1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-23 13:49:57 +00:00
rtl8812au/core/rtw_ieee80211.c
Christian B 14e3266529
Use fixed mac address when one is not specified
* Use fixed MAC instead of RANDOM. For changing MAC, use "macchanger" or related tools instead.
  This fix was presented in "goncalossilva" fork here: 
  eaa89bf90c
2017-12-16 12:31:10 +01:00

2706 lines
67 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _IEEE80211_C
#ifdef CONFIG_PLATFORM_INTEL_BYT
#include <linux/fs.h>
#endif
#include <drv_types.h>
u8 RTW_WPA_OUI_TYPE[] = { 0x00, 0x50, 0xf2, 1 };
u16 RTW_WPA_VERSION = 1;
u8 WPA_AUTH_KEY_MGMT_NONE[] = { 0x00, 0x50, 0xf2, 0 };
u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x50, 0xf2, 1 };
u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x50, 0xf2, 2 };
u8 WPA_CIPHER_SUITE_NONE[] = { 0x00, 0x50, 0xf2, 0 };
u8 WPA_CIPHER_SUITE_WEP40[] = { 0x00, 0x50, 0xf2, 1 };
u8 WPA_CIPHER_SUITE_TKIP[] = { 0x00, 0x50, 0xf2, 2 };
u8 WPA_CIPHER_SUITE_WRAP[] = { 0x00, 0x50, 0xf2, 3 };
u8 WPA_CIPHER_SUITE_CCMP[] = { 0x00, 0x50, 0xf2, 4 };
u8 WPA_CIPHER_SUITE_WEP104[] = { 0x00, 0x50, 0xf2, 5 };
u16 RSN_VERSION_BSD = 1;
u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x0f, 0xac, 1 };
u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x0f, 0xac, 2 };
u8 RSN_CIPHER_SUITE_NONE[] = { 0x00, 0x0f, 0xac, 0 };
u8 RSN_CIPHER_SUITE_WEP40[] = { 0x00, 0x0f, 0xac, 1 };
u8 RSN_CIPHER_SUITE_TKIP[] = { 0x00, 0x0f, 0xac, 2 };
u8 RSN_CIPHER_SUITE_WRAP[] = { 0x00, 0x0f, 0xac, 3 };
u8 RSN_CIPHER_SUITE_CCMP[] = { 0x00, 0x0f, 0xac, 4 };
u8 RSN_CIPHER_SUITE_WEP104[] = { 0x00, 0x0f, 0xac, 5 };
/* -----------------------------------------------------------
* for adhoc-master to generate ie and provide supported-rate to fw
* ----------------------------------------------------------- */
static u8 WIFI_CCKRATES[] = {
(IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK),
(IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK),
(IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK),
(IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK)
};
static u8 WIFI_OFDMRATES[] = {
(IEEE80211_OFDM_RATE_6MB),
(IEEE80211_OFDM_RATE_9MB),
(IEEE80211_OFDM_RATE_12MB),
(IEEE80211_OFDM_RATE_18MB),
(IEEE80211_OFDM_RATE_24MB),
IEEE80211_OFDM_RATE_36MB,
IEEE80211_OFDM_RATE_48MB,
IEEE80211_OFDM_RATE_54MB
};
u8 mgn_rates_cck[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M};
u8 mgn_rates_ofdm[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M};
u8 mgn_rates_mcs0_7[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7};
u8 mgn_rates_mcs8_15[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15};
u8 mgn_rates_mcs16_23[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23};
u8 mgn_rates_mcs24_31[8] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31};
u8 mgn_rates_vht1ss[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4
, MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9
};
u8 mgn_rates_vht2ss[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4
, MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9
};
u8 mgn_rates_vht3ss[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4
, MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9
};
u8 mgn_rates_vht4ss[10] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4
, MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9
};
static const char *const _rate_section_str[] = {
"CCK",
"OFDM",
"HT_1SS",
"HT_2SS",
"HT_3SS",
"HT_4SS",
"VHT_1SS",
"VHT_2SS",
"VHT_3SS",
"VHT_4SS",
"RATE_SECTION_UNKNOWN",
};
const char *rate_section_str(u8 section)
{
section = (section >= RATE_SECTION_NUM) ? RATE_SECTION_NUM : section;
return _rate_section_str[section];
}
struct rate_section_ent rates_by_sections[RATE_SECTION_NUM] = {
{RF_1TX, 4, mgn_rates_cck},
{RF_1TX, 8, mgn_rates_ofdm},
{RF_1TX, 8, mgn_rates_mcs0_7},
{RF_2TX, 8, mgn_rates_mcs8_15},
{RF_3TX, 8, mgn_rates_mcs16_23},
{RF_4TX, 8, mgn_rates_mcs24_31},
{RF_1TX, 10, mgn_rates_vht1ss},
{RF_2TX, 10, mgn_rates_vht2ss},
{RF_3TX, 10, mgn_rates_vht3ss},
{RF_4TX, 10, mgn_rates_vht4ss},
};
int rtw_get_bit_value_from_ieee_value(u8 val)
{
unsigned char dot11_rate_table[] = {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108, 0}; /* last element must be zero!! */
int i = 0;
while (dot11_rate_table[i] != 0) {
if (dot11_rate_table[i] == val)
return BIT(i);
i++;
}
return 0;
}
uint rtw_is_cckrates_included(u8 *rate)
{
u32 i = 0;
while (rate[i] != 0) {
if ((((rate[i]) & 0x7f) == 2) || (((rate[i]) & 0x7f) == 4) ||
(((rate[i]) & 0x7f) == 11) || (((rate[i]) & 0x7f) == 22))
return _TRUE;
i++;
}
return _FALSE;
}
uint rtw_is_cckratesonly_included(u8 *rate)
{
u32 i = 0;
while (rate[i] != 0) {
if ((((rate[i]) & 0x7f) != 2) && (((rate[i]) & 0x7f) != 4) &&
(((rate[i]) & 0x7f) != 11) && (((rate[i]) & 0x7f) != 22))
return _FALSE;
i++;
}
return _TRUE;
}
int rtw_check_network_type(unsigned char *rate, int ratelen, int channel)
{
if (channel > 14) {
if ((rtw_is_cckrates_included(rate)) == _TRUE)
return WIRELESS_INVALID;
else
return WIRELESS_11A;
} else { /* could be pure B, pure G, or B/G */
if ((rtw_is_cckratesonly_included(rate)) == _TRUE)
return WIRELESS_11B;
else if ((rtw_is_cckrates_included(rate)) == _TRUE)
return WIRELESS_11BG;
else
return WIRELESS_11G;
}
}
u8 *rtw_set_fixed_ie(unsigned char *pbuf, unsigned int len, unsigned char *source,
unsigned int *frlen)
{
_rtw_memcpy((void *)pbuf, (void *)source, len);
*frlen = *frlen + len;
return pbuf + len;
}
/* rtw_set_ie will update frame length */
u8 *rtw_set_ie
(
u8 *pbuf,
sint index,
uint len,
u8 *source,
uint *frlen /* frame length */
)
{
*pbuf = (u8)index;
*(pbuf + 1) = (u8)len;
if (len > 0)
_rtw_memcpy((void *)(pbuf + 2), (void *)source, len);
*frlen = *frlen + (len + 2);
return pbuf + len + 2;
}
inline u8 *rtw_set_ie_ch_switch(u8 *buf, u32 *buf_len, u8 ch_switch_mode,
u8 new_ch, u8 ch_switch_cnt)
{
u8 ie_data[3];
ie_data[0] = ch_switch_mode;
ie_data[1] = new_ch;
ie_data[2] = ch_switch_cnt;
return rtw_set_ie(buf, WLAN_EID_CHANNEL_SWITCH, 3, ie_data, buf_len);
}
inline u8 secondary_ch_offset_to_hal_ch_offset(u8 ch_offset)
{
if (ch_offset == SCN)
return HAL_PRIME_CHNL_OFFSET_DONT_CARE;
else if (ch_offset == SCA)
return HAL_PRIME_CHNL_OFFSET_UPPER;
else if (ch_offset == SCB)
return HAL_PRIME_CHNL_OFFSET_LOWER;
return HAL_PRIME_CHNL_OFFSET_DONT_CARE;
}
inline u8 hal_ch_offset_to_secondary_ch_offset(u8 ch_offset)
{
if (ch_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE)
return SCN;
else if (ch_offset == HAL_PRIME_CHNL_OFFSET_LOWER)
return SCB;
else if (ch_offset == HAL_PRIME_CHNL_OFFSET_UPPER)
return SCA;
return SCN;
}
inline u8 *rtw_set_ie_secondary_ch_offset(u8 *buf, u32 *buf_len, u8 secondary_ch_offset)
{
return rtw_set_ie(buf, WLAN_EID_SECONDARY_CHANNEL_OFFSET, 1, &secondary_ch_offset, buf_len);
}
inline u8 *rtw_set_ie_mesh_ch_switch_parm(u8 *buf, u32 *buf_len, u8 ttl,
u8 flags, u16 reason, u16 precedence)
{
u8 ie_data[6];
ie_data[0] = ttl;
ie_data[1] = flags;
RTW_PUT_LE16((u8 *)&ie_data[2], reason);
RTW_PUT_LE16((u8 *)&ie_data[4], precedence);
return rtw_set_ie(buf, 0x118, 6, ie_data, buf_len);
}
/*----------------------------------------------------------------------------
index: the information element id index, limit is the limit for search
-----------------------------------------------------------------------------*/
u8 *rtw_get_ie(u8 *pbuf, sint index, sint *len, sint limit)
{
sint tmp, i;
u8 *p;
if (limit < 1) {
return NULL;
}
p = pbuf;
i = 0;
*len = 0;
while (1) {
if (*p == index) {
*len = *(p + 1);
return p;
} else {
tmp = *(p + 1);
p += (tmp + 2);
i += (tmp + 2);
}
if (i >= limit)
break;
}
return NULL;
}
/**
* rtw_get_ie_ex - Search specific IE from a series of IEs
* @in_ie: Address of IEs to search
* @in_len: Length limit from in_ie
* @eid: Element ID to match
* @oui: OUI to match
* @oui_len: OUI length
* @ie: If not NULL and the specific IE is found, the IE will be copied to the buf starting from the specific IE
* @ielen: If not NULL and the specific IE is found, will set to the length of the entire IE
*
* Returns: The address of the specific IE found, or NULL
*/
u8 *rtw_get_ie_ex(u8 *in_ie, uint in_len, u8 eid, u8 *oui, u8 oui_len, u8 *ie, uint *ielen)
{
uint cnt;
u8 *target_ie = NULL;
if (ielen)
*ielen = 0;
if (!in_ie || in_len <= 0)
return target_ie;
