/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _IEEE80211_C #ifdef CONFIG_PLATFORM_INTEL_BYT #include #endif #include u8 RTW_WPA_OUI_TYPE[] = { 0x00, 0x50, 0xf2, 1 }; u16 RTW_WPA_VERSION = 1; u8 WPA_AUTH_KEY_MGMT_NONE[] = { 0x00, 0x50, 0xf2, 0 }; u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x50, 0xf2, 1 }; u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x50, 0xf2, 2 }; u8 WPA_CIPHER_SUITE_NONE[] = { 0x00, 0x50, 0xf2, 0 }; u8 WPA_CIPHER_SUITE_WEP40[] = { 0x00, 0x50, 0xf2, 1 }; u8 WPA_CIPHER_SUITE_TKIP[] = { 0x00, 0x50, 0xf2, 2 }; u8 WPA_CIPHER_SUITE_WRAP[] = { 0x00, 0x50, 0xf2, 3 }; u8 WPA_CIPHER_SUITE_CCMP[] = { 0x00, 0x50, 0xf2, 4 }; u8 WPA_CIPHER_SUITE_WEP104[] = { 0x00, 0x50, 0xf2, 5 }; u16 RSN_VERSION_BSD = 1; u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x0f, 0xac, 1 }; u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x0f, 0xac, 2 }; u8 RSN_CIPHER_SUITE_NONE[] = { 0x00, 0x0f, 0xac, 0 }; u8 RSN_CIPHER_SUITE_WEP40[] = { 0x00, 0x0f, 0xac, 1 }; u8 RSN_CIPHER_SUITE_TKIP[] = { 0x00, 0x0f, 0xac, 2 }; u8 RSN_CIPHER_SUITE_WRAP[] = { 0x00, 0x0f, 0xac, 3 }; u8 RSN_CIPHER_SUITE_CCMP[] = { 0x00, 0x0f, 0xac, 4 }; u8 RSN_CIPHER_SUITE_WEP104[] = { 0x00, 0x0f, 0xac, 5 }; /* ----------------------------------------------------------- * for adhoc-master to generate ie and provide supported-rate to fw * ----------------------------------------------------------- */ static u8 WIFI_CCKRATES[] = { (IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK), (IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK), (IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK), (IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK) }; static u8 WIFI_OFDMRATES[] = { (IEEE80211_OFDM_RATE_6MB), (IEEE80211_OFDM_RATE_9MB), (IEEE80211_OFDM_RATE_12MB), (IEEE80211_OFDM_RATE_18MB), (IEEE80211_OFDM_RATE_24MB), IEEE80211_OFDM_RATE_36MB, IEEE80211_OFDM_RATE_48MB, IEEE80211_OFDM_RATE_54MB }; u8 mgn_rates_cck[4] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M}; u8 mgn_rates_ofdm[8] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M}; u8 mgn_rates_mcs0_7[8] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7}; u8 mgn_rates_mcs8_15[8] = {MGN_MCS8, MGN_MCS9, MGN_MCS10, MGN_MCS11, MGN_MCS12, MGN_MCS13, MGN_MCS14, MGN_MCS15}; u8 mgn_rates_mcs16_23[8] = {MGN_MCS16, MGN_MCS17, MGN_MCS18, MGN_MCS19, MGN_MCS20, MGN_MCS21, MGN_MCS22, MGN_MCS23}; u8 mgn_rates_mcs24_31[8] = {MGN_MCS24, MGN_MCS25, MGN_MCS26, MGN_MCS27, MGN_MCS28, MGN_MCS29, MGN_MCS30, MGN_MCS31}; u8 mgn_rates_vht1ss[10] = {MGN_VHT1SS_MCS0, MGN_VHT1SS_MCS1, MGN_VHT1SS_MCS2, MGN_VHT1SS_MCS3, MGN_VHT1SS_MCS4 , MGN_VHT1SS_MCS5, MGN_VHT1SS_MCS6, MGN_VHT1SS_MCS7, MGN_VHT1SS_MCS8, MGN_VHT1SS_MCS9 }; u8 mgn_rates_vht2ss[10] = {MGN_VHT2SS_MCS0, MGN_VHT2SS_MCS1, MGN_VHT2SS_MCS2, MGN_VHT2SS_MCS3, MGN_VHT2SS_MCS4 , MGN_VHT2SS_MCS5, MGN_VHT2SS_MCS6, MGN_VHT2SS_MCS7, MGN_VHT2SS_MCS8, MGN_VHT2SS_MCS9 }; u8 mgn_rates_vht3ss[10] = {MGN_VHT3SS_MCS0, MGN_VHT3SS_MCS1, MGN_VHT3SS_MCS2, MGN_VHT3SS_MCS3, MGN_VHT3SS_MCS4 , MGN_VHT3SS_MCS5, MGN_VHT3SS_MCS6, MGN_VHT3SS_MCS7, MGN_VHT3SS_MCS8, MGN_VHT3SS_MCS9 }; u8 mgn_rates_vht4ss[10] = {MGN_VHT4SS_MCS0, MGN_VHT4SS_MCS1, MGN_VHT4SS_MCS2, MGN_VHT4SS_MCS3, MGN_VHT4SS_MCS4 , MGN_VHT4SS_MCS5, MGN_VHT4SS_MCS6, MGN_VHT4SS_MCS7, MGN_VHT4SS_MCS8, MGN_VHT4SS_MCS9 }; static const char *const _rate_section_str[] = { "CCK", "OFDM", "HT_1SS", "HT_2SS", "HT_3SS", "HT_4SS", "VHT_1SS", "VHT_2SS", "VHT_3SS", "VHT_4SS", "RATE_SECTION_UNKNOWN", }; const char *rate_section_str(u8 section) { section = (section >= RATE_SECTION_NUM) ? RATE_SECTION_NUM : section; return _rate_section_str[section]; } struct rate_section_ent rates_by_sections[RATE_SECTION_NUM] = { {RF_1TX, 4, mgn_rates_cck}, {RF_1TX, 8, mgn_rates_ofdm}, {RF_1TX, 8, mgn_rates_mcs0_7}, {RF_2TX, 8, mgn_rates_mcs8_15}, {RF_3TX, 8, mgn_rates_mcs16_23}, {RF_4TX, 8, mgn_rates_mcs24_31}, {RF_1TX, 10, mgn_rates_vht1ss}, {RF_2TX, 10, mgn_rates_vht2ss}, {RF_3TX, 10, mgn_rates_vht3ss}, {RF_4TX, 10, mgn_rates_vht4ss}, }; int rtw_get_bit_value_from_ieee_value(u8 val) { unsigned char dot11_rate_table[] = {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108, 0}; /* last element must be zero!! */ int i = 0; while (dot11_rate_table[i] != 0) { if (dot11_rate_table[i] == val) return BIT(i); i++; } return 0; } uint rtw_is_cckrates_included(u8 *rate) { u32 i = 0; while (rate[i] != 0) { if ((((rate[i]) & 0x7f) == 2) || (((rate[i]) & 0x7f) == 4) || (((rate[i]) & 0x7f) == 11) || (((rate[i]) & 0x7f) == 22)) return _TRUE; i++; } return _FALSE; } uint rtw_is_cckratesonly_included(u8 *rate) { u32 i = 0; while (rate[i] != 0) { if ((((rate[i]) & 0x7f) != 2) && (((rate[i]) & 0x7f) != 4) && (((rate[i]) & 0x7f) != 11) && (((rate[i]) & 0x7f) != 22)) return _FALSE; i++; } return _TRUE; } int rtw_check_network_type(unsigned char *rate, int ratelen, int channel) { if (channel > 14) { if ((rtw_is_cckrates_included(rate)) == _TRUE) return WIRELESS_INVALID; else return WIRELESS_11A; } else { /* could be pure B, pure G, or B/G */ if ((rtw_is_cckratesonly_included(rate)) == _TRUE) return WIRELESS_11B; else if ((rtw_is_cckrates_included(rate)) == _TRUE) return WIRELESS_11BG; else return WIRELESS_11G; } } u8 *rtw_set_fixed_ie(unsigned char *pbuf, unsigned int len, unsigned char *source, unsigned int *frlen) { _rtw_memcpy((void *)pbuf, (void *)source, len); *frlen = *frlen + len; return pbuf + len; } /* rtw_set_ie will update frame length */ u8 *rtw_set_ie ( u8 *pbuf, sint index, uint len, u8 *source, uint *frlen /* frame length */ ) { *pbuf = (u8)index; *(pbuf + 1) = (u8)len; if (len > 0) _rtw_memcpy((void *)(pbuf + 2), (void *)source, len); *frlen = *frlen + (len + 2); return pbuf + len + 2; } inline u8 *rtw_set_ie_ch_switch(u8 *buf, u32 *buf_len, u8 ch_switch_mode, u8 new_ch, u8 ch_switch_cnt) { u8 ie_data[3]; ie_data[0] = ch_switch_mode; ie_data[1] = new_ch; ie_data[2] = ch_switch_cnt; return rtw_set_ie(buf, WLAN_EID_CHANNEL_SWITCH, 3, ie_data, buf_len); } inline u8 secondary_ch_offset_to_hal_ch_offset(u8 ch_offset) { if (ch_offset == SCN) return HAL_PRIME_CHNL_OFFSET_DONT_CARE; else if (ch_offset == SCA) return HAL_PRIME_CHNL_OFFSET_UPPER; else if (ch_offset == SCB) return HAL_PRIME_CHNL_OFFSET_LOWER; return HAL_PRIME_CHNL_OFFSET_DONT_CARE; } inline u8 hal_ch_offset_to_secondary_ch_offset(u8 ch_offset) { if (ch_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE) return SCN; else if (ch_offset == HAL_PRIME_CHNL_OFFSET_LOWER) return SCB; else if (ch_offset == HAL_PRIME_CHNL_OFFSET_UPPER) return SCA; return SCN; } inline u8 *rtw_set_ie_secondary_ch_offset(u8 *buf, u32 *buf_len, u8 secondary_ch_offset) { return rtw_set_ie(buf, WLAN_EID_SECONDARY_CHANNEL_OFFSET, 1, &secondary_ch_offset, buf_len); } inline u8 *rtw_set_ie_mesh_ch_switch_parm(u8 *buf, u32 *buf_len, u8 ttl, u8 flags, u16 reason, u16 precedence) { u8 ie_data[6]; ie_data[0] = ttl; ie_data[1] = flags; RTW_PUT_LE16((u8 *)&ie_data[2], reason); RTW_PUT_LE16((u8 *)&ie_data[4], precedence); return rtw_set_ie(buf, 0x118, 6, ie_data, buf_len); } /*---------------------------------------------------------------------------- index: the information element id index, limit is the limit for search -----------------------------------------------------------------------------*/ u8 *rtw_get_ie(u8 *pbuf, sint index, sint *len, sint limit) { sint tmp, i; u8 *p; if (limit < 1) { return NULL; } p = pbuf; i = 0; *len = 0; while (1) { if (*p == index) { *len = *(p + 1); return p; } else { tmp = *(p + 1); p += (tmp + 2); i += (tmp + 2); } if (i >= limit) break; } return NULL; } /** * rtw_get_ie_ex - Search specific IE from a series of IEs * @in_ie: Address of IEs to search * @in_len: Length limit from in_ie * @eid: Element ID to match * @oui: OUI to match * @oui_len: OUI length * @ie: If not NULL and the specific IE is found, the IE will be copied to the buf starting from the specific IE * @ielen: If not NULL and the specific IE is found, will set to the length of the entire IE * * Returns: The address of the specific IE found, or NULL */ u8 *rtw_get_ie_ex(u8 *in_ie, uint in_len, u8 eid, u8 *oui, u8 oui_len, u8 *ie, uint *ielen) { uint cnt; u8 *target_ie = NULL; if (ielen) *ielen = 0; if (!in_ie || in_len <= 0) return target_ie; cnt = 0; while (cnt < in_len) { if (eid == in_ie[cnt] && (!oui || _rtw_memcmp(&in_ie[cnt + 2], oui, oui_len) == _TRUE)) { target_ie = &in_ie[cnt]; if (ie) _rtw_memcpy(ie, &in_ie[cnt], in_ie[cnt + 1] + 2); if (ielen) *ielen = in_ie[cnt + 1] + 2; break; } else { cnt += in_ie[cnt + 1] + 2; /* goto next */ } } return target_ie; } /** * rtw_ies_remove_ie - Find matching IEs and remove * @ies: Address of IEs to search * @ies_len: Pointer of length of ies, will update to new length * @offset: The offset to start scarch * @eid: Element ID to match * @oui: OUI to match * @oui_len: OUI length * * Returns: _SUCCESS: ies is updated, _FAIL: not updated */ int rtw_ies_remove_ie(u8 *ies, uint *ies_len, uint offset, u8 eid, u8 *oui, u8 oui_len) { int ret = _FAIL; u8 *target_ie; u32 target_ielen; u8 *start; uint search_len; if (!ies || !ies_len || *ies_len <= offset) goto exit; start = ies + offset; search_len = *ies_len - offset; while (1) { target_ie = rtw_get_ie_ex(start, search_len, eid, oui, oui_len, NULL, &target_ielen); if (target_ie && target_ielen) { u8 *remain_ies = target_ie + target_ielen; uint remain_len = search_len - (remain_ies - start); _rtw_memmove(target_ie, remain_ies, remain_len); *ies_len = *ies_len - target_ielen; ret = _SUCCESS; start = target_ie; search_len = remain_len; } else break; } exit: return ret; } void rtw_set_supported_rate(u8 *SupportedRates, uint mode) { _rtw_memset(SupportedRates, 0, NDIS_802_11_LENGTH_RATES_EX); switch (mode) { case WIRELESS_11B: _rtw_memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN); break; case WIRELESS_11G: case WIRELESS_11A: case WIRELESS_11_5N: case WIRELESS_11A_5N: /* Todo: no basic rate for ofdm ? */ case WIRELESS_11_5AC: _rtw_memcpy(SupportedRates, WIFI_OFDMRATES, IEEE80211_NUM_OFDM_RATESLEN); break; case WIRELESS_11BG: case WIRELESS_11G_24N: case WIRELESS_11_24N: case WIRELESS_11BG_24N: _rtw_memcpy(SupportedRates, WIFI_CCKRATES, IEEE80211_CCK_RATE_LEN); _rtw_memcpy(SupportedRates + IEEE80211_CCK_RATE_LEN, WIFI_OFDMRATES, IEEE80211_NUM_OFDM_RATESLEN); break; } } uint rtw_get_rateset_len(u8 *rateset) { uint i = 0; while (1) { if ((rateset[i]) == 0) break; if (i > 12) break; i++; } return i; } int rtw_generate_ie(struct registry_priv *pregistrypriv) { u8 wireless_mode; int sz = 0, rateLen; WLAN_BSSID_EX *pdev_network = &pregistrypriv->dev_network; u8 *ie = pdev_network->IEs; /* timestamp will be inserted by hardware */ sz += 8; ie += sz; /* beacon interval : 2bytes */ *(u16 *)ie = cpu_to_le16((u16)pdev_network->Configuration.BeaconPeriod); /* BCN_INTERVAL; */ sz += 2; ie += 2; /* capability info */ *(u16 *)ie = 0; *(u16 *)ie |= cpu_to_le16(cap_IBSS); if (pregistrypriv->preamble == PREAMBLE_SHORT) *(u16 *)ie |= cpu_to_le16(cap_ShortPremble); if (pdev_network->Privacy) *(u16 *)ie |= cpu_to_le16(cap_Privacy); sz += 2; ie += 2; /* SSID */ ie = rtw_set_ie(ie, _SSID_IE_, pdev_network->Ssid.SsidLength, pdev_network->Ssid.Ssid, &sz); /* supported rates */ if (pregistrypriv->wireless_mode == WIRELESS_11ABGN) { if (pdev_network->Configuration.DSConfig > 14) wireless_mode = WIRELESS_11A_5N; else wireless_mode = WIRELESS_11BG_24N; } else if (pregistrypriv->wireless_mode == WIRELESS_MODE_MAX) { /* WIRELESS_11ABGN | WIRELESS_11AC */ if (pdev_network->Configuration.DSConfig > 14) wireless_mode = WIRELESS_11_5AC; else wireless_mode = WIRELESS_11BG_24N; } else wireless_mode = pregistrypriv->wireless_mode; rtw_set_supported_rate(pdev_network->SupportedRates, wireless_mode) ; rateLen = rtw_get_rateset_len(pdev_network->SupportedRates); if (rateLen > 8) { ie = rtw_set_ie(ie, _SUPPORTEDRATES_IE_, 8, pdev_network->SupportedRates, &sz); /* ie = rtw_set_ie(ie, _EXT_SUPPORTEDRATES_IE_, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz); */ } else ie = rtw_set_ie(ie, _SUPPORTEDRATES_IE_, rateLen, pdev_network->SupportedRates, &sz); /* DS parameter set */ ie = rtw_set_ie(ie, _DSSET_IE_, 1, (u8 *)&(pdev_network->Configuration.DSConfig), &sz); /* IBSS Parameter Set */ ie = rtw_set_ie(ie, _IBSS_PARA_IE_, 2, (u8 *)&(pdev_network->Configuration.ATIMWindow), &sz); if (rateLen > 8) ie = rtw_set_ie(ie, _EXT_SUPPORTEDRATES_IE_, (rateLen - 8), (pdev_network->SupportedRates + 8), &sz); #ifdef CONFIG_80211N_HT /* HT Cap. */ if (((pregistrypriv->wireless_mode & WIRELESS_11_5N) || (pregistrypriv->wireless_mode & WIRELESS_11_24N)) && (pregistrypriv->ht_enable == _TRUE)) { /* todo: */ } #endif /* CONFIG_80211N_HT */ /* pdev_network->IELength = sz; */ /* update IELength */ /* return _SUCCESS; */ return sz; } unsigned char *rtw_get_wpa_ie(unsigned char *pie, int *wpa_ie_len, int limit) { int len; u16 val16; unsigned char wpa_oui_type[] = {0x00, 0x50, 0xf2, 0x01}; u8 *pbuf = pie; int limit_new = limit; while (1) { pbuf = rtw_get_ie(pbuf, _WPA_IE_ID_, &len, limit_new); if (pbuf) { /* check if oui matches... */ if (_rtw_memcmp((pbuf + 2), wpa_oui_type, sizeof(wpa_oui_type)) == _FALSE) goto check_next_ie; /* check version... */ _rtw_memcpy((u8 *)&val16, (pbuf + 6), sizeof(val16)); val16 = le16_to_cpu(val16); if (val16 != 0x0001) goto check_next_ie; *wpa_ie_len = *(pbuf + 1); return pbuf; } else { *wpa_ie_len = 0; return NULL; } check_next_ie: limit_new = limit - (pbuf - pie) - 2 - len; if (limit_new <= 0) break; pbuf += (2 + len); } *wpa_ie_len = 0; return NULL; } unsigned char *rtw_get_wpa2_ie(unsigned char *pie, int *rsn_ie_len, int limit) { return rtw_get_ie(pie, _WPA2_IE_ID_, rsn_ie_len, limit); } int rtw_get_wpa_cipher_suite(u8 *s) { if (_rtw_memcmp(s, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_NONE; if (_rtw_memcmp(s, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_WEP40; if (_rtw_memcmp(s, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_TKIP; if (_rtw_memcmp(s, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_CCMP; if (_rtw_memcmp(s, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_WEP104; return 0; } int rtw_get_wpa2_cipher_suite(u8 *s) { if (_rtw_memcmp(s, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_NONE; if (_rtw_memcmp(s, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_WEP40; if (_rtw_memcmp(s, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_TKIP; if (_rtw_memcmp(s, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_CCMP; if (_rtw_memcmp(s, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN) == _TRUE) return WPA_CIPHER_WEP104; return 0; } int rtw_parse_wpa_ie(u8 *wpa_ie, int wpa_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x) { int i, ret = _SUCCESS; int left, count; u8 *pos; u8 SUITE_1X[4] = {0x00, 0x50, 0xf2, 1}; if (wpa_ie_len <= 0) { /* No WPA IE - fail silently */ return _FAIL; } if ((*wpa_ie != _WPA_IE_ID_) || (*(wpa_ie + 1) != (u8)(wpa_ie_len - 2)) || (_rtw_memcmp(wpa_ie + 2, RTW_WPA_OUI_TYPE, WPA_SELECTOR_LEN) != _TRUE)) return _FAIL; pos = wpa_ie; pos += 8; left = wpa_ie_len - 8; /* group_cipher */ if (left >= WPA_SELECTOR_LEN) { *group_cipher = rtw_get_wpa_cipher_suite(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } else if (left > 0) { return _FAIL; } /* pairwise_cipher */ if (left >= 2) { /* count = le16_to_cpu(*(u16*)pos); */ count = RTW_GET_LE16(pos); pos += 2; left -= 2; if (count == 0 || left < count * WPA_SELECTOR_LEN) { return _FAIL; } for (i = 0; i < count; i++) { *pairwise_cipher |= rtw_get_wpa_cipher_suite(pos); pos += WPA_SELECTOR_LEN; left -= WPA_SELECTOR_LEN; } } else if (left == 1) { return _FAIL; } if (is_8021x) { if (left >= 6) { pos += 2; if (_rtw_memcmp(pos, SUITE_1X, 4) == 1) { *is_8021x = 1; } } } return ret; } int rtw_parse_wpa2_ie(u8 *rsn_ie, int rsn_ie_len, int *group_cipher, int *pairwise_cipher, int *is_8021x) { int i, ret = _SUCCESS; int left, count; u8 *pos; u8 SUITE_1X[4] = {0x00, 0x0f, 0xac, 0x01}; if (rsn_ie_len <= 0) { /* No RSN IE - fail silently */ return _FAIL; } if ((*rsn_ie != _WPA2_IE_ID_) || (*(rsn_ie + 1) != (u8)(rsn_ie_len - 2))) return _FAIL; pos = rsn_ie; pos += 4; left = rsn_ie_len - 4; /* group_cipher */ if (left >= RSN_SELECTOR_LEN) { *group_cipher = rtw_get_wpa2_cipher_suite(pos); pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } else if (left > 0) { return _FAIL; } /* pairwise_cipher */ if (left >= 2) { /* count = le16_to_cpu(*(u16*)pos); */ count = RTW_GET_LE16(pos); pos += 2; left -= 2; if (count == 0 || left < count * RSN_SELECTOR_LEN) { return _FAIL; } for (i = 0; i < count; i++) { *pairwise_cipher |= rtw_get_wpa2_cipher_suite(pos); pos += RSN_SELECTOR_LEN; left -= RSN_SELECTOR_LEN; } } else if (left == 1) { return _FAIL; } if (is_8021x) { if (left >= 6) { pos += 2; if (_rtw_memcmp(pos, SUITE_1X, 4) == 1) { *is_8021x = 1; } } } return ret; } /* #ifdef CONFIG_WAPI_SUPPORT */ int rtw_get_wapi_ie(u8 *in_ie, uint in_len, u8 *wapi_ie, u16 *wapi_len) { int len = 0; u8 authmode, i; uint cnt; u8 wapi_oui1[4] = {0x0, 0x14, 0x72, 0x01}; u8 wapi_oui2[4] = {0x0, 0x14, 0x72, 0x02}; if (wapi_len) *wapi_len = 0; if (!in_ie || in_len <= 0) return len; cnt = (_TIMESTAMP_ + _BEACON_ITERVAL_ + _CAPABILITY_); while (cnt < in_len) { authmode = in_ie[cnt]; /* if(authmode==_WAPI_IE_) */ if (authmode == _WAPI_IE_ && (_rtw_memcmp(&in_ie[cnt + 6], wapi_oui1, 4) == _TRUE || _rtw_memcmp(&in_ie[cnt + 6], wapi_oui2, 4) == _TRUE)) { if (wapi_ie) _rtw_memcpy(wapi_ie, &in_ie[cnt], in_ie[cnt + 1] + 2); if (wapi_len) *wapi_len = in_ie[cnt + 1] + 2; cnt += in_ie[cnt + 1] + 2; /* get next */ } else { cnt += in_ie[cnt + 1] + 2; /* get next */ } } if (wapi_len) len = *wapi_len; return len; } /* #endif */ int rtw_get_sec_ie(u8 *in_ie, uint in_len, u8 *rsn_ie, u16 *rsn_len, u8 *wpa_ie, u16 *wpa_len) { u8 authmode, sec_idx, i; u8 wpa_oui[4] = {0x0, 0x50, 0xf2, 0x01}; uint cnt; /* Search required WPA or WPA2 IE and copy to sec_ie[ ] */ cnt = (_TIMESTAMP_ + _BEACON_ITERVAL_ + _CAPABILITY_); sec_idx = 0; while (cnt < in_len) { authmode = in_ie[cnt]; if ((authmode == _WPA_IE_ID_) && (_rtw_memcmp(&in_ie[cnt + 2], &wpa_oui[0], 4) == _TRUE)) { if (wpa_ie) _rtw_memcpy(wpa_ie, &in_ie[cnt], in_ie[cnt + 1] + 2); *wpa_len = in_ie[cnt + 1] + 2; cnt += in_ie[cnt + 1] + 2; /* get next */ } else { if (authmode == _WPA2_IE_ID_) { if (rsn_ie) _rtw_memcpy(rsn_ie, &in_ie[cnt], in_ie[cnt + 1] + 2); *rsn_len = in_ie[cnt + 1] + 2; cnt += in_ie[cnt + 1] + 2; /* get next */ } else { cnt += in_ie[cnt + 1] + 2; /* get next */ } } } return *rsn_len + *wpa_len; } u8 rtw_is_wps_ie(u8 *ie_ptr, uint *wps_ielen) { u8 match = _FALSE; u8 eid, wps_oui[4] = {0x0, 0x50, 0xf2, 0x04}; if (ie_ptr == NULL) return match; eid = ie_ptr[0]; if ((eid == _WPA_IE_ID_) && (_rtw_memcmp(&ie_ptr[2], wps_oui, 4) == _TRUE)) { /* RTW_INFO("==> found WPS_IE.....\n"); */ *wps_ielen = ie_ptr[1] + 2; match = _TRUE; } return match; } u8 *rtw_get_wps_ie_from_scan_queue(u8 *in_ie, uint in_len, u8 *wps_ie, uint *wps_ielen, enum bss_type frame_type) { u8 *wps = NULL; RTW_INFO("[%s] frame_type = %d\n", __FUNCTION__, frame_type); switch (frame_type) { case BSS_TYPE_BCN: case BSS_TYPE_PROB_RSP: { /* Beacon or Probe Response */ wps = rtw_get_wps_ie(in_ie + _PROBERSP_IE_OFFSET_, in_len - _PROBERSP_IE_OFFSET_, wps_ie, wps_ielen); break; } case BSS_TYPE_PROB_REQ: { /* Probe Request */ wps = rtw_get_wps_ie(in_ie + _PROBEREQ_IE_OFFSET_ , in_len - _PROBEREQ_IE_OFFSET_ , wps_ie, wps_ielen); break; } default: case BSS_TYPE_UNDEF: break; } return wps; } /** * rtw_get_wps_ie - Search WPS IE from a series of IEs * @in_ie: Address of IEs to search * @in_len: Length limit from in_ie * @wps_ie: If not NULL and WPS IE is found, WPS IE will be copied to the buf starting from wps_ie * @wps_ielen: If not NULL and WPS IE is found, will set to the length of the entire WPS IE * * Returns: The address of the WPS IE found, or NULL */ u8 *rtw_get_wps_ie(u8 *in_ie, uint in_len, u8 *wps_ie, uint *wps_ielen) { uint cnt; u8 *wpsie_ptr = NULL; u8 eid, wps_oui[4] = {0x00, 0x50, 0xf2, 0x04}; if (wps_ielen) *wps_ielen = 0; if (!in_ie) { rtw_warn_on(1); return wpsie_ptr; } if (in_len <= 0) return wpsie_ptr; cnt = 0; while (cnt + 1 + 4 < in_len) { eid = in_ie[cnt]; if (cnt + 1 + 4 >= MAX_IE_SZ) { rtw_warn_on(1); return NULL; } if (eid == WLAN_EID_VENDOR_SPECIFIC && _rtw_memcmp(&in_ie[cnt + 2], wps_oui, 4) == _TRUE) { wpsie_ptr = in_ie + cnt; if (wps_ie) _rtw_memcpy(wps_ie, &in_ie[cnt], in_ie[cnt + 1] + 2); if (wps_ielen) *wps_ielen = in_ie[cnt + 1] + 2; break; } else cnt += in_ie[cnt + 1] + 2; } return wpsie_ptr; } /** * rtw_get_wps_attr - Search a specific WPS attribute from a given WPS IE * @wps_ie: Address of WPS IE to search * @wps_ielen: Length limit from wps_ie * @target_attr_id: The attribute ID of WPS attribute to search * @buf_attr: If not NULL and the WPS attribute is found, WPS attribute will be copied to the buf starting from buf_attr * @len_attr: If not NULL and the WPS attribute is found, will set to the length of the entire WPS attribute * * Returns: the address of the specific WPS attribute found, or NULL */ u8 *rtw_get_wps_attr(u8 *wps_ie, uint wps_ielen, u16 target_attr_id , u8 *buf_attr, u32 *len_attr) { u8 *attr_ptr = NULL; u8 *target_attr_ptr = NULL; u8 wps_oui[4] = {0x00, 0x50, 0xF2, 0x04}; if (len_attr) *len_attr = 0; if ((wps_ie[0] != _VENDOR_SPECIFIC_IE_) || (_rtw_memcmp(wps_ie + 2, wps_oui , 4) != _TRUE)) return attr_ptr; /* 6 = 1(Element ID) + 1(Length) + 4(WPS OUI) */ attr_ptr = wps_ie + 6; /* goto first attr */ while (attr_ptr - wps_ie < wps_ielen) { /* 4 = 2(Attribute ID) + 2(Length) */ u16 attr_id = RTW_GET_BE16(attr_ptr); u16 attr_data_len = RTW_GET_BE16(attr_ptr + 2); u16 attr_len = attr_data_len + 4; /* RTW_INFO("%s attr_ptr:%p, id:%u, length:%u\n", __FUNCTION__, attr_ptr, attr_id, attr_data_len); */ if (attr_id == target_attr_id) { target_attr_ptr = attr_ptr; if (buf_attr) _rtw_memcpy(buf_attr, attr_ptr, attr_len); if (len_attr) *len_attr = attr_len; break; } else { attr_ptr += attr_len; /* goto next */ } } return target_attr_ptr; } /** * rtw_get_wps_attr_content - Search a specific WPS attribute content from a given WPS IE * @wps_ie: Address of WPS IE to search * @wps_ielen: Length limit from wps_ie * @target_attr_id: The attribute ID of WPS attribute to search * @buf_content: If not NULL and the WPS attribute is found, WPS attribute content will be copied to the buf starting from buf_content * @len_content: If not NULL and the WPS attribute is found, will set to the length of the WPS attribute content * * Returns: the address of the specific WPS attribute content found, or NULL */ u8 *rtw_get_wps_attr_content(u8 *wps_ie, uint wps_ielen, u16 target_attr_id , u8 *buf_content, uint *len_content) { u8 *attr_ptr; u32 attr_len; if (len_content) *len_content = 0; attr_ptr = rtw_get_wps_attr(wps_ie, wps_ielen, target_attr_id, NULL, &attr_len); if (attr_ptr && attr_len) { if (buf_content) _rtw_memcpy(buf_content, attr_ptr + 4, attr_len - 4); if (len_content) *len_content = attr_len - 4; return attr_ptr + 4; } return NULL; } static int rtw_ieee802_11_parse_vendor_specific(u8 *pos, uint elen, struct rtw_ieee802_11_elems *elems, int show_errors) { unsigned int oui; /* first 3 bytes in vendor specific information element are the IEEE * OUI of the vendor. The following byte is used a vendor specific * sub-type. */ if (elen < 4) { if (show_errors) { RTW_INFO("short vendor specific " "information element ignored (len=%lu)\n", (unsigned long) elen); } return -1; } oui = RTW_GET_BE24(pos); switch (oui) { case OUI_MICROSOFT: /* Microsoft/Wi-Fi information elements are further typed and * subtyped */ switch (pos[3]) { case 1: /* Microsoft OUI (00:50:F2) with OUI Type 1: * real WPA information element */ elems->wpa_ie = pos; elems->wpa_ie_len = elen; break; case WME_OUI_TYPE: /* this is a Wi-Fi WME info. element */ if (elen < 5) { RTW_DBG("short WME " "information element ignored " "(len=%lu)\n", (unsigned long) elen); return -1; } switch (pos[4]) { case WME_OUI_SUBTYPE_INFORMATION_ELEMENT: case WME_OUI_SUBTYPE_PARAMETER_ELEMENT: elems->wme = pos; elems->wme_len = elen; break; case WME_OUI_SUBTYPE_TSPEC_ELEMENT: elems->wme_tspec = pos; elems->wme_tspec_len = elen; break; default: RTW_DBG("unknown WME " "information element ignored " "(subtype=%d len=%lu)\n", pos[4], (unsigned long) elen); return -1; } break; case 4: /* Wi-Fi Protected Setup (WPS) IE */ elems->wps_ie = pos; elems->wps_ie_len = elen; break; default: RTW_DBG("Unknown