { goto erret_lc; } if (section->frag_sni_reverse) goto send_fake; out_lc: NETBUF_FREE(frag1); NETBUF_FREE(frag2); // NETBUF_FREE(fake_pad); goto out; erret_lc: NETBUF_FREE(frag1); NETBUF_FREE(frag2); // NETBUF_FREE(fake_pad); return ret; } out: return 0; } int send_tcp_frags(const struct section_config_t *section, const uint8_t *packet, uint32_t pktlen, const uint32_t *poses, uint32_t poses_sz, uint32_t dvs) { if (poses_sz == 0) { if (section->seg2_delay && ((dvs > 0) ^ section->frag_sni_reverse)) { if (!instance_config.send_delayed_packet) { return -EINVAL; } instance_config.send_delayed_packet( packet, pktlen, section->seg2_delay); return 0; } else { lgtrace_addp("raw send packet of %d bytes with %d dvs", pktlen, dvs); return instance_config.send_raw_packet( packet, pktlen); } } else { NETBUF_ALLOC(frag1, MAX_PACKET_SIZE); if (!NETBUF_CHECK(frag1)) { lgerror(-ENOMEM, "Allocation error"); return -ENOMEM; } NETBUF_ALLOC(frag2, MAX_PACKET_SIZE); if (!NETBUF_CHECK(frag2)) { lgerror(-ENOMEM, "Allocation error"); NETBUF_FREE(frag1); return -ENOMEM; } uint32_t f1len = MAX_PACKET_SIZE; uint32_t f2len = MAX_PACKET_SIZE; int ret; if (dvs > poses[0]) { lgerror(-EINVAL, "send_frags: Recursive dvs(%d) is more than poses0(%d)", dvs, poses[0]); ret = -EINVAL; goto erret_lc; } ret = tcp_frag(packet, pktlen, poses[0] - dvs, frag1, &f1len, frag2, &f2len); lgtrace_addp("Packet split in %d bytes position of payload start, dvs: %d to two packets of %d and %d lengths", poses[0], dvs, f1len, f2len); if (ret < 0) { lgerror(ret, "send_frags: tcp_frag: with context packet with size %d, position: %d, recursive dvs: %d", pktlen, poses[0], dvs); goto erret_lc; } dvs += poses[0]; if (section->frag_sni_reverse) goto send_frag2; send_frag1: { ret = send_tcp_frags(section, frag1, f1len, NULL, 0, 0); if (ret < 0) { goto erret_lc; } if (section->frag_sni_reverse) goto out_lc; } send_fake: if (section->frag_sni_faked) { uint32_t iphfl, tcphfl; void *iph; struct tcphdr *tcph; ret = tcp_payload_split(frag2, f2len, &iph, &iphfl, &tcph, &tcphfl, NULL, NULL); struct fake_type f_type = args_default_fake_type(section); if ((f_type.strategy.strategy & FAKE_STRAT_PAST_SEQ) == FAKE_STRAT_PAST_SEQ) { f_type.strategy.strategy ^= FAKE_STRAT_PAST_SEQ; f_type.strategy.strategy |= FAKE_STRAT_RAND_SEQ; f_type.strategy.randseq_offset = dvs; } f_type.seg2delay = section->seg2_delay; post_fake_sni(f_type, iph, iphfl, tcph, tcphfl); } if (section->frag_sni_reverse) goto send_frag1; send_frag2: { ret = send_tcp_frags(section, frag2, f2len, poses + 1, poses_sz - 1, dvs); if (ret < 0) { goto erret_lc; } if (section->frag_sni_reverse) goto send_fake; } out_lc: NETBUF_FREE(frag1); NETBUF_FREE(frag2); goto out; erret_lc: NETBUF_FREE(frag1); NETBUF_FREE(frag2); return ret; } out: return 0; } int post_fake_sni(struct fake_type f_type, const void *iph, unsigned int iph_len, const struct tcphdr *tcph, unsigned int tcph_len) { uint8_t rfsiph[128]; uint8_t rfstcph[60]; int ret; int ipxv = netproto_version(iph, iph_len); memcpy(rfsiph, iph, iph_len); memcpy(rfstcph, tcph, tcph_len); void *fsiph = (void *)rfsiph; struct tcphdr *fstcph = (void *)rfstcph; ITER_FAKE_STRAT(f_type.strategy.strategy, strategy) { struct fake_type fake_seq_type = f_type; fake_seq_type.strategy.strategy = strategy; // one goes for default fake for (int i = 0; i < fake_seq_type.sequence_len; i++) { NETBUF_ALLOC(fake_sni, MAX_PACKET_SIZE); if (!NETBUF_CHECK(fake_sni)) { lgerror(-ENOMEM, "Allocation error"); return -ENOMEM; } uint32_t fsn_len = MAX_PACKET_SIZE; ret = gen_fake_sni( fake_seq_type, fsiph, iph_len, fstcph, tcph_len, fake_sni, &fsn_len); if (ret < 0) { lgerror(ret, "gen_fake_sni"); goto erret_lc; } lgtrace_addp("post fake sni #%d", i + 1); if (f_type.seg2delay) { ret = instance_config.send_delayed_packet(fake_sni, fsn_len, f_type.seg2delay); } else { ret = instance_config.send_raw_packet(fake_sni, fsn_len); } if (ret < 0) { lgerror(ret, "send fake sni"); goto erret_lc; } uint32_t iph_len; uint32_t tcph_len; uint32_t plen; ret = tcp_payload_split( fake_sni, fsn_len, &fsiph, &iph_len, &fstcph, &tcph_len, NULL, &plen); if (ret < 0) { lgtrace_addp("continue fake seq"); goto erret_lc; } if (!(strategy == FAKE_STRAT_PAST_SEQ || strategy == FAKE_STRAT_RAND_SEQ)) { fstcph->seq = htonl(ntohl(fstcph->seq) + plen); } if (ipxv == IP4VERSION) { ((struct iphdr *)fsiph)->id = htons(ntohs(((struct iphdr *)fsiph)->id) + 1); } memcpy(rfsiph, fsiph, iph_len); memcpy(rfstcph, fstcph, tcph_len); fsiph = (void *)rfsiph; fstcph = (void *)rfstcph; NETBUF_FREE(fake_sni); continue; erret_lc: NETBUF_FREE(fake_sni); return ret; } } return 0; }