cnt = 0;
while (cnt < in_len) {
if (eid == in_ie[cnt]
&& (!oui || _rtw_memcmp(&in_ie[cnt + 2], oui, oui_len) == _TRUE)) {
target_ie = &in_ie[cnt];
if (ie)
_rtw_memcpy(ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
if (ielen)
*ielen = in_ie[cnt + 1] + 2;
break;
} else {
cnt += in_ie[cnt + 1] + 2; /* goto next */
}
}
return target_ie;
}
/**
* rtw_ies_remove_ie - Find matching IEs and remove
* @ies: Address of IEs to search
* @ies_len: Pointer of length of ies, will update to new length
* @offset: The offset to start scarch
* @eid: Element ID to match
* @oui: OUI to match
* @oui_len: OUI length
*
* Returns: _SUCCESS: ies is updated, _FAIL: not updated
*/
int rtw_ies_remove_ie(u8 *ies, uint *ies_len, uint offset, u8 eid, u8 *oui, u8 oui_len)
{
int ret = _FAIL;
u8 *target_ie;
u32 target_ielen;
u8 *start;
uint search_len;
if (!ies || !ies_len || *ies_len <= offset)
goto exit;
start = ies + offset;
search_len = *ies_len - offset;
while (1) {
target_ie = rtw_get_ie_ex(start, search_len, eid, oui, oui_len, NULL, &target_ielen);
if (target_ie && target_ielen) {
u8 *remain_ies = target_ie + target_ielen;
uint remain_len = search_len - (remain_ies - start);
_rtw_memmove(target_ie, remain_ies, remain_len);
*ies_len = *ies_len - target_ielen;
ret = _SUCCESS;
start = target_ie;
search_len = remain_len;
} else
break;
}
exit:
return ret;
}
void rtw_set_supported_rate(u8 *SupportedRates, uint mode)
{
_rtw_memset(SupportedRates, 0, NDIS_802_11_LENGTH_RATES_EX);
switch (mode) {
case WIRELESS_11B:
_rtw_memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN);
break;
case WIRELESS_11G:
case WIRELESS_11A:
case WIRELESS_11_5N:
case WIRELESS_11A_5N: /* Todo: no basic rate for ofdm ? */
case WIRELESS_11_5AC:
_rtw_memcpy(SupportedRates, WIFI_OFDMRATES, IEEE80211_NUM_OFDM_RATESLEN);
break;
case WIRELESS_11BG:
case WIRELESS_11G_24N:
case WIRELESS_11_24N:
case WIRELESS_11BG_24N:
_rtw_memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN);
_rtw_memcpy(SupportedRates + IEEE80211_CCK_RATE_LEN, WIFI_OFDMRATES, IEEE80211_NUM_OFDM_RATESLEN);
break;
}
}
uint rtw_get_rateset_len(u8 *rateset)
{
uint i = 0;
while (1) {
if ((rateset[i]) == 0)
break;
if (i > 12)
break;
i++;
}
return i;
}
int rtw_generate_ie(struct registry_priv *pregistrypriv)
{
u8 wireless_mode;
int sz = 0, rateLen;
WLAN_BSSID_EX *pdev_network = &pregistrypriv->dev_network;
u8 *ie = pdev_network->IEs;
/* timestamp will be inserted by hardware */
sz += 8;
ie += sz;
/* beacon interval : 2bytes */
*(u16 *)ie = cpu_to_le16((u16)pdev_network->Configuration.BeaconPeriod); /* BCN_INTERVAL; */
sz += 2;
ie += 2;
/* capability info */
*(u16 *)ie = 0;
*(u16 *)ie |= cpu_to_le16(cap_IBSS);
if (pregistrypriv->preamble == PREAMBLE_SHORT)
*(u16 *)ie |= cpu_to_le16(cap_ShortPremble);
if (pdev_network->Privacy)
*(u16 *)ie |= cpu_to_le16(cap_Privacy);
sz += 2;
ie += 2;
/* SSID */
ie = rtw_set_ie(ie, _SSID_IE_, pdev_network->Ssid.SsidLength, pdev_network->Ssid.Ssid, &sz);
/* supported rates */
if (pregistrypriv->wireless_mode == WIRELESS_11ABGN) {
if (pdev_network->Configuration.DSConfig > 14)
wireless_mode = WIRELESS_11A_5N;
else
wireless_mode = WIRELESS_11BG_24N;
} else if (pregistrypriv->wireless_mode == WIRELESS_MODE_MAX) { /* WIRELESS_11ABGN | WIRELESS_11AC */
if (pdev_network->Configuration.DSConfig > 14)
wireless_mode = WIRELESS_11_5AC;
else
wireless_mode = WIRELESS_11BG_24N;
} else
wireless_mode = pregistrypriv->wireless_mode;
rtw_set_supported_rate(pdev_network->SupportedRates, wireless_mode) ;
rateLen = rtw_get_rateset_len(pdev_network->SupportedRates);
if (rateLen > 8) {
ie = rtw_set_ie(ie, _SUPPORTEDRATES_IE_, 8, pdev_network->SupportedRates, &sz);
/* ie = rtw_set_ie(ie, _EXT_SUPPORTEDRATES_IE_, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz); */
} else
ie = rtw_set_ie(ie, _SUPPORTEDRATES_IE_, rateLen, pdev_network->SupportedRates, &sz);
/* DS parameter set */
ie = rtw_set_ie(ie, _DSSET_IE_, 1, (u8 *)&(pdev_network->Configuration.DSConfig), &sz);
/* IBSS Parameter Set */
ie = rtw_set_ie(ie, _IBSS_PARA_IE_, 2, (u8 *)&(pdev_network->Configuration.ATIMWindow), &sz);
if (rateLen > 8)
ie = rtw_set_ie(ie, _EXT_SUPPORTEDRATES_IE_, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz);
#ifdef CONFIG_80211N_HT
/* HT Cap. */
if (((pregistrypriv->wireless_mode & WIRELESS_11_5N) || (pregistrypriv->wireless_mode & WIRELESS_11_24N))
&& (pregistrypriv->ht_enable == _TRUE)) {
/* todo: */
}
#endif /* CONFIG_80211N_HT */
/* pdev_network->IELength = sz; */ /* update IELength */
/* return _SUCCESS; */
return sz;
}
unsigned char *rtw_get_wpa_ie(unsigned char *pie, int *wpa_ie_len, int limit)
{
int len;
u16 val16;
unsigned char wpa_oui_type[] = {0x00, 0x50, 0xf2, 0x01};
u8 *pbuf = pie;
int limit_new = limit;
while (1) {
pbuf = rtw_get_ie(pbuf, _WPA_IE_ID_, &len, limit_new);
if (pbuf) {
/* check if oui matches... */
if (_rtw_memcmp((pbuf + 2), wpa_oui_type, sizeof(wpa_oui_type)) == _FALSE)
goto check_next_ie;
/* check version... */
_rtw_memcpy((u8 *)&val16, (pbuf + 6), sizeof(val16));
val16 = le16_to_cpu(val16);
if (val16 != 0x0001)
goto check_next_ie;
*wpa_ie_len = *(pbuf + 1);
return pbuf;
} else {
*wpa_ie_len = 0;
return NULL;
}
check_next_ie:
limit_new = limit - (pbuf - pie) - 2 - len;
if (limit_new <= 0)
break;
pbuf += (2 + len);
}
*wpa_ie_len = 0;
return NULL;
}
unsigned char *rtw_get_wpa2_ie(unsigned char *pie, int *rsn_ie_len, int limit)
{
return rtw_get_ie(pie, _WPA2_IE_ID_, rsn_ie_len, limit);
}
int rtw_get_wpa_cipher_suite(u8 *s)
{
if (_rtw_memcmp(s, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_NONE;
if (_rtw_memcmp(s, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_WEP40;
if (_rtw_memcmp(s, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_TKIP;
if (_rtw_memcmp(s, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_CCMP;
if (_rtw_memcmp(s, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_WEP104;
return 0;
}
int rtw_get_wpa2_cipher_suite(u8 *s)
{
if (_rtw_memcmp(s, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_NONE;
if (_rtw_memcmp(s, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_WEP40;
if (_rtw_memcmp(s, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_TKIP;
if (_rtw_memcmp(s, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_CCMP;
if (_rtw_memcmp(s, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN) == _TRUE)
return WPA_CIPHER_WEP104;
return 0;
}
int rtw_parse_wpa_ie(u8 *wpa_ie, int wpa_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x)
{
int i, ret = _SUCCESS;
int left, count;
u8 *pos;
u8 SUITE_1X[4] = {0x00, 0x50, 0xf2, 1};
if (wpa_ie_len <= 0) {
/* No WPA IE - fail silently */
return _FAIL;
}
if ((*wpa_ie != _WPA_IE_ID_) || (*(wpa_ie + 1) != (u8)(wpa_ie_len - 2)) ||
(_rtw_memcmp(wpa_ie + 2, RTW_WPA_OUI_TYPE, WPA_SELECTOR_LEN) != _TRUE))
return _FAIL;
pos = wpa_ie;
pos += 8;
left = wpa_ie_len - 8;
/* group_cipher */
if (left >= WPA_SELECTOR_LEN) {
*group_cipher = rtw_get_wpa_cipher_suite(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
} else if (left > 0) {
return _FAIL;
}
/* pairwise_cipher */
if (left >= 2) {
/* count = le16_to_cpu(*(u16*)pos); */
count = RTW_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN) {
return _FAIL;
}
for (i = 0; i < count; i++) {
*pairwise_cipher |= rtw_get_wpa_cipher_suite(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
return _FAIL;
}
if (is_8021x) {
if (left >= 6) {
pos += 2;
if (_rtw_memcmp(pos, SUITE_1X, 4) == 1) {
*is_8021x = 1;
}
}
}
return ret;
}
int rtw_parse_wpa2_ie(u8 *rsn_ie, int rsn_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x)
{
int i, ret = _SUCCESS;
int left, count;
u8 *pos;
u8 SUITE_1X[4] = {0x00, 0x0f, 0xac, 0x01};
if (rsn_ie_len <= 0) {
/* No RSN IE - fail silently */
return _FAIL;
}
if ((*rsn_ie != _WPA2_IE_ID_) || (*(rsn_ie + 1) != (u8)(rsn_ie_len - 2)))
return _FAIL;
pos = rsn_ie;
pos += 4;
left = rsn_ie_len - 4;
/* group_cipher */
if (left >= RSN_SELECTOR_LEN) {
*group_cipher = rtw_get_wpa2_cipher_suite(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
} else if (left > 0) {
return _FAIL;
}
/* pairwise_cipher */
if (left >= 2) {
/* count = le16_to_cpu(*(u16*)pos); */
count = RTW_GET_LE16(pos);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN) {
return _FAIL;
}
for (i = 0; i < count; i++) {