Microsoft " "information element ignored " "(type=%d len=%lu)\n", pos[3], (unsigned long) elen); return -1; } break; case OUI_BROADCOM: switch (pos[3]) { case VENDOR_HT_CAPAB_OUI_TYPE: elems->vendor_ht_cap = pos; elems->vendor_ht_cap_len = elen; break; default: RTW_DBG("Unknown Broadcom " "information element ignored " "(type=%d len=%lu)\n", pos[3], (unsigned long) elen); return -1; } break; default: RTW_DBG("unknown vendor specific information " "element ignored (vendor OUI %02x:%02x:%02x " "len=%lu)\n", pos[0], pos[1], pos[2], (unsigned long) elen); return -1; } return 0; } /** * ieee802_11_parse_elems - Parse information elements in management frames * @start: Pointer to the start of IEs * @len: Length of IE buffer in octets * @elems: Data structure for parsed elements * @show_errors: Whether to show parsing errors in debug log * Returns: Parsing result */ ParseRes rtw_ieee802_11_parse_elems(u8 *start, uint len, struct rtw_ieee802_11_elems *elems, int show_errors) { uint left = len; u8 *pos = start; int unknown = 0; _rtw_memset(elems, 0, sizeof(*elems)); while (left >= 2) { u8 id, elen; id = *pos++; elen = *pos++; left -= 2; if (elen > left) { if (show_errors) { RTW_INFO("IEEE 802.11 element " "parse failed (id=%d elen=%d " "left=%lu)\n", id, elen, (unsigned long) left); } return ParseFailed; } switch (id) { case WLAN_EID_SSID: elems->ssid = pos; elems->ssid_len = elen; break; case WLAN_EID_SUPP_RATES: elems->supp_rates = pos; elems->supp_rates_len = elen; break; case WLAN_EID_FH_PARAMS: elems->fh_params = pos; elems->fh_params_len = elen; break; case WLAN_EID_DS_PARAMS: elems->ds_params = pos; elems->ds_params_len = elen; break; case WLAN_EID_CF_PARAMS: elems->cf_params = pos; elems->cf_params_len = elen; break; case WLAN_EID_TIM: elems->tim = pos; elems->tim_len = elen; break; case WLAN_EID_IBSS_PARAMS: elems->ibss_params = pos; elems->ibss_params_len = elen; break; case WLAN_EID_CHALLENGE: elems->challenge = pos; elems->challenge_len = elen; break; case WLAN_EID_ERP_INFO: elems->erp_info = pos; elems->erp_info_len = elen; break; case WLAN_EID_EXT_SUPP_RATES: elems->ext_supp_rates = pos; elems->ext_supp_rates_len = elen; break; case WLAN_EID_VENDOR_SPECIFIC: if (rtw_ieee802_11_parse_vendor_specific(pos, elen, elems, show_errors)) unknown++; break; case WLAN_EID_RSN: elems->rsn_ie = pos; elems->rsn_ie_len = elen; break; case WLAN_EID_PWR_CAPABILITY: elems->power_cap = pos; elems->power_cap_len = elen; break; case WLAN_EID_SUPPORTED_CHANNELS: elems->supp_channels = pos; elems->supp_channels_len = elen; break; case WLAN_EID_MOBILITY_DOMAIN: elems->mdie = pos; elems->mdie_len = elen; break; case WLAN_EID_FAST_BSS_TRANSITION: elems->ftie = pos; elems->ftie_len = elen; break; case WLAN_EID_TIMEOUT_INTERVAL: elems->timeout_int = pos; elems->timeout_int_len = elen; break; case WLAN_EID_HT_CAPABILITY: elems->ht_capabilities = pos; elems->ht_capabilities_len = elen; break; case WLAN_EID_HT_OPERATION: elems->ht_operation = pos; elems->ht_operation_len = elen; break; case WLAN_EID_VHT_CAPABILITY: elems->vht_capabilities = pos; elems->vht_capabilities_len = elen; break; case WLAN_EID_VHT_OPERATION: elems->vht_operation = pos; elems->vht_operation_len = elen; break; case WLAN_EID_OPMODE_NOTIF: elems->vht_op_mode_notify = pos; elems->vht_op_mode_notify_len = elen; break; default: unknown++; if (!show_errors) break; RTW_DBG("IEEE 802.11 element parse " "ignored unknown element (id=%d elen=%d)\n", id, elen); break; } left -= elen; pos += elen; } if (left) return ParseFailed; return unknown ? ParseUnknown : ParseOK; } static u8 key_char2num(u8 ch); static u8 key_char2num(u8 ch) { if ((ch >= '0') && (ch <= '9')) return ch - '0'; else if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10; else if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10; else return 0xff; } u8 str_2char2num(u8 hch, u8 lch); u8 str_2char2num(u8 hch, u8 lch) { return (key_char2num(hch) * 10) + key_char2num(lch); } u8 key_2char2num(u8 hch, u8 lch); u8 key_2char2num(u8 hch, u8 lch) { return (key_char2num(hch) << 4) | key_char2num(lch); } void macstr2num(u8 *dst, u8 *src); void macstr2num(u8 *dst, u8 *src) { int jj, kk; for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 3) dst[jj] = key_2char2num(src[kk], src[kk + 1]); } u8 convert_ip_addr(u8 hch, u8 mch, u8 lch) { return (key_char2num(hch) * 100) + (key_char2num(mch) * 10) + key_char2num(lch); } #ifdef CONFIG_PLATFORM_INTEL_BYT #define MAC_ADDRESS_LEN 12 int rtw_get_mac_addr_intel(unsigned char *buf) { int ret = 0; int i; struct file *fp = NULL; mm_segment_t oldfs; unsigned char c_mac[MAC_ADDRESS_LEN]; char fname[] = "/config/wifi/mac.txt"; int jj, kk; RTW_INFO("%s Enter\n", __FUNCTION__); ret = rtw_retrieve_from_file(fname, c_mac, MAC_ADDRESS_LEN); if (ret < MAC_ADDRESS_LEN) return -1; for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 2) buf[jj] = key_2char2num(c_mac[kk], c_mac[kk + 1]); RTW_INFO("%s: read from file mac address: "MAC_FMT"\n", __FUNCTION__, MAC_ARG(buf)); return 0; } #endif /* CONFIG_PLATFORM_INTEL_BYT */ /* * Description: * rtw_check_invalid_mac_address: * This is only used for checking mac address valid or not. * * Input: * adapter: mac_address pointer. * check_local_bit: check locally bit or not. * * Output: * _TRUE: The mac address is invalid. * _FALSE: The mac address is valid. * * Auther: Isaac.Li */ u8 rtw_check_invalid_mac_address(u8 *mac_addr, u8 check_local_bit) { u8 null_mac_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; u8 multi_mac_addr[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; u8 res = _FALSE; if (_rtw_memcmp(mac_addr, null_mac_addr, ETH_ALEN)) { res = _TRUE; goto func_exit; } if (_rtw_memcmp(mac_addr, multi_mac_addr, ETH_ALEN)) { res = _TRUE; goto func_exit; } if (mac_addr[0] & BIT0) { res = _TRUE; goto func_exit; } if (check_local_bit == _TRUE) { if (mac_addr[0] & BIT1) { res = _TRUE; goto func_exit; } } func_exit: return res; } extern char *rtw_initmac; /** * rtw_macaddr_cfg - Decide the mac address used * @out: buf to store mac address decided * @hw_mac_addr: mac address from efuse/epprom */ void rtw_macaddr_cfg(u8 *out, const u8 *hw_mac_addr) { #define DEFAULT_RANDOM_MACADDR 1 u8 mac[ETH_ALEN]; if (out == NULL) { rtw_warn_on(1); return; } /* Users specify the mac address */ if (rtw_initmac) { int jj, kk; for (jj = 0, kk = 0; jj < ETH_ALEN; jj++, kk += 3) mac[jj] = key_2char2num(rtw_initmac[kk], rtw_initmac[kk + 1]); goto err_chk; } /* platform specified */ #ifdef CONFIG_PLATFORM_INTEL_BYT if (rtw_get_mac_addr_intel(mac) == 0) goto err_chk; #endif /* Use the mac address stored in the Efuse */ if (hw_mac_addr) { _rtw_memcpy(mac, hw_mac_addr, ETH_ALEN); goto err_chk; } err_chk: if (rtw_check_invalid_mac_address(mac, _TRUE) == _TRUE) { #if DEFAULT_RANDOM_MACADDR RTW_ERR("invalid mac addr:"MAC_FMT", assign random MAC\n", MAC_ARG(mac)); *((u32 *)(&mac[2])) = rtw_random32(); mac[0] = 0x00; mac[1] = 0xe0; mac[2] = 0x4c; #else RTW_ERR("invalid mac addr:"MAC_FMT", assign default one\n", MAC_ARG(mac)); mac[0] = 0x00; mac[1] = 0xe0; mac[2] = 0x4c; mac[3] = 0x87; mac[4] = 0x00; mac[5] = 0x00; #endif } _rtw_memcpy(out, mac, ETH_ALEN); RTW_INFO("%s mac addr:"MAC_FMT"\n", __func__, MAC_ARG(out)); } #ifdef CONFIG_80211N_HT void dump_ht_cap_ie_content(void *sel, u8 *buf, u32 buf_len) { if (buf_len != 26) { RTW_PRINT_SEL(sel, "Invalid HT capability IE len:%d != %d\n", buf_len, 26); return; } RTW_PRINT_SEL(sel, "HT Capabilities Info:%02x%02x\n", *(buf), *(buf + 1)); RTW_PRINT_SEL(sel, "A-MPDU Parameters:"HT_AMPDU_PARA_FMT"\n" , HT_AMPDU_PARA_ARG(HT_CAP_ELE_AMPDU_PARA(buf))); RTW_PRINT_SEL(sel, "Supported MCS Set:"HT_SUP_MCS_SET_FMT"\n" , HT_SUP_MCS_SET_ARG(HT_CAP_ELE_SUP_MCS_SET(buf))); } void dump_ht_cap_ie(void *sel, u8 *ie, u32 ie_len) { u8 *pos = (u8 *)ie; u16 id; u16 len; u8 *ht_cap_ie; sint ht_cap_ielen; ht_cap_ie = rtw_get_ie(ie, _HT_CAPABILITY_IE_, &ht_cap_ielen, ie_len); if (!ie || ht_cap_ie != ie) return; dump_ht_cap_ie_content(sel, ht_cap_ie + 2, ht_cap_ielen); } #endif /* CONFIG_80211N_HT */ void dump_ies(void *sel, u8 *buf, u32 buf_len) { u8 *pos = (u8 *)buf; u8 id, len; while (pos - buf + 