*pairwise_cipher |= rtw_get_wpa2_cipher_suite(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1) {
return _FAIL;
}
if (is_8021x) {
if (left >= 6) {
pos += 2;
if (_rtw_memcmp(pos, SUITE_1X, 4) == 1) {
*is_8021x = 1;
}
}
}
return ret;
}
/* #ifdef CONFIG_WAPI_SUPPORT */
int rtw_get_wapi_ie(u8 *in_ie, uint in_len, u8 *wapi_ie, u16 *wapi_len)
{
int len = 0;
u8 authmode, i;
uint cnt;
u8 wapi_oui1[4] = {0x0, 0x14, 0x72, 0x01};
u8 wapi_oui2[4] = {0x0, 0x14, 0x72, 0x02};
if (wapi_len)
*wapi_len = 0;
if (!in_ie || in_len <= 0)
return len;
cnt = (_TIMESTAMP_ + _BEACON_ITERVAL_ + _CAPABILITY_);
while (cnt < in_len) {
authmode = in_ie[cnt];
/* if(authmode==_WAPI_IE_) */
if (authmode == _WAPI_IE_ && (_rtw_memcmp(&in_ie[cnt + 6], wapi_oui1, 4) == _TRUE ||
_rtw_memcmp(&in_ie[cnt + 6], wapi_oui2, 4) == _TRUE)) {
if (wapi_ie)
_rtw_memcpy(wapi_ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
if (wapi_len)
*wapi_len = in_ie[cnt + 1] + 2;
cnt += in_ie[cnt + 1] + 2; /* get next */
} else {
cnt += in_ie[cnt + 1] + 2; /* get next */
}
}
if (wapi_len)
len = *wapi_len;
return len;
}
/* #endif */
int rtw_get_sec_ie(u8 *in_ie, uint in_len, u8 *rsn_ie, u16 *rsn_len, u8 *wpa_ie, u16 *wpa_len)
{
u8 authmode, sec_idx, i;
u8 wpa_oui[4] = {0x0, 0x50, 0xf2, 0x01};
uint cnt;
/* Search required WPA or WPA2 IE and copy to sec_ie[ ] */
cnt = (_TIMESTAMP_ + _BEACON_ITERVAL_ + _CAPABILITY_);
sec_idx = 0;
while (cnt < in_len) {
authmode = in_ie[cnt];
if ((authmode == _WPA_IE_ID_) && (_rtw_memcmp(&in_ie[cnt + 2], &wpa_oui[0], 4) == _TRUE)) {
if (wpa_ie)
_rtw_memcpy(wpa_ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
*wpa_len = in_ie[cnt + 1] + 2;
cnt += in_ie[cnt + 1] + 2; /* get next */
} else {
if (authmode == _WPA2_IE_ID_) {
if (rsn_ie)
_rtw_memcpy(rsn_ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
*rsn_len = in_ie[cnt + 1] + 2;
cnt += in_ie[cnt + 1] + 2; /* get next */
} else {
cnt += in_ie[cnt + 1] + 2; /* get next */
}
}
}
return *rsn_len + *wpa_len;
}
u8 rtw_is_wps_ie(u8 *ie_ptr, uint *wps_ielen)
{
u8 match = _FALSE;
u8 eid, wps_oui[4] = {0x0, 0x50, 0xf2, 0x04};
if (ie_ptr == NULL)
return match;
eid = ie_ptr[0];
if ((eid == _WPA_IE_ID_) && (_rtw_memcmp(&ie_ptr[2], wps_oui, 4) == _TRUE)) {
/* RTW_INFO("==> found WPS_IE.....\n"); */
*wps_ielen = ie_ptr[1] + 2;
match = _TRUE;
}
return match;
}
u8 *rtw_get_wps_ie_from_scan_queue(u8 *in_ie, uint in_len, u8 *wps_ie, uint *wps_ielen, u8 frame_type)
{
u8 *wps = NULL;
RTW_INFO("[%s] frame_type = %d\n", __FUNCTION__, frame_type);
switch (frame_type) {
case 1:
case 3: {
/* Beacon or Probe Response */
wps = rtw_get_wps_ie(in_ie + _PROBERSP_IE_OFFSET_, in_len - _PROBERSP_IE_OFFSET_, wps_ie, wps_ielen);
break;
}
case 2: {
/* Probe Request */
wps = rtw_get_wps_ie(in_ie + _PROBEREQ_IE_OFFSET_ , in_len - _PROBEREQ_IE_OFFSET_ , wps_ie, wps_ielen);
break;
}
}
return wps;
}
/**
* rtw_get_wps_ie - Search WPS IE from a series of IEs
* @in_ie: Address of IEs to search
* @in_len: Length limit from in_ie
* @wps_ie: If not NULL and WPS IE is found, WPS IE will be copied to the buf starting from wps_ie
* @wps_ielen: If not NULL and WPS IE is found, will set to the length of the entire WPS IE
*
* Returns: The address of the WPS IE found, or NULL
*/
u8 *rtw_get_wps_ie(u8 *in_ie, uint in_len, u8 *wps_ie, uint *wps_ielen)
{
uint cnt;
u8 *wpsie_ptr = NULL;
u8 eid, wps_oui[4] = {0x00, 0x50, 0xf2, 0x04};
if (wps_ielen)
*wps_ielen = 0;
if (!in_ie) {
rtw_warn_on(1);
return wpsie_ptr;
}
if (in_len <= 0)
return wpsie_ptr;
cnt = 0;
while (cnt + 1 + 4 < in_len) {
eid = in_ie[cnt];
if (cnt + 1 + 4 >= MAX_IE_SZ) {
rtw_warn_on(1);
return NULL;
}
if (eid == WLAN_EID_VENDOR_SPECIFIC && _rtw_memcmp(&in_ie[cnt + 2], wps_oui, 4) == _TRUE) {
wpsie_ptr = in_ie + cnt;
if (wps_ie)
_rtw_memcpy(wps_ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
if (wps_ielen)
*wps_ielen = in_ie[cnt + 1] + 2;
break;
} else
cnt += in_ie[cnt + 1] + 2;
}
return wpsie_ptr;
}
/**
* rtw_get_wps_attr - Search a specific WPS attribute from a given WPS IE
* @wps_ie: Address of WPS IE to search
* @wps_ielen: Length limit from wps_ie
* @target_attr_id: The attribute ID of WPS attribute to search
* @buf_attr: If not NULL and the WPS attribute is found, WPS attribute will be copied to the buf starting from buf_attr
* @len_attr: If not NULL and the WPS attribute is found, will set to the length of the entire WPS attribute
*
* Returns: the address of the specific WPS attribute found, or NULL
*/
u8 *rtw_get_wps_attr(u8 *wps_ie, uint wps_ielen, u16 target_attr_id , u8 *buf_attr, u32 *len_attr)
{
u8 *attr_ptr = NULL;
u8 *target_attr_ptr = NULL;
u8 wps_oui[4] = {0x00, 0x50, 0xF2, 0x04};
if (len_attr)
*len_attr = 0;
if ((wps_ie[0] != _VENDOR_SPECIFIC_IE_) ||
(_rtw_memcmp(wps_ie + 2, wps_oui , 4) != _TRUE))
return attr_ptr;
/* 6 = 1(Element ID) + 1(Length) + 4(WPS OUI) */
attr_ptr = wps_ie + 6; /* goto first attr */
while (attr_ptr - wps_ie < wps_ielen) {
/* 4 = 2(Attribute ID) + 2(Length) */
u16 attr_id = RTW_GET_BE16(attr_ptr);
u16 attr_data_len = RTW_GET_BE16(attr_ptr + 2);
u16 attr_len = attr_data_len + 4;
/* RTW_INFO("%s attr_ptr:%p, id:%u, length:%u\n", __FUNCTION__, attr_ptr, attr_id, attr_data_len); */
if (attr_id == target_attr_id) {
target_attr_ptr = attr_ptr;
if (buf_attr)
_rtw_memcpy(buf_attr, attr_ptr, attr_len);
if (len_attr)
*len_attr = attr_len;
break;
} else {
attr_ptr += attr_len; /* goto next */
}
}
return target_attr_ptr;
}
/**
* rtw_get_wps_attr_content - Search a specific WPS attribute content from a given WPS IE
* @wps_ie: Address of WPS IE to search
* @wps_ielen: Length limit from wps_ie
* @target_attr_id: The attribute ID of WPS attribute to search
* @buf_content: If not NULL and the WPS attribute is found, WPS attribute content will be copied to the buf starting from buf_content
* @len_content: If not NULL and the WPS attribute is found, will set to the length of the WPS attribute content
*
* Returns: the address of the specific WPS attribute content found, or NULL
*/
u8 *rtw_get_wps_attr_content(u8 *wps_ie, uint wps_ielen, u16 target_attr_id , u8 *buf_content, uint *len_content)
{
u8 *attr_ptr;
u32 attr_len;
if (len_content)
*len_content = 0;
attr_ptr = rtw_get_wps_attr(wps_ie, wps_ielen, target_attr_id, NULL, &attr_len);
if (attr_ptr && attr_len) {
if (buf_content)
_rtw_memcpy(buf_content, attr_ptr + 4, attr_len - 4);
if (len_content)
*len_content = attr_len - 4;
return attr_ptr + 4;
}
return NULL;
}
static int rtw_ieee802_11_parse_vendor_specific(u8 *pos, uint elen,
struct rtw_ieee802_11_elems *elems,
int show_errors)
{
unsigned int oui;
/* first 3 bytes in vendor specific information element are the IEEE
* OUI of the vendor. The following byte is used a vendor specific
* sub-type. */
if (elen < 4) {
if (show_errors) {
RTW_INFO("short vendor specific "
"information element ignored (len=%lu)\n",
(unsigned long) elen);
}
return -1;
}
oui = RTW_GET_BE24(pos);
switch (oui) {
case OUI_MICROSOFT:
/* Microsoft/Wi-Fi information elements are further typed and
* subtyped */
switch (pos[3]) {
case 1:
/* Microsoft OUI (00:50:F2) with OUI Type 1:
* real WPA information element */
elems->wpa_ie = pos;
elems->wpa_ie_len = elen;
break;
case WME_OUI_TYPE: /* this is a Wi-Fi WME info. element */
if (elen < 5) {
RTW_DBG("short WME "
"information element ignored "
"(len=%lu)\n",
(unsigned long) elen);
return -1;
}
switch (pos[4]) {
case WME_OUI_SUBTYPE_INFORMATION_ELEMENT:
case WME_OUI_SUBTYPE_PARAMETER_ELEMENT:
elems->wme = pos;
elems->wme_len = elen;
break;
case WME_OUI_SUBTYPE_TSPEC_ELEMENT:
elems->wme_tspec = pos;
elems->wme_tspec_len = elen;
break;
default:
RTW_DBG("unknown WME "
"information element ignored "
"(subtype=%d len=%lu)\n",
pos[4], (unsigned long) elen);
return -1;
}
break;
case 4:
/* Wi-Fi Protected Setup (WPS) IE */
elems->wps_ie = pos;
elems->wps_ie_len = elen;
break;
default:
RTW_DBG("Unknown Microsoft "
"information element ignored "
"(type=%d len=%lu)\n",
pos[3], (unsigned long) elen);
return -1;
}
break;
case OUI_BROADCOM:
switch (pos[3]) {
case VENDOR_HT_CAPAB_OUI_TYPE:
elems->vendor_ht_cap = pos;
elems->vendor_ht_cap_len = elen;
break;
default:
RTW_DBG("Unknown Broadcom "
"information element ignored "
"(type=%d len=%lu)\n",
pos[3], (unsigned long) elen);
return -1;
}
break;
default:
RTW_DBG("unknown vendor specific information "
"element ignored (vendor OUI %02x:%02x:%02x "
"len=%lu)\n",
pos[0], pos[1], pos[2], (unsigned long) elen);
return -1;
}
return 0;
}
/**
* ieee802_11_parse_elems - Parse information elements in management frames
* @start: Pointer to the start of IEs
* @len: Length of IE buffer in octets
* @elems: Data structure for parsed elements
* @show_errors: Whether to show parsing errors in debug log
* Returns: Parsing result
*/
ParseRes rtw_ieee802_11_parse_elems(u8 *start, uint len,
struct rtw_ieee802_11_elems *elems,
int show_errors)
{
uint left = len;
u8 *pos = start;
int unknown = 0;
_rtw_memset(elems, 0, sizeof(*elems));
while (left >= 2) {
u8 id, elen;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left) {
if (show_errors) {
RTW_INFO("IEEE 802.11 element "
"parse failed (id=%d elen=%d "
"left=%lu)\n",
id, elen, (unsigned long) left);
}
return ParseFailed;
}
switch (id) {
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_FH_PARAMS:
elems->fh_params = pos;
elems->fh_params_len = elen;
break;
case WLAN_EID_DS_PARAMS:
elems->ds_params = pos;
elems->ds_params_len = elen;
break;
case WLAN_EID_CF_PARAMS:
elems->cf_params = pos;
elems->cf_params_len = elen;
break;
case WLAN_EID_TIM:
elems->tim = pos;
elems->tim_len = elen;
break;
case WLAN_EID_IBSS_PARAMS:
elems->ibss_params = pos;
elems->ibss_params_len = elen;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = pos;
elems->erp_info_len = elen;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
case WLAN_EID_VENDOR_SPECIFIC:
if (rtw_ieee802_11_parse_vendor_specific(pos, elen,
elems,
show_errors))
unknown++;
break;
case WLAN_EID_RSN:
elems->rsn_ie = pos;
elems->rsn_ie_len = elen;
break;
case WLAN_EID_PWR_CAPABILITY:
elems->power_cap = pos;
elems->power_cap_len = elen;
break;
case WLAN_EID_SUPPORTED_CHANNELS:
elems->supp_channels = pos;
elems->supp_channels_len = elen;
break;
case WLAN_EID_MOBILITY_DOMAIN:
elems->mdie = pos;
elems->mdie_len = elen;
break;
case WLAN_EID_FAST_BSS_TRANSITION:
elems->ftie = pos;
elems->ftie_len = elen;
break;
case WLAN_EID_TIMEOUT_INTERVAL:
elems->timeout_int = pos;
elems->timeout_int_len = elen;
break;
case WLAN_EID_HT_CAP:
elems->ht_capabilities = pos;
elems->ht_capabilities_len = elen;
break;
case WLAN_EID_HT_OPERATION:
elems->ht_operation = pos;
elems->ht_operation_len = elen;
break;
case WLAN_EID_VHT_CAPABILITY:
elems->vht_capabilities = pos;
elems->vht_capabilities_len = elen;
break;
case WLAN_EID_VHT_OPERATION:
elems->vht_operation = pos;
elems->vht_operation_len = elen;
break;
case WLAN_EID_VHT_OP_MODE_NOTIFY:
elems->vht_op_mode_notify = pos;
elems->vht_op_mode_notify_len = elen;
break;
default:
unknown++;
if (!show_errors)
break;
RTW_DBG("IEEE 802.11 element parse "
"ignored unknown element (id=%d elen=%d)\n",
id, elen);
break;
}
left -= elen;
pos += elen;
}
if (left)
return ParseFailed;
return unknown ? ParseUnknown : ParseOK;
}
static u8 key_char2num(u8 ch);
static u8 key_char2num(u8 ch)
{
if ((ch >= '0') && (ch <= '9'))
return ch - '0';
else if ((ch >= 'a') && (ch <= 'f'))
return ch - 'a' + 10;
else if ((ch >= 'A') && (ch <= 'F'))
return ch - 'A' + 10;
else
return 0xff;
}
u8 str_2char2num(u8 hch, u8 lch);
u8 str_2char2num(u8 hch, u8 lch)
{
return (key_char2num(hch) * 10) + key_char2num(lch);
}
u8 key_2char2num(u8 hch, u8 lch);
u8 key_2char2num(u8 hch, u8 lch)
{
return (key_char2num(hch) << 4) | key_char2num(lch);
}
void macstr2num(u8 *dst, u8 *src);
void macstr2num(u8 *dst, u8 *src)
{
int jj, kk;
for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 3)
dst[jj] = key_2char2num(src[kk], src[kk + 1]);
}
u8 convert_ip_addr(u8 hch, u8 mch, u8 lch)
{
return (key_char2num(hch) * 100) + (key_char2num(mch) * 10) + key_char2num(lch);
}
#ifdef CONFIG_PLATFORM_INTEL_BYT
#define MAC_ADDRESS_LEN 12
int rtw_get_mac_addr_intel(unsigned char *buf)
{
int ret = 0;
int i;
struct file *fp = NULL;
mm_segment_t oldfs;
unsigned char c_mac[MAC_ADDRESS_LEN];
char fname[] = "/config/wifi/mac.txt";
int jj, kk;
RTW_INFO("%s Enter\n", __FUNCTION__);
ret = rtw_retrieve_from_file(fname, c_mac, MAC_ADDRESS_LEN);
if (ret < MAC_ADDRESS_LEN)
return -1;
for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 2)
buf[jj] = key_2char2num(c_mac[kk], c_mac[kk + 1]);
RTW_INFO("%s: read from file mac address: "MAC_FMT"\n",
__FUNCTION__, MAC_ARG(buf));
return 0;
}
#endif /* CONFIG_PLATFORM_INTEL_BYT */
/*
* Description:
* rtw_check_invalid_mac_address:
* This is only used for checking mac address valid or not.
*
* Input:
* adapter: mac_address pointer.
* check_local_bit: check locally bit or not.
*
* Output:
* _TRUE: The mac address is invalid.
* _FALSE: The mac address is valid.
*
* Auther: Isaac.Li
*/
u8 rtw_check_invalid_mac_address(u8 *mac_addr, u8 check_local_bit)
{
u8 null_mac_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
u8 multi_mac_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
u8 res = _FALSE;
if (_rtw_memcmp(mac_addr, null_mac_addr, ETH_ALEN)) {
res = _TRUE;
goto func_exit;
}
if (_rtw_memcmp(mac_addr, multi_mac_addr, ETH_ALEN)) {
res = _TRUE;
goto func_exit;
}
if (mac_addr[0] & BIT0) {
res = _TRUE;
goto func_exit;
}
if (check_local_bit == _TRUE) {
if (mac_addr[0] & BIT1) {
res = _TRUE;
goto func_exit;
}
}
func_exit:
return res;
}
extern char *rtw_initmac;
/**
* rtw_macaddr_cfg - Decide the mac address used
* @out: buf to store mac address decided
* @hw_mac_addr: mac address from efuse/epprom
*/
void rtw_macaddr_cfg(u8 *out, const u8 *hw_mac_addr)
{
#define DEFAULT_RANDOM_MACADDR 0
u8 mac[ETH_ALEN];
if (out == NULL) {
rtw_warn_on(1);
return;
}
/* Users specify the mac address */
if (rtw_initmac) {
int jj, kk;
for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 3)
mac[jj] = key_2char2num(rtw_initmac[kk], rtw_initmac[kk + 1]);
goto err_chk;
}
/* platform specified */
#ifdef CONFIG_PLATFORM_INTEL_BYT
if (rtw_get_mac_addr_intel(mac) == 0)
goto err_chk;
#endif
/* Use the mac address stored in the Efuse */
if (hw_mac_addr) {
_rtw_memcpy(mac, hw_mac_addr, ETH_ALEN);
goto err_chk;
}
err_chk:
if (rtw_check_invalid_mac_address(mac, _TRUE) == _TRUE) {
#if DEFAULT_RANDOM_MACADDR
RTW_ERR("invalid mac addr:"MAC_FMT", assign random MAC\n", MAC_ARG(mac));
*((u32 *)(&mac[2])) = rtw_random32();
mac[0] = 0x00;
mac[1] = 0xe0;
mac[2] = 0x4c;
#else
RTW_ERR("invalid mac addr:"MAC_FMT", assign default one\n", MAC_ARG(mac));
mac[0] = 0x00;
mac[1] = 0xe0;
mac[2] = 0x4c;
mac[3] = 0xe0;
mac[4] = 0x10;
mac[5] = 0x70;
#endif
}
_rtw_memcpy(out, mac, ETH_ALEN);
RTW_INFO("%s mac addr:"MAC_FMT"\n", __func__, MAC_ARG(out));
}
#ifdef CONFIG_80211N_HT
void dump_ht_cap_ie_content(void *sel, u8 *buf, u32 buf_len)
{
if (buf_len != 26) {
RTW_PRINT_SEL(sel, "Invalid HT capability IE len:%d != %d\n", buf_len, 26);
return;
}
RTW_PRINT_SEL(sel, "HT Capabilities Info:%02x%02x\n", *(buf), *(buf + 1));
RTW_PRINT_SEL(sel, "A-MPDU Parameters:"HT_AMPDU_PARA_FMT"\n"
, HT_AMPDU_PARA_ARG(HT_CAP_ELE_AMPDU_PARA(buf)));
RTW_PRINT_SEL(sel, "Supported MCS Set:"HT_SUP_MCS_SET_FMT"\n"
, HT_SUP_MCS_SET_ARG(HT_CAP_ELE_SUP_MCS_SET(buf)));
}
void dump_ht_cap_ie(void *sel, u8 *ie, u32 ie_len)
{
u8 *pos = (u8 *)ie;
u16 id;
u16 len;
u8 *ht_cap_ie;
sint ht_cap_ielen;
ht_cap_ie = rtw_get_ie(ie, _HT_CAPABILITY_IE_, &ht_cap_ielen, ie_len);
if (!ie || ht_cap_ie != ie)
return;
dump_ht_cap_ie_content(sel, ht_cap_ie + 2, ht_cap_ielen);
}
#endif /* CONFIG_80211N_HT */
void dump_ies(void *sel, u8 *buf, u32 buf_len)
{
u8 *pos = (u8 *)buf;
u8 id, len;
while (pos - buf + 1 < buf_len) {
id = *pos;
len = *(pos + 1);
RTW_PRINT_SEL(sel, "%s ID:%u, LEN:%u\n", __FUNCTION__, id, len);
#ifdef CONFIG_80211N_HT
dump_ht_cap_ie(sel, pos, len + 2);
#endif
dump_wps_ie(sel, pos, len + 2);
#ifdef CONFIG_P2P
dump_p2p_ie(sel, pos, len + 2);
#ifdef CONFIG_WFD
dump_wfd_ie(sel, pos, len + 2);
#endif
#endif
pos += (2 + len);
}
}
void dump_wps_ie(void *sel, u8 *ie, u32 ie_len)
{
u8 *pos = (u8 *)ie;
u16 id;
u16 len;
u8 *wps_ie;
uint wps_ielen;
wps_ie = rtw_get_wps_ie(ie, ie_len, NULL, &wps_ielen);
if (wps_ie != ie || wps_ielen == 0)
return;
pos += 6;
while (pos - ie + 4 <= ie_len) {
id = RTW_GET_BE16(pos);
len = RTW_GET_BE16(pos + 2);
RTW_PRINT_SEL(sel, "%s ID:0x%04x, LEN:%u%s\n", __func__, id, len
, ((pos - ie + 4 + len) <= ie_len) ? "" : "(exceed ie_len)");
pos += (4 + len);
}
}
/**
* rtw_ies_get_chbw - get operation ch, bw, offset from IEs of BSS.