1 < buf_len) { id = *pos; len = *(pos + 1); RTW_PRINT_SEL(sel, "%s ID:%u, LEN:%u\n", __FUNCTION__, id, len); #ifdef CONFIG_80211N_HT dump_ht_cap_ie(sel, pos, len + 2); #endif dump_wps_ie(sel, pos, len + 2); #ifdef CONFIG_P2P dump_p2p_ie(sel, pos, len + 2); #ifdef CONFIG_WFD dump_wfd_ie(sel, pos, len + 2); #endif #endif pos += (2 + len); } } void dump_wps_ie(void *sel, u8 *ie, u32 ie_len) { u8 *pos = (u8 *)ie; u16 id; u16 len; u8 *wps_ie; uint wps_ielen; wps_ie = rtw_get_wps_ie(ie, ie_len, NULL, &wps_ielen); if (wps_ie != ie || wps_ielen == 0) return; pos += 6; while (pos - ie + 4 <= ie_len) { id = RTW_GET_BE16(pos); len = RTW_GET_BE16(pos + 2); RTW_PRINT_SEL(sel, "%s ID:0x%04x, LEN:%u%s\n", __func__, id, len , ((pos - ie + 4 + len) <= ie_len) ? "" : "(exceed ie_len)"); pos += (4 + len); } } /** * rtw_ies_get_chbw - get operation ch, bw, offset from IEs of BSS. * @ies: pointer of the first tlv IE * @ies_len: length of @ies * @ch: pointer of ch, used as output * @bw: pointer of bw, used as output * @offset: pointer of offset, used as output */ void rtw_ies_get_chbw(u8 *ies, int ies_len, u8 *ch, u8 *bw, u8 *offset) { u8 *p; int ie_len; *ch = 0; *bw = CHANNEL_WIDTH_20; *offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; p = rtw_get_ie(ies, _DSSET_IE_, &ie_len, ies_len); if (p && ie_len > 0) *ch = *(p + 2); #ifdef CONFIG_80211N_HT { u8 *ht_cap_ie, *ht_op_ie; int ht_cap_ielen, ht_op_ielen; ht_cap_ie = rtw_get_ie(ies, EID_HTCapability, &ht_cap_ielen, ies_len); if (ht_cap_ie && ht_cap_ielen) { if (GET_HT_CAP_ELE_CHL_WIDTH(ht_cap_ie + 2)) *bw = CHANNEL_WIDTH_40; } ht_op_ie = rtw_get_ie(ies, EID_HTInfo, &ht_op_ielen, ies_len); if (ht_op_ie && ht_op_ielen) { if (*ch == 0) *ch = GET_HT_OP_ELE_PRI_CHL(ht_op_ie + 2); else if (*ch != 0 && *ch != GET_HT_OP_ELE_PRI_CHL(ht_op_ie + 2)) { RTW_INFO("%s ch inconsistent, DSSS:%u, HT primary:%u\n" , __func__, *ch, GET_HT_OP_ELE_PRI_CHL(ht_op_ie + 2)); } if (!GET_HT_OP_ELE_STA_CHL_WIDTH(ht_op_ie + 2)) *bw = CHANNEL_WIDTH_20; if (*bw == CHANNEL_WIDTH_40) { switch (GET_HT_OP_ELE_2ND_CHL_OFFSET(ht_op_ie + 2)) { case SCA: *offset = HAL_PRIME_CHNL_OFFSET_LOWER; break; case SCB: *offset = HAL_PRIME_CHNL_OFFSET_UPPER; break; } } } } #endif /* CONFIG_80211N_HT */ #ifdef CONFIG_80211AC_VHT { u8 *vht_op_ie; int vht_op_ielen; vht_op_ie = rtw_get_ie(ies, EID_VHTOperation, &vht_op_ielen, ies_len); if (vht_op_ie && vht_op_ielen) { /* enable VHT 80 before check enable HT40 or not */ if (GET_VHT_OPERATION_ELE_CHL_WIDTH(vht_op_ie + 2) >= 1) { /* for HT40, enable VHT80 */ if (*bw == CHANNEL_WIDTH_40) *bw = CHANNEL_WIDTH_80; /* for HT20, enable VHT20 */ else if (*bw == CHANNEL_WIDTH_20) { /* modify VHT OP IE */ SET_VHT_OPERATION_ELE_CHL_WIDTH(vht_op_ie + 2, 0); /* reset to 0 for VHT20 */ SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ1(vht_op_ie + 2, 0); SET_VHT_OPERATION_ELE_CHL_CENTER_FREQ2(vht_op_ie + 2, 0); } } else { /* VHT OP WIDTH = 0 under HT20/HT40 if REGSTY_BW_5G(pregistrypriv) < CHANNEL_WIDTH_80 in rtw_build_vht_operation_ie */ } } } #endif } void rtw_bss_get_chbw(WLAN_BSSID_EX *bss, u8 *ch, u8 *bw, u8 *offset) { rtw_ies_get_chbw(bss->IEs + sizeof(NDIS_802_11_FIXED_IEs) , bss->IELength - sizeof(NDIS_802_11_FIXED_IEs) , ch, bw, offset); if (*ch == 0) *ch = bss->Configuration.DSConfig; else if (*ch != bss->Configuration.DSConfig) { RTW_INFO("inconsistent ch - ies:%u bss->Configuration.DSConfig:%u\n" , *ch, bss->Configuration.DSConfig); *ch = bss->Configuration.DSConfig; rtw_warn_on(1); } } /** * rtw_is_chbw_grouped - test if the two ch settings can be grouped together * @ch_a: ch of set a * @bw_a: bw of set a * @offset_a: offset of set a * @ch_b: ch of set b * @bw_b: bw of set b * @offset_b: offset of set b */ bool rtw_is_chbw_grouped(u8 ch_a, u8 bw_a, u8 offset_a , u8 ch_b, u8 bw_b, u8 offset_b) { bool is_grouped = _FALSE; if (ch_a != ch_b) { /* ch is different */ goto exit; } else if ((bw_a == CHANNEL_WIDTH_40 || bw_a == CHANNEL_WIDTH_80) && (bw_b == CHANNEL_WIDTH_40 || bw_b == CHANNEL_WIDTH_80) ) { if (offset_a != offset_b) goto exit; } is_grouped = _TRUE; exit: return is_grouped; } /** * rtw_sync_chbw - obey g_ch, adjust g_bw, g_offset, bw, offset * @req_ch: pointer of the request ch, may be modified further * @req_bw: pointer of the request bw, may be modified further * @req_offset: pointer of the request offset, may be modified further * @g_ch: pointer of the ongoing group ch * @g_bw: pointer of the ongoing group bw, may be modified further * @g_offset: pointer of the ongoing group offset, may be modified further */ void rtw_sync_chbw(u8 *req_ch, u8 *req_bw, u8 *req_offset , u8 *g_ch, u8 *g_bw, u8 *g_offset) { *req_ch = *g_ch; if (*req_bw == CHANNEL_WIDTH_80 && *g_ch <= 14) { /*2.4G ch, downgrade to 40Mhz */ *req_bw = CHANNEL_WIDTH_40; } switch (*req_bw) { case CHANNEL_WIDTH_80: if (*g_bw == CHANNEL_WIDTH_40 || *g_bw == CHANNEL_WIDTH_80) *req_offset = *g_offset; else if (*g_bw == CHANNEL_WIDTH_20) *req_offset = rtw_get_offset_by_ch(*req_ch); if (*req_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE) { RTW_ERR("%s req 80MHz BW without offset, down to 20MHz\n", __func__); rtw_warn_on(1); *req_bw = CHANNEL_WIDTH_20; } break; case CHANNEL_WIDTH_40: if (*g_bw == CHANNEL_WIDTH_40 || *g_bw == CHANNEL_WIDTH_80) *req_offset = *g_offset; else if (*g_bw == CHANNEL_WIDTH_20) *req_offset = rtw_get_offset_by_ch(*req_ch); if (*req_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE) { RTW_ERR("%s req 40MHz BW without offset, down to 20MHz\n", __func__); rtw_warn_on(1); *req_bw = CHANNEL_WIDTH_20; } break; case CHANNEL_WIDTH_20: *req_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; break; default: RTW_ERR("%s req unsupported BW:%u\n", __func__, *req_bw); rtw_warn_on(1); } if (*req_bw > *g_bw) { *g_bw = *req_bw; *g_offset = *req_offset; } } /** * rtw_get_p2p_merged_len - Get merged ie length from muitiple p2p ies. * @in_ie: Pointer of the first p2p ie * @in_len: Total len of muiltiple p2p ies * Returns: Length of merged p2p ie length */ u32 rtw_get_p2p_merged_ies_len(u8 *in_ie, u32 in_len) { PNDIS_802_11_VARIABLE_IEs pIE; u8 OUI[4] = { 0x50, 0x6f, 0x9a, 0x09 }; int i = 0; int j = 0, len = 0; while (i < in_len) { pIE = (PNDIS_802_11_VARIABLE_IEs)(in_ie + i); if (pIE->ElementID == _VENDOR_SPECIFIC_IE_ && _rtw_memcmp(pIE->data, OUI, 4)) { len += pIE->Length - 4; /* 4 is P2P OUI length, don't count it in this loop */ } i += (pIE->Length + 2); } return len + 4; /* Append P2P OUI length at last. */ } /** * rtw_p2p_merge_ies - Merge muitiple p2p ies into one * @in_ie: Pointer of the first p2p ie * @in_len: Total len of muiltiple p2p ies * @merge_ie: Pointer of merged ie * Returns: Length of merged p2p ie */ int rtw_p2p_merge_ies(u8 *in_ie, u32 in_len, u8 *merge_ie) { PNDIS_802_11_VARIABLE_IEs pIE; u8 len = 0; u8 OUI[4] = { 0x50, 0x6f, 0x9a, 0x09 }; u8 ELOUI[6] = { 0xDD, 0x00, 0x50, 0x6f, 0x9a, 0x09 }; /* EID;Len;OUI, Len would copy at the end of function */ int i = 0; if (merge_ie != NULL) { /* Set first P2P OUI */ _rtw_memcpy(merge_ie, ELOUI, 6); merge_ie += 6; while (i < in_len) { pIE = (PNDIS_802_11_VARIABLE_IEs)(in_ie + i); /* Take out the rest of P2P OUIs */ if (pIE->ElementID == _VENDOR_SPECIFIC_IE_ && _rtw_memcmp(pIE->data, OUI, 4)) { _rtw_memcpy(merge_ie, pIE->data + 4, pIE->Length - 4); len += pIE->Length - 4; merge_ie += pIE->Length - 4; } i += (pIE->Length + 2); } return len + 4; /* 4 is for P2P OUI */ } return 0; } void dump_p2p_ie(void *sel, u8 *ie, u32 ie_len) { u8 *pos = (u8 *)ie; u8 id; u16 len; u8 *p2p_ie; uint p2p_ielen; p2p_ie = rtw_get_p2p_ie(ie, ie_len, NULL, &p2p_ielen); if (p2p_ie != ie || p2p_ielen == 0) return; pos += 6; while (pos - ie + 3 <= ie_len) { id = *pos; len = RTW_GET_LE16(pos + 1); RTW_PRINT_SEL(sel, "%s ID:%u, LEN:%u%s\n", __func__, id, len , ((pos - ie + 3 + len) <= ie_len) ? "" : "(exceed ie_len)"); pos += (3 + len); } } /** * rtw_get_p2p_ie - Search P2P IE from a series of IEs * @in_ie: Address of IEs to search * @in_len: Length limit from in_ie * @p2p_ie: If not NULL and P2P IE is found, P2P IE will be copied to the buf starting from p2p_ie * @p2p_ielen: If not NULL and P2P IE is found, will set to the