* @ies: pointer of the first tlv IE
* @ies_len: length of @ies
* @ch: pointer of ch, used as output
* @bw: pointer of bw, used as output
* @offset: pointer of offset, used as output
*/
void rtw_ies_get_chbw(u8 *ies, int ies_len, u8 *ch, u8 *bw, u8 *offset)
{
u8 *p;
int ie_len;
*ch = 0;
*bw = CHANNEL_WIDTH_20;
*offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
p = rtw_get_ie(ies, _DSSET_IE_, &ie_len, ies_len);
if (p && ie_len > 0)
*ch = *(p + 2);
#ifdef CONFIG_80211N_HT
{
u8 *ht_cap_ie, *ht_op_ie;
int ht_cap_ielen, ht_op_ielen;
ht_cap_ie = rtw_get_ie(ies, EID_HTCapability, &ht_cap_ielen, ies_len);
if (ht_cap_ie && ht_cap_ielen) {
if (GET_HT_CAP_ELE_CHL_WIDTH(ht_cap_ie + 2))
*bw = CHANNEL_WIDTH_40;
}
ht_op_ie = rtw_get_ie(ies, EID_HTInfo, &ht_op_ielen, ies_len);
if (ht_op_ie && ht_op_ielen) {
if (*ch == 0)
*ch = GET_HT_OP_ELE_PRI_CHL(ht_op_ie + 2);
else if (*ch != 0 && *ch != GET_HT_OP_ELE_PRI_CHL(ht_op_ie + 2)) {
RTW_INFO("%s ch inconsistent, DSSS:%u, HT primary:%u\n"
, __func__, *ch, GET_HT_OP_ELE_PRI_CHL(ht_op_ie + 2));
}
if (!GET_HT_OP_ELE_STA_CHL_WIDTH(ht_op_ie + 2))
*bw = CHANNEL_WIDTH_20;
if (*bw == CHANNEL_WIDTH_40) {
switch (GET_HT_OP_ELE_2ND_CHL_OFFSET(ht_op_ie + 2)) {
case SCA:
*offset = HAL_PRIME_CHNL_OFFSET_LOWER;
break;
case SCB:
*offset = HAL_PRIME_CHNL_OFFSET_UPPER;
break;
}
}
}
}
#endif /* CONFIG_80211N_HT */
#ifdef CONFIG_80211AC_VHT
{
u8 *vht_op_ie;
int vht_op_ielen;
vht_op_ie = rtw_get_ie(ies, EID_VHTOperation, &vht_op_ielen, ies_len);
if (vht_op_ie && vht_op_ielen) {
/* enable VHT 80 before check enable HT40 or not */
if (GET_VHT_OPERATION_ELE_CHL_WIDTH(vht_op_ie + 2) >= 1) {
/* for HT40, enable VHT80 */
if (*bw == CHANNEL_WIDTH_40)
*bw = CHANNEL_WIDTH_80;
/* for HT20, enable VHT20 */
else if (*bw == CHANNEL_WIDTH_20) {
/* modify VHT OP IE */
SET_VHT_OPERATION_ELE_CHL_WIDTH(vht_op_ie + 2, 0);
/* reset to 0 for VHT20 */
SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ1(vht_op_ie + 2, 0);
SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ2(vht_op_ie + 2, 0);
}
} else {
/*
VHT OP WIDTH = 0 under HT20/HT40
if REGSTY_BW_5G(pregistrypriv) < CHANNEL_WIDTH_80 in rtw_build_vht_operation_ie
*/
}
}
}
#endif
}
void rtw_bss_get_chbw(WLAN_BSSID_EX *bss, u8 *ch, u8 *bw, u8 *offset)
{
rtw_ies_get_chbw(bss->IEs + sizeof(NDIS_802_11_FIXED_IEs)
, bss->IELength - sizeof(NDIS_802_11_FIXED_IEs)
, ch, bw, offset);
if (*ch == 0)
*ch = bss->Configuration.DSConfig;
else if (*ch != bss->Configuration.DSConfig) {
RTW_INFO("inconsistent ch - ies:%u bss->Configuration.DSConfig:%u\n"
, *ch, bss->Configuration.DSConfig);
*ch = bss->Configuration.DSConfig;
rtw_warn_on(1);
}
}
/**
* rtw_is_chbw_grouped - test if the two ch settings can be grouped together
* @ch_a: ch of set a
* @bw_a: bw of set a
* @offset_a: offset of set a
* @ch_b: ch of set b
* @bw_b: bw of set b
* @offset_b: offset of set b
*/
bool rtw_is_chbw_grouped(u8 ch_a, u8 bw_a, u8 offset_a
, u8 ch_b, u8 bw_b, u8 offset_b)
{
bool is_grouped = _FALSE;
if (ch_a != ch_b) {
/* ch is different */
goto exit;
} else if ((bw_a == CHANNEL_WIDTH_40 || bw_a == CHANNEL_WIDTH_80)
&& (bw_b == CHANNEL_WIDTH_40 || bw_b == CHANNEL_WIDTH_80)
) {
if (offset_a != offset_b)
goto exit;
}
is_grouped = _TRUE;
exit:
return is_grouped;
}
/**
* rtw_sync_chbw - obey g_ch, adjust g_bw, g_offset, bw, offset
* @req_ch: pointer of the request ch, may be modified further
* @req_bw: pointer of the request bw, may be modified further
* @req_offset: pointer of the request offset, may be modified further
* @g_ch: pointer of the ongoing group ch
* @g_bw: pointer of the ongoing group bw, may be modified further
* @g_offset: pointer of the ongoing group offset, may be modified further
*/
void rtw_sync_chbw(u8 *req_ch, u8 *req_bw, u8 *req_offset
, u8 *g_ch, u8 *g_bw, u8 *g_offset)
{
*req_ch = *g_ch;
if (*req_bw == CHANNEL_WIDTH_80 && *g_ch <= 14) {
/*2.4G ch, downgrade to 40Mhz */
*req_bw = CHANNEL_WIDTH_40;
}
switch (*req_bw) {
case CHANNEL_WIDTH_80:
if (*g_bw == CHANNEL_WIDTH_40 || *g_bw == CHANNEL_WIDTH_80)
*req_offset = *g_offset;
else if (*g_bw == CHANNEL_WIDTH_20)
*req_offset = rtw_get_offset_by_ch(*req_ch);
if (*req_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE) {
RTW_ERR("%s req 80MHz BW without offset, down to 20MHz\n", __func__);
rtw_warn_on(1);
*req_bw = CHANNEL_WIDTH_20;
}
break;
case CHANNEL_WIDTH_40:
if (*g_bw == CHANNEL_WIDTH_40 || *g_bw == CHANNEL_WIDTH_80)
*req_offset = *g_offset;
else if (*g_bw == CHANNEL_WIDTH_20)
*req_offset = rtw_get_offset_by_ch(*req_ch);
if (*req_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE) {
RTW_ERR("%s req 40MHz BW without offset, down to 20MHz\n", __func__);
rtw_warn_on(1);
*req_bw = CHANNEL_WIDTH_20;
}
break;
case CHANNEL_WIDTH_20:
*req_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
break;
default:
RTW_ERR("%s req unsupported BW:%u\n", __func__, *req_bw);
rtw_warn_on(1);
}
if (*req_bw > *g_bw) {
*g_bw = *req_bw;
*g_offset = *req_offset;
}
}
/**
* rtw_get_p2p_merged_len - Get merged ie length from muitiple p2p ies.
* @in_ie: Pointer of the first p2p ie
* @in_len: Total len of muiltiple p2p ies
* Returns: Length of merged p2p ie length
*/
u32 rtw_get_p2p_merged_ies_len(u8 *in_ie, u32 in_len)
{
PNDIS_802_11_VARIABLE_IEs pIE;
u8 OUI[4] = { 0x50, 0x6f, 0x9a, 0x09 };
int i = 0;
int j = 0, len = 0;
while (i < in_len) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(in_ie + i);
if (pIE->ElementID == _VENDOR_SPECIFIC_IE_ && _rtw_memcmp(pIE->data, OUI, 4)) {
len += pIE->Length - 4; /* 4 is P2P OUI length, don't count it in this loop */
}
i += (pIE->Length + 2);
}
return len + 4; /* Append P2P OUI length at last. */
}
/**
* rtw_p2p_merge_ies - Merge muitiple p2p ies into one
* @in_ie: Pointer of the first p2p ie
* @in_len: Total len of muiltiple p2p ies
* @merge_ie: Pointer of merged ie
* Returns: Length of merged p2p ie
*/
int rtw_p2p_merge_ies(u8 *in_ie, u32 in_len, u8 *merge_ie)
{
PNDIS_802_11_VARIABLE_IEs pIE;
u8 len = 0;
u8 OUI[4] = { 0x50, 0x6f, 0x9a, 0x09 };
u8 ELOUI[6] = { 0xDD, 0x00, 0x50, 0x6f, 0x9a, 0x09 }; /* EID;Len;OUI, Len would copy at the end of function */
int i = 0;
if (merge_ie != NULL) {
/* Set first P2P OUI */
_rtw_memcpy(merge_ie, ELOUI, 6);
merge_ie += 6;
while (i < in_len) {
pIE = (PNDIS_802_11_VARIABLE_IEs)(in_ie + i);
/* Take out the rest of P2P OUIs */
if (pIE->ElementID == _VENDOR_SPECIFIC_IE_ && _rtw_memcmp(pIE->data, OUI, 4)) {
_rtw_memcpy(merge_ie, pIE->data + 4, pIE->Length - 4);
len += pIE->Length - 4;
merge_ie += pIE->Length - 4;
}
i += (pIE->Length + 2);
}
return len + 4; /* 4 is for P2P OUI */
}
return 0;
}
void dump_p2p_ie(void *sel, u8 *ie, u32 ie_len)
{
u8 *pos = (u8 *)ie;
u8 id;
u16 len;
u8 *p2p_ie;
uint p2p_ielen;
p2p_ie = rtw_get_p2p_ie(ie, ie_len, NULL, &p2p_ielen);
if (p2p_ie != ie || p2p_ielen == 0)
return;
pos += 6;
while (pos - ie + 3 <= ie_len) {
id = *pos;
len = RTW_GET_LE16(pos + 1);
RTW_PRINT_SEL(sel, "%s ID:%u, LEN:%u%s\n", __func__, id, len
, ((pos - ie + 3 + len) <= ie_len) ? "" : "(exceed ie_len)");
pos += (3 + len);
}
}
/**
* rtw_get_p2p_ie - Search P2P IE from a series of IEs
* @in_ie: Address of IEs to search
* @in_len: Length limit from in_ie
* @p2p_ie: If not NULL and P2P IE is found, P2P IE will be copied to the buf starting from p2p_ie
* @p2p_ielen: If not NULL and P2P IE is found, will set to the length of the entire P2P IE
*
* Returns: The address of the P2P IE found, or NULL
*/
u8 *rtw_get_p2p_ie(u8 *in_ie, int in_len, u8 *p2p_ie, uint *p2p_ielen)
{
uint cnt;
u8 *p2p_ie_ptr = NULL;
u8 eid, p2p_oui[4] = {0x50, 0x6F, 0x9A, 0x09};
if (p2p_ielen)
*p2p_ielen = 0;
if (!in_ie || in_len < 0) {
rtw_warn_on(1);
return p2p_ie_ptr;
}
if (in_len <= 0)
return p2p_ie_ptr;
cnt = 0;
while (cnt + 1 + 4 < in_len) {
eid = in_ie[cnt];
if (cnt + 1 + 4 >= MAX_IE_SZ) {
rtw_warn_on(1);
return NULL;
}
if (eid == WLAN_EID_VENDOR_SPECIFIC && _rtw_memcmp(&in_ie[cnt + 2], p2p_oui, 4) == _TRUE) {
p2p_ie_ptr = in_ie + cnt;
if (p2p_ie)
_rtw_memcpy(p2p_ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
if (p2p_ielen)
*p2p_ielen = in_ie[cnt + 1] + 2;
break;
} else
cnt += in_ie[cnt + 1] + 2;
}
return p2p_ie_ptr;
}
/**
* rtw_get_p2p_attr - Search a specific P2P attribute from a given P2P IE
* @p2p_ie: Address of P2P IE to search
* @p2p_ielen: Length limit from p2p_ie
* @target_attr_id: The attribute ID of P2P attribute to search
* @buf_attr: If not NULL and the P2P attribute is found, P2P attribute will be copied to the buf starting from buf_attr
* @len_attr: If not NULL and the P2P attribute is found, will set to the length of the entire P2P attribute
*
* Returns: the address of the specific WPS attribute found, or NULL
*/
u8 *rtw_get_p2p_attr(u8 *p2p_ie, uint p2p_ielen, u8 target_attr_id , u8 *buf_attr, u32 *len_attr)
{
u8 *attr_ptr = NULL;
u8 *target_attr_ptr = NULL;
u8 p2p_oui[4] = {0x50, 0x6F, 0x9A, 0x09};
if (len_attr)
*len_attr = 0;
if (!p2p_ie
|| p2p_ielen <= 6
|| (p2p_ie[0] != WLAN_EID_VENDOR_SPECIFIC)
|| (_rtw_memcmp(p2p_ie + 2, p2p_oui, 4) != _TRUE))
return attr_ptr;
/* 6 = 1(Element ID) + 1(Length) + 3 (OUI) + 1(OUI Type) */
attr_ptr = p2p_ie + 6; /* goto first attr */
while ((attr_ptr - p2p_ie + 3) <= p2p_ielen) {
/* 3 = 1(Attribute ID) + 2(Length) */
u8 attr_id = *attr_ptr;
u16 attr_data_len = RTW_GET_LE16(attr_ptr + 1);
u16 attr_len = attr_data_len + 3;
if (0)
RTW_INFO("%s attr_ptr:%p, id:%u, length:%u\n", __func__, attr_ptr, attr_id, attr_data_len);
if ((attr_ptr - p2p_ie + attr_len) > p2p_ielen)
break;
if (attr_id == target_attr_id) {
target_attr_ptr = attr_ptr;
if (buf_attr)
_rtw_memcpy(buf_attr, attr_ptr, attr_len);
if (len_attr)
*len_attr = attr_len;
break;
} else
attr_ptr += attr_len;
}
return target_attr_ptr;
}
/**
* rtw_get_p2p_attr_content - Search a specific P2P attribute content from a given P2P IE
* @p2p_ie: Address of P2P IE to search
* @p2p_ielen: Length limit from p2p_ie
* @target_attr_id: The attribute ID of P2P attribute to search
* @buf_content: If not NULL and the P2P attribute is found, P2P attribute content will be copied to the buf starting from buf_content
* @len_content: If not NULL and the P2P attribute is found, will set to the length of the P2P attribute content
*
* Returns: the address of the specific P2P attribute content found, or NULL
*/
u8 *rtw_get_p2p_attr_content(u8 *p2p_ie, uint p2p_ielen, u8 target_attr_id , u8 *buf_content, uint *len_content)
{
u8 *attr_ptr;
u32 attr_len;
if (len_content)
*len_content = 0;
attr_ptr = rtw_get_p2p_attr(p2p_ie, p2p_ielen, target_attr_id, NULL, &attr_len);
if (attr_ptr && attr_len) {
if (buf_content)
_rtw_memcpy(buf_content, attr_ptr + 3, attr_len - 3);
if (len_content)
*len_content = attr_len - 3;
return attr_ptr + 3;
}
return NULL;
}
u32 rtw_set_p2p_attr_content(u8 *pbuf, u8 attr_id, u16 attr_len, u8 *pdata_attr)
{
u32 a_len;
*pbuf = attr_id;
/* *(u16*)(pbuf + 1) = cpu_to_le16(attr_len); */
RTW_PUT_LE16(pbuf + 1, attr_len);
if (pdata_attr)
_rtw_memcpy(pbuf + 3, pdata_attr, attr_len);
a_len = attr_len + 3;
return a_len;
}
uint rtw_del_p2p_ie(u8 *ies, uint ies_len_ori, const char *msg)
{
#define DBG_DEL_P2P_IE 0
u8 *target_ie;
u32 target_ie_len;
uint ies_len = ies_len_ori;
int index = 0;
while (1) {
target_ie = rtw_get_p2p_ie(ies, ies_len, NULL, &target_ie_len);
if (target_ie && target_ie_len) {
u8 *next_ie = target_ie + target_ie_len;
uint remain_len = ies_len - (next_ie - ies);
if (DBG_DEL_P2P_IE && msg) {
RTW_INFO("%s %d before\n", __func__, index);
dump_ies(RTW_DBGDUMP, ies, ies_len);
RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len);
RTW_INFO("target_ie:%p, target_ie_len:%u\n", target_ie, target_ie_len);
RTW_INFO("next_ie:%p, remain_len:%u\n", next_ie, remain_len);
}
_rtw_memmove(target_ie, next_ie, remain_len);
_rtw_memset(target_ie + remain_len, 0, target_ie_len);
ies_len -= target_ie_len;
if (DBG_DEL_P2P_IE && msg) {
RTW_INFO("%s %d after\n", __func__, index);
dump_ies(RTW_DBGDUMP, ies, ies_len);
}
index++;
} else
break;
}
return ies_len;
}
uint rtw_del_p2p_attr(u8 *ie, uint ielen_ori, u8 attr_id)
{
#define DBG_DEL_P2P_ATTR 0
u8 *target_attr;
u32 target_attr_len;
uint ielen = ielen_ori;
int index = 0;
while (1) {
target_attr = rtw_get_p2p_attr(ie, ielen, attr_id, NULL, &target_attr_len);
if (target_attr && target_attr_len) {
u8 *next_attr = target_attr + target_attr_len;
uint remain_len = ielen - (next_attr - ie);
if (DBG_DEL_P2P_ATTR) {
RTW_INFO("%s %d before\n", __func__, index);
dump_ies(RTW_DBGDUMP, ie, ielen);
RTW_INFO("ie:%p, ielen:%u\n", ie, ielen);
RTW_INFO("target_attr:%p, target_attr_len:%u\n", target_attr, target_attr_len);
RTW_INFO("next_attr:%p, remain_len:%u\n", next_attr, remain_len);
}
_rtw_memmove(target_attr, next_attr, remain_len);
_rtw_memset(target_attr + remain_len, 0, target_attr_len);
*(ie + 1) -= target_attr_len;
ielen -= target_attr_len;
if (DBG_DEL_P2P_ATTR) {
RTW_INFO("%s %d after\n", __func__, index);
dump_ies(RTW_DBGDUMP, ie, ielen);
}
index++;
} else
break;
}
return ielen;
}
inline u8 *rtw_bss_ex_get_p2p_ie(WLAN_BSSID_EX *bss_ex, u8 *p2p_ie, uint *p2p_ielen)
{
return rtw_get_p2p_ie(BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex), p2p_ie, p2p_ielen);
}
void rtw_bss_ex_del_p2p_ie(WLAN_BSSID_EX *bss_ex)
{
#define DBG_BSS_EX_DEL_P2P_IE 0
u8 *ies = BSS_EX_TLV_IES(bss_ex);
uint ies_len_ori = BSS_EX_TLV_IES_LEN(bss_ex);
uint ies_len;
ies_len = rtw_del_p2p_ie(ies, ies_len_ori, DBG_BSS_EX_DEL_P2P_IE ? __func__ : NULL);
bss_ex->IELength -= ies_len_ori - ies_len;
}
void rtw_bss_ex_del_p2p_attr(WLAN_BSSID_EX *bss_ex, u8 attr_id)
{
#define DBG_BSS_EX_DEL_P2P_ATTR 0
u8 *ies = BSS_EX_TLV_IES(bss_ex);
uint ies_len = BSS_EX_TLV_IES_LEN(bss_ex);
u8 *ie;
uint ie_len, ie_len_ori;
int index = 0;
while (1) {
ie = rtw_get_p2p_ie(ies, ies_len, NULL, &ie_len_ori);
if (ie) {
u8 *next_ie_ori = ie + ie_len_ori;
uint remain_len = bss_ex->IELength - (next_ie_ori - bss_ex->IEs);
u8 has_target_attr = 0;
if (DBG_BSS_EX_DEL_P2P_ATTR) {
if (rtw_get_p2p_attr(ie, ie_len_ori, attr_id, NULL, NULL)) {
RTW_INFO("%s %d before\n", __func__, index);
dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex));
RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len);
RTW_INFO("ie:%p, ie_len_ori:%u\n", ie, ie_len_ori);
RTW_INFO("next_ie_ori:%p, remain_len:%u\n", next_ie_ori, remain_len);
has_target_attr = 1;
}
}
ie_len = rtw_del_p2p_attr(ie, ie_len_ori, attr_id);
if (ie_len != ie_len_ori) {
u8 *next_ie = ie + ie_len;
_rtw_memmove(next_ie, next_ie_ori, remain_len);
_rtw_memset(next_ie + remain_len, 0, ie_len_ori - ie_len);
bss_ex->IELength -= ie_len_ori - ie_len;
ies = next_ie;
} else
ies = next_ie_ori;
if (DBG_BSS_EX_DEL_P2P_ATTR) {
if (has_target_attr) {
RTW_INFO("%s %d after\n", __func__, index);
dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex));
}
}
ies_len = remain_len;
index++;
} else
break;
}
}
void dump_wfd_ie(void *sel, u8 *ie, u32 ie_len)
{
u8 *pos = (u8 *)ie;
u8 id;
u16 len;
u8 *wfd_ie;
uint wfd_ielen;
wfd_ie = rtw_get_wfd_ie(ie, ie_len, NULL, &wfd_ielen);
if (wfd_ie != ie || wfd_ielen == 0)
return;
pos += 6;
while (pos - ie + 3 <= ie_len) {
id = *pos;
len = RTW_GET_BE16(pos + 1);
RTW_PRINT_SEL(sel, "%s ID:%u, LEN:%u%s\n", __func__, id, len
, ((pos - ie + 3 + len) <= ie_len) ? "" : "(exceed ie_len)");
pos += (3 + len);
}
}
/**