length of the entire P2P IE * * Returns: The address of the P2P IE found, or NULL */ u8 *rtw_get_p2p_ie(u8 *in_ie, int in_len, u8 *p2p_ie, uint *p2p_ielen) { uint cnt; u8 *p2p_ie_ptr = NULL; u8 eid, p2p_oui[4] = {0x50, 0x6F, 0x9A, 0x09}; if (p2p_ielen) *p2p_ielen = 0; if (!in_ie || in_len < 0) { rtw_warn_on(1); return p2p_ie_ptr; } if (in_len <= 0) return p2p_ie_ptr; cnt = 0; while (cnt + 1 + 4 < in_len) { eid = in_ie[cnt]; if (cnt + 1 + 4 >= MAX_IE_SZ) { rtw_warn_on(1); return NULL; } if (eid == WLAN_EID_VENDOR_SPECIFIC && _rtw_memcmp(&in_ie[cnt + 2], p2p_oui, 4) == _TRUE) { p2p_ie_ptr = in_ie + cnt; if (p2p_ie) _rtw_memcpy(p2p_ie, &in_ie[cnt], in_ie[cnt + 1] + 2); if (p2p_ielen) *p2p_ielen = in_ie[cnt + 1] + 2; break; } else cnt += in_ie[cnt + 1] + 2; } return p2p_ie_ptr; } /** * rtw_get_p2p_attr - Search a specific P2P attribute from a given P2P IE * @p2p_ie: Address of P2P IE to search * @p2p_ielen: Length limit from p2p_ie * @target_attr_id: The attribute ID of P2P attribute to search * @buf_attr: If not NULL and the P2P attribute is found, P2P attribute will be copied to the buf starting from buf_attr * @len_attr: If not NULL and the P2P attribute is found, will set to the length of the entire P2P attribute * * Returns: the address of the specific WPS attribute found, or NULL */ u8 *rtw_get_p2p_attr(u8 *p2p_ie, uint p2p_ielen, u8 target_attr_id , u8 *buf_attr, u32 *len_attr) { u8 *attr_ptr = NULL; u8 *target_attr_ptr = NULL; u8 p2p_oui[4] = {0x50, 0x6F, 0x9A, 0x09}; if (len_attr) *len_attr = 0; if (!p2p_ie || p2p_ielen <= 6 || (p2p_ie[0] != WLAN_EID_VENDOR_SPECIFIC) || (_rtw_memcmp(p2p_ie + 2, p2p_oui, 4) != _TRUE)) return attr_ptr; /* 6 = 1(Element ID) + 1(Length) + 3 (OUI) + 1(OUI Type) */ attr_ptr = p2p_ie + 6; /* goto first attr */ while ((attr_ptr - p2p_ie + 3) <= p2p_ielen) { /* 3 = 1(Attribute ID) + 2(Length) */ u8 attr_id = *attr_ptr; u16 attr_data_len = RTW_GET_LE16(attr_ptr + 1); u16 attr_len = attr_data_len + 3; if (0) RTW_INFO("%s attr_ptr:%p, id:%u, length:%u\n", __func__, attr_ptr, attr_id, attr_data_len); if ((attr_ptr - p2p_ie + attr_len) > p2p_ielen) break; if (attr_id == target_attr_id) { target_attr_ptr = attr_ptr; if (buf_attr) _rtw_memcpy(buf_attr, attr_ptr, attr_len); if (len_attr) *len_attr = attr_len; break; } else attr_ptr += attr_len; } return target_attr_ptr; } /** * rtw_get_p2p_attr_content - Search a specific P2P attribute content from a given P2P IE * @p2p_ie: Address of P2P IE to search * @p2p_ielen: Length limit from p2p_ie * @target_attr_id: The attribute ID of P2P attribute to search * @buf_content: If not NULL and the P2P attribute is found, P2P attribute content will be copied to the buf starting from buf_content * @len_content: If not NULL and the P2P attribute is found, will set to the length of the P2P attribute content * * Returns: the address of the specific P2P attribute content found, or NULL */ u8 *rtw_get_p2p_attr_content(u8 *p2p_ie, uint p2p_ielen, u8 target_attr_id , u8 *buf_content, uint *len_content) { u8 *attr_ptr; u32 attr_len; if (len_content) *len_content = 0; attr_ptr = rtw_get_p2p_attr(p2p_ie, p2p_ielen, target_attr_id, NULL, &attr_len); if (attr_ptr && attr_len) { if (buf_content) _rtw_memcpy(buf_content, attr_ptr + 3, attr_len - 3); if (len_content) *len_content = attr_len - 3; return attr_ptr + 3; } return NULL; } u32 rtw_set_p2p_attr_content(u8 *pbuf, u8 attr_id, u16 attr_len, u8 *pdata_attr) { u32 a_len; *pbuf = attr_id; /* *(u16*)(pbuf + 1) = cpu_to_le16(attr_len); */ RTW_PUT_LE16(pbuf + 1, attr_len); if (pdata_attr) _rtw_memcpy(pbuf + 3, pdata_attr, attr_len); a_len = attr_len + 3; return a_len; } uint rtw_del_p2p_ie(u8 *ies, uint ies_len_ori, const char *msg) { #define DBG_DEL_P2P_IE 0 u8 *target_ie; u32 target_ie_len; uint ies_len = ies_len_ori; int index = 0; while (1) { target_ie = rtw_get_p2p_ie(ies, ies_len, NULL, &target_ie_len); if (target_ie && target_ie_len) { u8 *next_ie = target_ie + target_ie_len; uint remain_len = ies_len - (next_ie - ies); if (DBG_DEL_P2P_IE && msg) { RTW_INFO("%s %d before\n", __func__, index); dump_ies(RTW_DBGDUMP, ies, ies_len); RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len); RTW_INFO("target_ie:%p, target_ie_len:%u\n", target_ie, target_ie_len); RTW_INFO("next_ie:%p, remain_len:%u\n", next_ie, remain_len); } _rtw_memmove(target_ie, next_ie, remain_len); _rtw_memset(target_ie + remain_len, 0, target_ie_len); ies_len -= target_ie_len; if (DBG_DEL_P2P_IE && msg) { RTW_INFO("%s %d after\n", __func__, index); dump_ies(RTW_DBGDUMP, ies, ies_len); } index++; } else break; } return ies_len; } uint rtw_del_p2p_attr(u8 *ie, uint ielen_ori, u8 attr_id) { #define DBG_DEL_P2P_ATTR 0 u8 *target_attr; u32 target_attr_len; uint ielen = ielen_ori; int index = 0; while (1) { target_attr = rtw_get_p2p_attr(ie, ielen, attr_id, NULL, &target_attr_len); if (target_attr && target_attr_len) { u8 *next_attr = target_attr + target_attr_len; uint remain_len = ielen - (next_attr - ie); if (DBG_DEL_P2P_ATTR) { RTW_INFO("%s %d before\n", __func__, index); dump_ies(RTW_DBGDUMP, ie, ielen); RTW_INFO("ie:%p, ielen:%u\n", ie, ielen); RTW_INFO("target_attr:%p, target_attr_len:%u\n", target_attr, target_attr_len); RTW_INFO("next_attr:%p, remain_len:%u\n", next_attr, remain_len); } _rtw_memmove(target_attr, next_attr, remain_len); _rtw_memset(target_attr + remain_len, 0, target_attr_len); *(ie + 1) -= target_attr_len; ielen -= target_attr_len; if (DBG_DEL_P2P_ATTR) { RTW_INFO("%s %d after\n", __func__, index); dump_ies(RTW_DBGDUMP, ie, ielen); } index++; } else break; } return ielen; } inline u8 *rtw_bss_ex_get_p2p_ie(WLAN_BSSID_EX *bss_ex, u8 *p2p_ie, uint *p2p_ielen) { return rtw_get_p2p_ie(BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex), p2p_ie, p2p_ielen); } void rtw_bss_ex_del_p2p_ie(WLAN_BSSID_EX *bss_ex) { #define DBG_BSS_EX_DEL_P2P_IE 0 u8 *ies = BSS_EX_TLV_IES(bss_ex); uint ies_len_ori = BSS_EX_TLV_IES_LEN(bss_ex); uint ies_len; ies_len = rtw_del_p2p_ie(ies, ies_len_ori, DBG_BSS_EX_DEL_P2P_IE ? __func__ : NULL); bss_ex->IELength -= ies_len_ori - ies_len; } void rtw_bss_ex_del_p2p_attr(WLAN_BSSID_EX *bss_ex, u8 attr_id) { #define DBG_BSS_EX_DEL_P2P_ATTR 0 u8 *ies = BSS_EX_TLV_IES(bss_ex); uint ies_len = BSS_EX_TLV_IES_LEN(bss_ex); u8 *ie; uint ie_len, ie_len_ori; int index = 0; while (1) { ie = rtw_get_p2p_ie(ies, ies_len, NULL, &ie_len_ori); if (ie) { u8 *next_ie_ori = ie + ie_len_ori; uint remain_len = bss_ex->IELength - (next_ie_ori - bss_ex->IEs); u8 has_target_attr = 0; if (DBG_BSS_EX_DEL_P2P_ATTR) { if (rtw_get_p2p_attr(ie, ie_len_ori, attr_id, NULL, NULL)) { RTW_INFO("%s %d before\n", __func__, index); dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex)); RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len); RTW_INFO("ie:%p, ie_len_ori:%u\n", ie, ie_len_ori); RTW_INFO("next_ie_ori:%p, remain_len:%u\n", next_ie_ori, remain_len); has_target_attr = 1; } } ie_len = rtw_del_p2p_attr(ie, ie_len_ori, attr_id); if (ie_len != ie_len_ori) { u8 *next_ie = ie + ie_len; _rtw_memmove(next_ie, next_ie_ori, remain_len); _rtw_memset(next_ie + remain_len, 0, ie_len_ori - ie_len); bss_ex->IELength -= ie_len_ori - ie_len; ies = next_ie; } else ies = next_ie_ori; if (DBG_BSS_EX_DEL_P2P_ATTR) { if (has_target_attr) { RTW_INFO("%s %d after\n", __func__, index); dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex)); } } ies_len = remain_len; index++; } else break; } } void dump_wfd_ie(void *sel, u8 *ie, u32 ie_len) { u8 *pos = (u8 *)ie; u8 id; u16 len; u8 *wfd_ie; uint wfd_ielen; wfd_ie = rtw_get_wfd_ie(ie, ie_len, NULL, &wfd_ielen); if (wfd_ie != ie || wfd_ielen == 0) return; pos += 6; while (pos - ie + 3 <= ie_len) { id = *pos; len = RTW_GET_BE16(pos + 1); RTW_PRINT_SEL(sel, "%s ID:%u, LEN:%u%s\n", __func__, id, len , ((pos - ie + 3 + len) <= ie_len) ? "" : "(exceed ie_len)"); pos += (3 + len); } } /** * rtw_get_wfd_ie - Search WFD IE from a series of IEs * @in_ie: Address of IEs to search * @in_len: Length limit from in_ie * @wfd_ie: If not NULL and WFD IE is found, WFD IE will be copied to the buf starting from wfd_ie * @wfd_ielen: If not NULL and WFD IE is found, will set to