* rtw_get_wfd_ie - Search WFD IE from a series of IEs
* @in_ie: Address of IEs to search
* @in_len: Length limit from in_ie
* @wfd_ie: If not NULL and WFD IE is found, WFD IE will be copied to the buf starting from wfd_ie
* @wfd_ielen: If not NULL and WFD IE is found, will set to the length of the entire WFD IE
*
* Returns: The address of the P2P IE found, or NULL
*/
u8 *rtw_get_wfd_ie(u8 *in_ie, int in_len, u8 *wfd_ie, uint *wfd_ielen)
{
uint cnt;
u8 *wfd_ie_ptr = NULL;
u8 eid, wfd_oui[4] = {0x50, 0x6F, 0x9A, 0x0A};
if (wfd_ielen)
*wfd_ielen = 0;
if (!in_ie || in_len < 0) {
rtw_warn_on(1);
return wfd_ie_ptr;
}
if (in_len <= 0)
return wfd_ie_ptr;
cnt = 0;
while (cnt + 1 + 4 < in_len) {
eid = in_ie[cnt];
if (cnt + 1 + 4 >= MAX_IE_SZ) {
rtw_warn_on(1);
return NULL;
}
if (eid == WLAN_EID_VENDOR_SPECIFIC && _rtw_memcmp(&in_ie[cnt + 2], wfd_oui, 4) == _TRUE) {
wfd_ie_ptr = in_ie + cnt;
if (wfd_ie)
_rtw_memcpy(wfd_ie, &in_ie[cnt], in_ie[cnt + 1] + 2);
if (wfd_ielen)
*wfd_ielen = in_ie[cnt + 1] + 2;
break;
} else
cnt += in_ie[cnt + 1] + 2;
}
return wfd_ie_ptr;
}
/**
* rtw_get_wfd_attr - Search a specific WFD attribute from a given WFD IE
* @wfd_ie: Address of WFD IE to search
* @wfd_ielen: Length limit from wfd_ie
* @target_attr_id: The attribute ID of WFD attribute to search
* @buf_attr: If not NULL and the WFD attribute is found, WFD attribute will be copied to the buf starting from buf_attr
* @len_attr: If not NULL and the WFD attribute is found, will set to the length of the entire WFD attribute
*
* Returns: the address of the specific WPS attribute found, or NULL
*/
u8 *rtw_get_wfd_attr(u8 *wfd_ie, uint wfd_ielen, u8 target_attr_id, u8 *buf_attr, u32 *len_attr)
{
u8 *attr_ptr = NULL;
u8 *target_attr_ptr = NULL;
u8 wfd_oui[4] = {0x50, 0x6F, 0x9A, 0x0A};
if (len_attr)
*len_attr = 0;
if (!wfd_ie
|| wfd_ielen <= 6
|| (wfd_ie[0] != WLAN_EID_VENDOR_SPECIFIC)
|| (_rtw_memcmp(wfd_ie + 2, wfd_oui, 4) != _TRUE))
return attr_ptr;
/* 6 = 1(Element ID) + 1(Length) + 3 (OUI) + 1(OUI Type) */
attr_ptr = wfd_ie + 6; /* goto first attr */
while ((attr_ptr - wfd_ie + 3) <= wfd_ielen) {
/* 3 = 1(Attribute ID) + 2(Length) */
u8 attr_id = *attr_ptr;
u16 attr_data_len = RTW_GET_BE16(attr_ptr + 1);
u16 attr_len = attr_data_len + 3;
if (0)
RTW_INFO("%s attr_ptr:%p, id:%u, length:%u\n", __func__, attr_ptr, attr_id, attr_data_len);
if ((attr_ptr - wfd_ie + attr_len) > wfd_ielen)
break;
if (attr_id == target_attr_id) {
target_attr_ptr = attr_ptr;
if (buf_attr)
_rtw_memcpy(buf_attr, attr_ptr, attr_len);
if (len_attr)
*len_attr = attr_len;
break;
} else
attr_ptr += attr_len;
}
return target_attr_ptr;
}
/**
* rtw_get_wfd_attr_content - Search a specific WFD attribute content from a given WFD IE
* @wfd_ie: Address of WFD IE to search
* @wfd_ielen: Length limit from wfd_ie
* @target_attr_id: The attribute ID of WFD attribute to search
* @buf_content: If not NULL and the WFD attribute is found, WFD attribute content will be copied to the buf starting from buf_content
* @len_content: If not NULL and the WFD attribute is found, will set to the length of the WFD attribute content
*
* Returns: the address of the specific WFD attribute content found, or NULL
*/
u8 *rtw_get_wfd_attr_content(u8 *wfd_ie, uint wfd_ielen, u8 target_attr_id, u8 *buf_content, uint *len_content)
{
u8 *attr_ptr;
u32 attr_len;
if (len_content)
*len_content = 0;
attr_ptr = rtw_get_wfd_attr(wfd_ie, wfd_ielen, target_attr_id, NULL, &attr_len);
if (attr_ptr && attr_len) {
if (buf_content)
_rtw_memcpy(buf_content, attr_ptr + 3, attr_len - 3);
if (len_content)
*len_content = attr_len - 3;
return attr_ptr + 3;
}
return NULL;
}
uint rtw_del_wfd_ie(u8 *ies, uint ies_len_ori, const char *msg)
{
#define DBG_DEL_WFD_IE 0
u8 *target_ie;
u32 target_ie_len;
uint ies_len = ies_len_ori;
int index = 0;
while (1) {
target_ie = rtw_get_wfd_ie(ies, ies_len, NULL, &target_ie_len);
if (target_ie && target_ie_len) {
u8 *next_ie = target_ie + target_ie_len;
uint remain_len = ies_len - (next_ie - ies);
if (DBG_DEL_WFD_IE && msg) {
RTW_INFO("%s %d before\n", __func__, index);
dump_ies(RTW_DBGDUMP, ies, ies_len);
RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len);
RTW_INFO("target_ie:%p, target_ie_len:%u\n", target_ie, target_ie_len);
RTW_INFO("next_ie:%p, remain_len:%u\n", next_ie, remain_len);
}
_rtw_memmove(target_ie, next_ie, remain_len);
_rtw_memset(target_ie + remain_len, 0, target_ie_len);
ies_len -= target_ie_len;
if (DBG_DEL_WFD_IE && msg) {
RTW_INFO("%s %d after\n", __func__, index);
dump_ies(RTW_DBGDUMP, ies, ies_len);
}
index++;
} else
break;
}
return ies_len;
}
uint rtw_del_wfd_attr(u8 *ie, uint ielen_ori, u8 attr_id)
{
#define DBG_DEL_WFD_ATTR 0
u8 *target_attr;
u32 target_attr_len;
uint ielen = ielen_ori;
int index = 0;
while (1) {
target_attr = rtw_get_wfd_attr(ie, ielen, attr_id, NULL, &target_attr_len);
if (target_attr && target_attr_len) {
u8 *next_attr = target_attr + target_attr_len;
uint remain_len = ielen - (next_attr - ie);
if (DBG_DEL_WFD_ATTR) {
RTW_INFO("%s %d before\n", __func__, index);
dump_ies(RTW_DBGDUMP, ie, ielen);
RTW_INFO("ie:%p, ielen:%u\n", ie, ielen);
RTW_INFO("target_attr:%p, target_attr_len:%u\n", target_attr, target_attr_len);
RTW_INFO("next_attr:%p, remain_len:%u\n", next_attr, remain_len);
}
_rtw_memmove(target_attr, next_attr, remain_len);
_rtw_memset(target_attr + remain_len, 0, target_attr_len);
*(ie + 1) -= target_attr_len;
ielen -= target_attr_len;
if (DBG_DEL_WFD_ATTR) {
RTW_INFO("%s %d after\n", __func__, index);
dump_ies(RTW_DBGDUMP, ie, ielen);
}
index++;
} else
break;
}
return ielen;
}
inline u8 *rtw_bss_ex_get_wfd_ie(WLAN_BSSID_EX *bss_ex, u8 *wfd_ie, uint *wfd_ielen)
{
return rtw_get_wfd_ie(BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex), wfd_ie, wfd_ielen);
}
void rtw_bss_ex_del_wfd_ie(WLAN_BSSID_EX *bss_ex)
{
#define DBG_BSS_EX_DEL_WFD_IE 0
u8 *ies = BSS_EX_TLV_IES(bss_ex);
uint ies_len_ori = BSS_EX_TLV_IES_LEN(bss_ex);
uint ies_len;
ies_len = rtw_del_wfd_ie(ies, ies_len_ori, DBG_BSS_EX_DEL_WFD_IE ? __func__ : NULL);
bss_ex->IELength -= ies_len_ori - ies_len;
}
void rtw_bss_ex_del_wfd_attr(WLAN_BSSID_EX *bss_ex, u8 attr_id)
{
#define DBG_BSS_EX_DEL_WFD_ATTR 0
u8 *ies = BSS_EX_TLV_IES(bss_ex);
uint ies_len = BSS_EX_TLV_IES_LEN(bss_ex);
u8 *ie;
uint ie_len, ie_len_ori;
int index = 0;
while (1) {
ie = rtw_get_wfd_ie(ies, ies_len, NULL, &ie_len_ori);
if (ie) {
u8 *next_ie_ori = ie + ie_len_ori;
uint remain_len = bss_ex->IELength - (next_ie_ori - bss_ex->IEs);
u8 has_target_attr = 0;
if (DBG_BSS_EX_DEL_WFD_ATTR) {
if (rtw_get_wfd_attr(ie, ie_len_ori, attr_id, NULL, NULL)) {
RTW_INFO("%s %d before\n", __func__, index);
dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex));
RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len);
RTW_INFO("ie:%p, ie_len_ori:%u\n", ie, ie_len_ori);
RTW_INFO("next_ie_ori:%p, remain_len:%u\n", next_ie_ori, remain_len);
has_target_attr = 1;
}
}
ie_len = rtw_del_wfd_attr(ie, ie_len_ori, attr_id);
if (ie_len != ie_len_ori) {
u8 *next_ie = ie + ie_len;
_rtw_memmove(next_ie, next_ie_ori, remain_len);
_rtw_memset(next_ie + remain_len, 0, ie_len_ori - ie_len);
bss_ex->IELength -= ie_len_ori - ie_len;
ies = next_ie;
} else
ies = next_ie_ori;
if (DBG_BSS_EX_DEL_WFD_ATTR) {
if (has_target_attr) {
RTW_INFO("%s %d after\n", __func__, index);
dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex));
}
}
ies_len = remain_len;
index++;
} else
break;
}
}
/* Baron adds to avoid FreeBSD warning */
int ieee80211_is_empty_essid(const char *essid, int essid_len)
{
/* Single white space is for Linksys APs */
if (essid_len == 1 && essid[0] == ' ')
return 1;