the length of the entire WFD IE * * Returns: The address of the P2P IE found, or NULL */ u8 *rtw_get_wfd_ie(u8 *in_ie, int in_len, u8 *wfd_ie, uint *wfd_ielen) { uint cnt; u8 *wfd_ie_ptr = NULL; u8 eid, wfd_oui[4] = {0x50, 0x6F, 0x9A, 0x0A}; if (wfd_ielen) *wfd_ielen = 0; if (!in_ie || in_len < 0) { rtw_warn_on(1); return wfd_ie_ptr; } if (in_len <= 0) return wfd_ie_ptr; cnt = 0; while (cnt + 1 + 4 < in_len) { eid = in_ie[cnt]; if (cnt + 1 + 4 >= MAX_IE_SZ) { rtw_warn_on(1); return NULL; } if (eid == WLAN_EID_VENDOR_SPECIFIC && _rtw_memcmp(&in_ie[cnt + 2], wfd_oui, 4) == _TRUE) { wfd_ie_ptr = in_ie + cnt; if (wfd_ie) _rtw_memcpy(wfd_ie, &in_ie[cnt], in_ie[cnt + 1] + 2); if (wfd_ielen) *wfd_ielen = in_ie[cnt + 1] + 2; break; } else cnt += in_ie[cnt + 1] + 2; } return wfd_ie_ptr; } /** * rtw_get_wfd_attr - Search a specific WFD attribute from a given WFD IE * @wfd_ie: Address of WFD IE to search * @wfd_ielen: Length limit from wfd_ie * @target_attr_id: The attribute ID of WFD attribute to search * @buf_attr: If not NULL and the WFD attribute is found, WFD attribute will be copied to the buf starting from buf_attr * @len_attr: If not NULL and the WFD attribute is found, will set to the length of the entire WFD attribute * * Returns: the address of the specific WPS attribute found, or NULL */ u8 *rtw_get_wfd_attr(u8 *wfd_ie, uint wfd_ielen, u8 target_attr_id, u8 *buf_attr, u32 *len_attr) { u8 *attr_ptr = NULL; u8 *target_attr_ptr = NULL; u8 wfd_oui[4] = {0x50, 0x6F, 0x9A, 0x0A}; if (len_attr) *len_attr = 0; if (!wfd_ie || wfd_ielen <= 6 || (wfd_ie[0] != WLAN_EID_VENDOR_SPECIFIC) || (_rtw_memcmp(wfd_ie + 2, wfd_oui, 4) != _TRUE)) return attr_ptr; /* 6 = 1(Element ID) + 1(Length) + 3 (OUI) + 1(OUI Type) */ attr_ptr = wfd_ie + 6; /* goto first attr */ while ((attr_ptr - wfd_ie + 3) <= wfd_ielen) { /* 3 = 1(Attribute ID) + 2(Length) */ u8 attr_id = *attr_ptr; u16 attr_data_len = RTW_GET_BE16(attr_ptr + 1); u16 attr_len = attr_data_len + 3; if (0) RTW_INFO("%s attr_ptr:%p, id:%u, length:%u\n", __func__, attr_ptr, attr_id, attr_data_len); if ((attr_ptr - wfd_ie + attr_len) > wfd_ielen) break; if (attr_id == target_attr_id) { target_attr_ptr = attr_ptr; if (buf_attr) _rtw_memcpy(buf_attr, attr_ptr, attr_len); if (len_attr) *len_attr = attr_len; break; } else attr_ptr += attr_len; } return target_attr_ptr; } /** * rtw_get_wfd_attr_content - Search a specific WFD attribute content from a given WFD IE * @wfd_ie: Address of WFD IE to search * @wfd_ielen: Length limit from wfd_ie * @target_attr_id: The attribute ID of WFD attribute to search * @buf_content: If not NULL and the WFD attribute is found, WFD attribute content will be copied to the buf starting from buf_content * @len_content: If not NULL and the WFD attribute is found, will set to the length of the WFD attribute content * * Returns: the address of the specific WFD attribute content found, or NULL */ u8 *rtw_get_wfd_attr_content(u8 *wfd_ie, uint wfd_ielen, u8 target_attr_id, u8 *buf_content, uint *len_content) { u8 *attr_ptr; u32 attr_len; if (len_content) *len_content = 0; attr_ptr = rtw_get_wfd_attr(wfd_ie, wfd_ielen, target_attr_id, NULL, &attr_len); if (attr_ptr && attr_len) { if (buf_content) _rtw_memcpy(buf_content, attr_ptr + 3, attr_len - 3); if (len_content) *len_content = attr_len - 3; return attr_ptr + 3; } return NULL; } uint rtw_del_wfd_ie(u8 *ies, uint ies_len_ori, const char *msg) { #define DBG_DEL_WFD_IE 0 u8 *target_ie; u32 target_ie_len; uint ies_len = ies_len_ori; int index = 0; while (1) { target_ie = rtw_get_wfd_ie(ies, ies_len, NULL, &target_ie_len); if (target_ie && target_ie_len) { u8 *next_ie = target_ie + target_ie_len; uint remain_len = ies_len - (next_ie - ies); if (DBG_DEL_WFD_IE && msg) { RTW_INFO("%s %d before\n", __func__, index); dump_ies(RTW_DBGDUMP, ies, ies_len); RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len); RTW_INFO("target_ie:%p, target_ie_len:%u\n", target_ie, target_ie_len); RTW_INFO("next_ie:%p, remain_len:%u\n", next_ie, remain_len); } _rtw_memmove(target_ie, next_ie, remain_len); _rtw_memset(target_ie + remain_len, 0, target_ie_len); ies_len -= target_ie_len; if (DBG_DEL_WFD_IE && msg) { RTW_INFO("%s %d after\n", __func__, index); dump_ies(RTW_DBGDUMP, ies, ies_len); } index++; } else break; } return ies_len; } uint rtw_del_wfd_attr(u8 *ie, uint ielen_ori, u8 attr_id) { #define DBG_DEL_WFD_ATTR 0 u8 *target_attr; u32 target_attr_len; uint ielen = ielen_ori; int index = 0; while (1) { target_attr = rtw_get_wfd_attr(ie, ielen, attr_id, NULL, &target_attr_len); if (target_attr && target_attr_len) { u8 *next_attr = target_attr + target_attr_len; uint remain_len = ielen - (next_attr - ie); if (DBG_DEL_WFD_ATTR) { RTW_INFO("%s %d before\n", __func__, index); dump_ies(RTW_DBGDUMP, ie, ielen); RTW_INFO("ie:%p, ielen:%u\n", ie, ielen); RTW_INFO("target_attr:%p, target_attr_len:%u\n", target_attr, target_attr_len); RTW_INFO("next_attr:%p, remain_len:%u\n", next_attr, remain_len); } _rtw_memmove(target_attr, next_attr, remain_len); _rtw_memset(target_attr + remain_len, 0, target_attr_len); *(ie + 1) -= target_attr_len; ielen -= target_attr_len; if (DBG_DEL_WFD_ATTR) { RTW_INFO("%s %d after\n", __func__, index); dump_ies(RTW_DBGDUMP, ie, ielen); } index++; } else break; } return ielen; } inline u8 *rtw_bss_ex_get_wfd_ie(WLAN_BSSID_EX *bss_ex, u8 *wfd_ie, uint *wfd_ielen) { return rtw_get_wfd_ie(BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex), wfd_ie, wfd_ielen); } void rtw_bss_ex_del_wfd_ie(WLAN_BSSID_EX *bss_ex) { #define DBG_BSS_EX_DEL_WFD_IE 0 u8 *ies = BSS_EX_TLV_IES(bss_ex); uint ies_len_ori = BSS_EX_TLV_IES_LEN(bss_ex); uint ies_len; ies_len = rtw_del_wfd_ie(ies, ies_len_ori, DBG_BSS_EX_DEL_WFD_IE ? __func__ : NULL); bss_ex->IELength -= ies_len_ori - ies_len; } void rtw_bss_ex_del_wfd_attr(WLAN_BSSID_EX *bss_ex, u8 attr_id) { #define DBG_BSS_EX_DEL_WFD_ATTR 0 u8 *ies = BSS_EX_TLV_IES(bss_ex); uint ies_len = BSS_EX_TLV_IES_LEN(bss_ex); u8 *ie; uint ie_len, ie_len_ori; int index = 0; while (1) { ie = rtw_get_wfd_ie(ies, ies_len, NULL, &ie_len_ori); if (ie) { u8 *next_ie_ori = ie + ie_len_ori; uint remain_len = bss_ex->IELength - (next_ie_ori - bss_ex->IEs); u8 has_target_attr = 0; if (DBG_BSS_EX_DEL_WFD_ATTR) { if (rtw_get_wfd_attr(ie, ie_len_ori, attr_id, NULL, NULL)) { RTW_INFO("%s %d before\n", __func__, index); dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex)); RTW_INFO("ies:%p, ies_len:%u\n", ies, ies_len); RTW_INFO("ie:%p, ie_len_ori:%u\n", ie, ie_len_ori); RTW_INFO("next_ie_ori:%p, remain_len:%u\n", next_ie_ori, remain_len); has_target_attr = 1; } } ie_len = rtw_del_wfd_attr(ie, ie_len_ori, attr_id); if (ie_len != ie_len_ori) { u8 *next_ie = ie + ie_len; _rtw_memmove(next_ie, next_ie_ori, remain_len); _rtw_memset(next_ie + remain_len, 0, ie_len_ori - ie_len); bss_ex->IELength -= ie_len_ori - ie_len; ies = next_ie; } else ies = next_ie_ori; if (DBG_BSS_EX_DEL_WFD_ATTR) { if (has_target_attr) { RTW_INFO("%s %d after\n", __func__, index); dump_ies(RTW_DBGDUMP, BSS_EX_TLV_IES(bss_ex), BSS_EX_TLV_IES_LEN(bss_ex)); } } ies_len = remain_len; index++; } else break; } } /* Baron adds to avoid FreeBSD warning */ int ieee80211_is_empty_essid(const char *essid, int essid_len) { /* Single white space is for Linksys APs */ if (essid_len == 1 && essid[0] == ' ') return 1; /* Otherwise, if the entire essid is 0, we assume it is hidden */ while (essid_len) { essid_len--; if (essid[essid_len] != '\0') return 0; } return 1; } int ieee80211_get_hdrlen(u16 fc) { int hdrlen = 24; switch (WLAN_FC_GET_TYPE(fc)) { case RTW_IEEE80211_FTYPE_DATA: if (fc & RTW_IEEE80211_STYPE_QOS_DATA) hdrlen += 2; if ((fc & RTW_IEEE80211_FCTL_FROMDS) && (fc & RTW_IEEE80211_FCTL_TODS)) hdrlen += 6; /* Addr4 */ break; case RTW_IEEE80211_FTYPE_CTL: switch (WLAN_FC_GET_STYPE(fc)) { case RTW_IEEE80211_STYPE_CTS: case RTW_IEEE80211_STYPE_ACK: hdrlen = 10; break; default: hdrlen = 16; break; } break; } return hdrlen; } int rtw_get_cipher_info(struct wlan_network *pnetwork) { u32 wpa_ielen; unsigned char *pbuf; int group_cipher = 0, pairwise_cipher = 0, is8021x = 0; int ret = _FAIL; pbuf = rtw_get_wpa_ie(&pnetwork->network.IEs[12], &wpa_ielen, pnetwork->network.IELength - 12); if (pbuf && (wpa_ielen > 0)) { if (_SUCCESS == rtw_parse_wpa_ie(pbuf, wpa_ielen + 2, &group_cipher, &pairwise_cipher, &is8021x)) { pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher; pnetwork->BcnInfo.group_cipher = group_cipher; pnetwork->BcnInfo.is_8021x = is8021x; ret = _SUCCESS; } } else { pbuf = rtw_get_wpa2_ie(&pnetwork->network.IEs[12], &wpa_ielen, pnetwork->network.IELength - 12); if (pbuf && (wpa_ielen > 0)) { if (_SUCCESS == rtw_parse_wpa2_ie(pbuf, wpa_ielen + 2, &group_cipher, &pairwise_cipher, &is8021x)) { pnetwork->BcnInfo.pairwise_cipher = pairwise_cipher; pnetwork->BcnInfo.group_cipher = group_cipher; pnetwork->BcnInfo.is_8021x = is8021x; ret = _SUCCESS; } } } return ret; } void rtw_get_bcn_info(struct wlan_network *pnetwork) { unsigned short cap = 0; u8 bencrypt = 0; /* u8 wpa_ie[255],rsn_ie[255]; */ u16 wpa_len = 0, rsn_len = 0; struct HT_info_element *pht_info = NULL; struct rtw_ieee80211_ht_cap *pht_cap = NULL; unsigned int len; unsigned char *p; _rtw_memcpy((u8 *)&cap, rtw_get_capability_from_ie(pnetwork->network.IEs), 2); cap = le16_to_cpu(cap); if (cap & WLAN_CAPABILITY_PRIVACY) { bencrypt = 1; pnetwork->network.Privacy = 1; } else pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_OPENSYS; rtw_get_sec_ie(pnetwork->network.IEs , pnetwork->network.IELength, NULL, &rsn_len, NULL, &wpa_len); if (rsn_len > 0) pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA2; else if (wpa_len > 0) pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WPA; else { if (bencrypt) pnetwork->BcnInfo.encryp_protocol = ENCRYP_PROTOCOL_WEP; } rtw_get_cipher_info(pnetwork); /* get bwmode and ch_offset */ /* parsing HT_CAP_IE */ p = rtw_get_ie(pnetwork->network.IEs + _FIXED_IE_LENGTH_, _HT_CAPABILITY_IE_, &len, pnetwork->network.IELength - _FIXED_IE_LENGTH_); if (p && len > 0) { pht_cap = (struct rtw_ieee80211_ht_cap *)(p + 2); pnetwork->BcnInfo.ht_cap_info = pht_cap->cap_info; } else pnetwork->BcnInfo.ht_cap_info = 0; /* parsing HT_INFO_IE */ p = rtw_get_ie(pnetwork->network.IEs + _FIXED_IE_LENGTH_, _HT_ADD_INFO_IE_, &len, pnetwork->network.IELength - _FIXED_IE_LENGTH_); if (p && len > 0) { pht_info = (struct HT_info_element *)(p + 2); pnetwork->BcnInfo.ht_info_infos_0 = pht_info->infos[0]; } else pnetwork->BcnInfo.ht_info_infos_0 = 0; } u8 rtw_ht_mcsset_to_nss(u8 *supp_mcs_set) { u8 nss = 1; if (supp_mcs_set[3]) nss = 4; else if (supp_mcs_set[2]) nss = 3; else if (supp_mcs_set[1]) nss = 2; else if (supp_mcs_set[0]) nss = 1; else RTW_INFO("%s,%d, warning! supp_mcs_set is zero\n", __func__, __LINE__); /* RTW_INFO("%s HT: %dSS\n", __FUNCTION__, nss); */ return nss; } u32 rtw_ht_mcs_set_to_bitmap(u8 *mcs_set, u8 nss) { u8 i; u32 bitmap = 0; for (i = 0; i < nss; i++) bitmap |= mcs_set[i] << (i * 8); RTW_INFO("ht_mcs_set=%02x %02x %02x %02x, nss=%u, bitmap=%08x\n" , mcs_set[0], mcs_set[1], mcs_set[2], mcs_set[3], nss, bitmap); return bitmap; } /* show MCS rate, unit: 100Kbps */ u16 rtw_mcs_rate(u8 rf_type, u8 bw_40MHz, u8 short_GI, unsigned char *MCS_rate) { u16 max_rate = 0; if (MCS_rate[3]) { if (MCS_rate[3] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI) ? 6000 : 5400) : ((short_GI) ? 2889 : 2600); else if (MCS_rate[3] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI) ? 5400 : 4860) : ((short_GI) ? 2600 : 2340); else if (MCS_rate[3] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI) ? 4800 : 4320) : ((short_GI) ? 2311 : 2080); else if (MCS_rate[3] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI) ? 3600 : 3240) : ((short_GI) ? 1733 : 1560); else if (MCS_rate[3] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI) ? 2400 : 2160) : ((short_GI) ? 1156 : 1040); else if (MCS_rate[3] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI) ? 1800 : 1620) : ((short_GI) ? 867 : 780); else if (MCS_rate[3] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI) ? 1200 : 1080) : ((short_GI) ? 578 : 520); else if (MCS_rate[3] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI) ? 600 : 540) : ((short_GI) ? 289 : 260); } else if (MCS_rate[2]) { if (MCS_rate[2] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI) ? 4500 : 4050) : ((short_GI) ? 2167 : 1950); else if (MCS_rate[2] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI) ? 4050 : 3645) : ((short_GI) ? 1950 : 1750); else if (MCS_rate[2] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI) ? 3600 : 3240) : ((short_GI) ? 1733 : 1560); else if (MCS_rate[2] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI) ? 2700 : 2430) : ((short_GI) ? 1300 : 1170); else if (MCS_rate[2] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI) ? 1800 : 1620) : ((short_GI) ? 867 : 780); else if (MCS_rate[2] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI) ? 1350 : 1215) : ((short_GI) ? 650 : 585); else if (MCS_rate[2] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI) ? 900 : 810) : ((short_GI) ? 433 : 390); else if (MCS_rate[2] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI) ? 450 : 405) : ((short_GI) ? 217 : 195); } else if (MCS_rate[1]) { if (MCS_rate[1] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI) ? 3000 : 2700) : ((short_GI) ? 1444 : 1300); else if (MCS_rate[1] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI) ? 2700 : 2430) : ((short_GI) ? 1300 : 1170); else if (MCS_rate[1] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI) ? 2400 : 2160) : ((short_GI) ? 1156 : 1040); else if (MCS_rate[1] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI) ? 1800 : 1620) : ((short_GI) ? 867 : 780); else if (MCS_rate[1] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI) ? 1200 : 1080) : ((short_GI) ? 578 : 520); else if (MCS_rate[1] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI) ? 900 : 810) : ((short_GI) ? 433 : 390); else if (MCS_rate[1] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI) ? 600 : 540) : ((short_GI) ? 289 : 260); else if (MCS_rate[1] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI) ? 300 : 270) : ((short_GI) ? 144 : 130); } else { if (MCS_rate[0] & BIT(7)) max_rate = (bw_40MHz) ? ((short_GI) ? 1500 : 1350) : ((short_GI) ? 722 : 650); else if (MCS_rate[0] & BIT(6)) max_rate = (bw_40MHz) ? ((short_GI) ? 1350 : 1215) : ((short_GI) ? 650 : 585); else if (MCS_rate[0] & BIT(5)) max_rate = (bw_40MHz) ? ((short_GI) ? 1200 : 1080) : ((short_GI) ? 578 : 520); else if (MCS_rate[0] & BIT(4)) max_rate = (bw_40MHz) ? ((short_GI) ? 900 : 810) : ((short_GI) ? 433 : 390); else if (MCS_rate[0] & BIT(3)) max_rate = (bw_40MHz) ? ((short_GI) ? 600 : 540) : ((short_GI) ? 289 : 260); else if (MCS_rate[0] & BIT(2)) max_rate = (bw_40MHz) ? ((short_GI) ? 450 : 405) : ((short_GI) ? 217 : 195); else if (MCS_rate[0] & BIT(1)) max_rate = (bw_40MHz) ? ((short_GI) ? 300 : 270) : ((short_GI) ? 144 : 130); else if (MCS_rate[0] & BIT(0)) max_rate = (bw_40MHz) ? ((short_GI) ? 150 : 135) : ((short_GI) ? 72 : 65); } return max_rate; } int rtw_action_frame_parse(const u8 *frame, u32 frame_len, u8 *category, u8 *action) { const u8 *frame_body = frame + sizeof(struct rtw_ieee80211_hdr_3addr); u16 fc; u8 c; u8 a = ACT_PUBLIC_MAX; fc = le16_to_cpu(((struct rtw_ieee80211_hdr_3addr *)frame)->frame_ctl); if ((fc & (RTW_IEEE80211_FCTL_FTYPE | RTW_IEEE80211_FCTL_STYPE)) != (RTW_IEEE80211_FTYPE_MGMT | RTW_IEEE80211_STYPE_ACTION) ) return _FALSE; c = frame_body[0]; switch (c) { case RTW_WLAN_CATEGORY_P2P: /* vendor-specific */ break; default: a = frame_body[1]; } if (category) *category = c; if (action) *action = a; return _TRUE; } static const char *_action_public_str[] = { "ACT_PUB_BSSCOEXIST", "ACT_PUB_DSE_ENABLE", "ACT_PUB_DSE_DEENABLE", "ACT_PUB_DSE_REG_LOCATION", "ACT_PUB_EXT_CHL_SWITCH", "ACT_PUB_DSE_MSR_REQ", "ACT_PUB_DSE_MSR_RPRT", "ACT_PUB_MP", "ACT_PUB_DSE_PWR_CONSTRAINT", "ACT_PUB_VENDOR", "ACT_PUB_GAS_INITIAL_REQ", "ACT_PUB_GAS_INITIAL_RSP", "ACT_PUB_GAS_COMEBACK_REQ", "ACT_PUB_GAS_COMEBACK_RSP", "ACT_PUB_TDLS_DISCOVERY_RSP", "ACT_PUB_LOCATION_TRACK", "ACT_PUB_RSVD", }; const char *action_public_str(u8 action) { action = (action >= ACT_PUBLIC_MAX) ? ACT_PUBLIC_MAX : action; return _action_public_str[action]; }