/* Otherwise, if the entire essid is 0, we assume it is hidden */
while (essid_len) {
essid_len--;
if (essid[essid_len] != '\0')
return 0;
}
return 1;
}
int ieee80211_get_hdrlen(u16 fc)
{
int hdrlen = 24;
switch (WLAN_FC_GET_TYPE(fc)) {
case RTW_IEEE80211_FTYPE_DATA:
if (fc & RTW_IEEE80211_STYPE_QOS_DATA)
hdrlen += 2;
if ((fc & RTW_IEEE80211_FCTL_FROMDS) && (fc & RTW_IEEE80211_FCTL_TODS))
hdrlen += 6; /* Addr4 */
break;
case RTW_IEEE80211_FTYPE_CTL:
switch (WLAN_FC_GET_STYPE(fc)) {
case RTW_IEEE80211_STYPE_CTS:
case RTW_IEEE80211_STYPE_ACK:
hdrlen = 10;
break;
default:
hdrlen = 16;
break;
}
break;
}
return hdrlen;
}
int rtw_get_cipher_info(struct wlan_network *pnetwork)
{
u32 wpa_ielen;
unsigned char *pbuf;
int group_cipher = 0, pairwise_cipher = 0, is8021x = 0;
int ret = _FAIL;
pbuf = rtw_get_wpa_ie(&pnetwork->network.IEs[12], &wpa_ielen, pnetwork->network.IELength - 12);
if (pbuf && (wpa_ielen > 0)) {
if (_SUCCESS == rtw_parse_wpa_ie(pbuf, wpa_ielen + 2, &group_cipher, &pairwise_cipher, &is8021x)) {
pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher;
pnetwork->BcnInfo.group_cipher = group_cipher;
pnetwork->BcnInfo.is_8021x = is8021x;
ret = _SUCCESS;
}
} else {
pbuf = rtw_get_wpa2_ie(&pnetwork->network.IEs[12], &wpa_ielen, pnetwork->network.IELength - 12);
if (pbuf && (wpa_ielen > 0)) {
if (_SUCCESS == rtw_parse_wpa2_ie(pbuf, wpa_ielen + 2, &group_cipher, &pairwise_cipher, &is8021x)) {
pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher;
pnetwork->BcnInfo.group_cipher = group_cipher;
pnetwork->BcnInfo.is_8021x = is8021x;
ret = _SUCCESS;
}
}
}
return ret;
}
void rtw_get_bcn_info(struct wlan_network *pnetwork)
{
unsigned short cap = 0;
u8 bencrypt = 0;
/* u8 wpa_ie[255],rsn_ie[255]; */
u16 wpa_len = 0, rsn_len = 0;
struct HT_info_element *pht_info = NULL;
struct rtw_ieee80211_ht_cap *pht_cap = NULL;
unsigned int len;
unsigned char *p;
_rtw_memcpy((u8 *)&cap, rtw_get_capability_from_ie(pnetwork->network.IEs), 2);
cap = le16_to_cpu(cap);
if (cap & WLAN_CAPABILITY_PRIVACY) {
bencrypt = 1;
pnetwork->network.Privacy = 1;
} else
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_OPENSYS;
rtw_get_sec_ie(pnetwork->network.IEs , pnetwork->network.IELength, NULL, &rsn_len, NULL, &wpa_len);
if (rsn_len > 0)
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA2;
else if (wpa_len > 0)
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA;
else {
if (bencrypt)
pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WEP;
}
rtw_get_cipher_info(pnetwork);
/* get bwmode and ch_offset */
/* parsing HT_CAP_IE */
p = rtw_get_ie(pnetwork->network.IEs + _FIXED_IE_LENGTH_, _HT_CAPABILITY_IE_, &len, pnetwork->network.IELength - _FIXED_IE_LENGTH_);
if (p && len > 0) {
pht_cap = (struct rtw_ieee80211_ht_cap *)(p + 2);
pnetwork->BcnInfo.ht_cap_info = pht_cap->cap_info;
} else
pnetwork->BcnInfo.ht_cap_info = 0;
/* parsing HT_INFO_IE */
p = rtw_get_ie(pnetwork->network.IEs + _FIXED_IE_LENGTH_, _HT_ADD_INFO_IE_, &len, pnetwork->network.IELength - _FIXED_IE_LENGTH_);
if (p && len > 0) {
pht_info = (struct HT_info_element *)(p + 2);
pnetwork->BcnInfo.ht_info_infos_0 = pht_info->infos[0];
} else
pnetwork->BcnInfo.ht_info_infos_0 = 0;
}
u8 rtw_ht_mcsset_to_nss(u8 *supp_mcs_set)
{
u8 nss = 1;
if (supp_mcs_set[3])
nss = 4;
else if (supp_mcs_set[2])
nss = 3;
else if (supp_mcs_set[1])
nss = 2;
else if (supp_mcs_set[0])
nss = 1;
else
RTW_INFO("%s,%d, warning! supp_mcs_set is zero\n", __func__, __LINE__);
/* RTW_INFO("%s HT: %dSS\n", __FUNCTION__, nss); */
return nss;
}
/* show MCS rate, unit: 100Kbps */
u16 rtw_mcs_rate(u8 rf_type, u8 bw_40MHz, u8 short_GI, unsigned char *MCS_rate)
{
u16 max_rate = 0;
/*MCS_rate[2] = 3T3R , MCS_rate[1] = 2T2R , MCS_rate[0] = 1T1R*/
if (MCS_rate[2]) {
if (MCS_rate[2] & BIT(7))
max_rate = (bw_40MHz) ? ((short_GI) ? 4500 : 4050) : ((short_GI) ? 2167 : 1950);
else if (MCS_rate[2] & BIT(6))
max_rate = (bw_40MHz) ? ((short_GI) ? 4050 : 3645) : ((short_GI) ? 1950 : 1750);
else if (MCS_rate[2] & BIT(5))
max_rate = (bw_40MHz) ? ((short_GI) ? 3600 : 3240) : ((short_GI) ? 1733 : 1560);
else if (MCS_rate[2] & BIT(4))
max_rate = (bw_40MHz) ? ((short_GI) ? 2700 : 2430) : ((short_GI) ? 1300 : 1170);
else if (MCS_rate[2] & BIT(3))
max_rate = (bw_40MHz) ? ((short_GI) ? 1800 : 1620) : ((short_GI) ? 867 : 780);
else if (MCS_rate[2] & BIT(2))
max_rate = (bw_40MHz) ? ((short_GI) ? 1350 : 1215) : ((short_GI) ? 650 : 585);
else if (MCS_rate[2] & BIT(1))
max_rate = (bw_40MHz) ? ((short_GI) ? 900 : 810) : ((short_GI) ? 433 : 390);
else if (MCS_rate[2] & BIT(0))
max_rate = (bw_40MHz) ? ((short_GI) ? 450 : 405) : ((short_GI) ? 217 : 195);
} else if (MCS_rate[1]) {
if (MCS_rate[1] & BIT(7))
max_rate = (bw_40MHz) ? ((short_GI) ? 3000 : 2700) : ((short_GI) ? 1444 : 1300);
else if (MCS_rate[1] & BIT(6))
max_rate = (bw_40MHz) ? ((short_GI) ? 2700 : 2430) : ((short_GI) ? 1300 : 1170);
else if (MCS_rate[1] & BIT(5))
max_rate = (bw_40MHz) ? ((short_GI) ? 2400 : 2160) : ((short_GI) ? 1156 : 1040);
else if (MCS_rate[1] & BIT(4))
max_rate = (bw_40MHz) ? ((short_GI) ? 1800 : 1620) : ((short_GI) ? 867 : 780);
else if (MCS_rate[1] & BIT(3))
max_rate = (bw_40MHz) ? ((short_GI) ? 1200 : 1080) : ((short_GI) ? 578 : 520);
else if (MCS_rate[1] & BIT(2))
max_rate = (bw_40MHz) ? ((short_GI) ? 900 : 810) : ((short_GI) ? 433 : 390);
else if (MCS_rate[1] & BIT(1))
max_rate = (bw_40MHz) ? ((short_GI) ? 600 : 540) : ((short_GI) ? 289 : 260);
else if (MCS_rate[1] & BIT(0))
max_rate = (bw_40MHz) ? ((short_GI) ? 300 : 270) : ((short_GI) ? 144 : 130);
} else {
if (MCS_rate[0] & BIT(7))
max_rate = (bw_40MHz) ? ((short_GI) ? 1500 : 1350) : ((short_GI) ? 722 : 650);
else if (MCS_rate[0] & BIT(6))
max_rate = (bw_40MHz) ? ((short_GI) ? 1350 : 1215) : ((short_GI) ? 650 : 585);
else if (MCS_rate[0] & BIT(5))
max_rate = (bw_40MHz) ? ((short_GI) ? 1200 : 1080) : ((short_GI) ? 578 : 520);
else if (MCS_rate[0] & BIT(4))
max_rate = (bw_40MHz) ? ((short_GI) ? 900 : 810) : ((short_GI) ? 433 : 390);
else if (MCS_rate[0] & BIT(3))
max_rate = (bw_40MHz) ? ((short_GI) ? 600 : 540) : ((short_GI) ? 289 : 260);
else if (MCS_rate[0] & BIT(2))
max_rate = (bw_40MHz) ? ((short_GI) ? 450 : 405) : ((short_GI) ? 217 : 195);
else if (MCS_rate[0] & BIT(1))
max_rate = (bw_40MHz) ? ((short_GI) ? 300 : 270) : ((short_GI) ? 144 : 130);
else if (MCS_rate[0] & BIT(0))
max_rate = (bw_40MHz) ? ((short_GI) ? 150 : 135) : ((short_GI) ? 72 : 65);
}
return max_rate;
}
int rtw_action_frame_parse(const u8 *frame, u32 frame_len, u8 *category, u8 *action)
{
const u8 *frame_body = frame + sizeof(struct rtw_ieee80211_hdr_3addr);
u16 fc;
u8 c;
u8 a = ACT_PUBLIC_MAX;
fc = le16_to_cpu(((struct rtw_ieee80211_hdr_3addr *)frame)->frame_ctl);
if ((fc & (RTW_IEEE80211_FCTL_FTYPE | RTW_IEEE80211_FCTL_STYPE))
!= (RTW_IEEE80211_FTYPE_MGMT | RTW_IEEE80211_STYPE_ACTION)
)
return _FALSE;
c = frame_body[0];
switch (c) {
case RTW_WLAN_CATEGORY_P2P: /* vendor-specific */
break;
default:
a = frame_body[1];
}
if (category)
*category = c;
if (action)
*action = a;
return _TRUE;
}
static const char *_action_public_str[] = {
"ACT_PUB_BSSCOEXIST",
"ACT_PUB_DSE_ENABLE",
"ACT_PUB_DSE_DEENABLE",
"ACT_PUB_DSE_REG_LOCATION",
"ACT_PUB_EXT_CHL_SWITCH",
"ACT_PUB_DSE_MSR_REQ",
"ACT_PUB_DSE_MSR_RPRT",
"ACT_PUB_MP",
"ACT_PUB_DSE_PWR_CONSTRAINT",
"ACT_PUB_VENDOR",
"ACT_PUB_GAS_INITIAL_REQ",
"ACT_PUB_GAS_INITIAL_RSP",
"ACT_PUB_GAS_COMEBACK_REQ",
"ACT_PUB_GAS_COMEBACK_RSP",
"ACT_PUB_TDLS_DISCOVERY_RSP",
"ACT_PUB_LOCATION_TRACK",
"ACT_PUB_RSVD",
};
const char *action_public_str(u8 action)
{
action = (action >= ACT_PUBLIC_MAX) ? ACT_PUBLIC_MAX : action;
return _action_public_str[action];
}