/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _OSDEP_SERVICE_C_ #include #define RT_TAG '1178' #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX atomic_t _malloc_cnt = ATOMIC_INIT(0); atomic_t _malloc_size = ATOMIC_INIT(0); #endif #endif /* DBG_MEMORY_LEAK */ #if defined(PLATFORM_LINUX) /* * Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE * @return: one of RTW_STATUS_CODE */ inline int RTW_STATUS_CODE(int error_code) { if (error_code >= 0) return _SUCCESS; switch (error_code) { /* case -ETIMEDOUT: */ /* return RTW_STATUS_TIMEDOUT; */ default: return _FAIL; } } #else inline int RTW_STATUS_CODE(int error_code) { return error_code; } #endif u32 rtw_atoi(u8 *s) { int num = 0, flag = 0; int i; for (i = 0; i <= strlen(s); i++) { if (s[i] >= '0' && s[i] <= '9') num = num * 10 + s[i] - '0'; else if (s[0] == '-' && i == 0) flag = 1; else break; } if (flag == 1) num = num * -1; return num; } inline void *_rtw_vmalloc(u32 sz) { void *pbuf; #ifdef PLATFORM_LINUX pbuf = vmalloc(sz); #endif #ifdef PLATFORM_FREEBSD pbuf = malloc(sz, M_DEVBUF, M_NOWAIT); #endif #ifdef PLATFORM_WINDOWS NdisAllocateMemoryWithTag(&pbuf, sz, RT_TAG); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX if (pbuf != NULL) { atomic_inc(&_malloc_cnt); atomic_add(sz, &_malloc_size); } #endif #endif /* DBG_MEMORY_LEAK */ return pbuf; } inline void *_rtw_zvmalloc(u32 sz) { void *pbuf; #ifdef PLATFORM_LINUX pbuf = _rtw_vmalloc(sz); if (pbuf != NULL) memset(pbuf, 0, sz); #endif #ifdef PLATFORM_FREEBSD pbuf = malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT); #endif #ifdef PLATFORM_WINDOWS NdisAllocateMemoryWithTag(&pbuf, sz, RT_TAG); if (pbuf != NULL) NdisFillMemory(pbuf, sz, 0); #endif return pbuf; } inline void _rtw_vmfree(void *pbuf, u32 sz) { #ifdef PLATFORM_LINUX vfree(pbuf); #endif #ifdef PLATFORM_FREEBSD free(pbuf, M_DEVBUF); #endif #ifdef PLATFORM_WINDOWS NdisFreeMemory(pbuf, sz, 0); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX atomic_dec(&_malloc_cnt); atomic_sub(sz, &_malloc_size); #endif #endif /* DBG_MEMORY_LEAK */ } void *_rtw_malloc(u32 sz) { void *pbuf = NULL; #ifdef PLATFORM_LINUX #ifdef RTK_DMP_PLATFORM if (sz > 0x4000) pbuf = dvr_malloc(sz); else #endif pbuf = kmalloc(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif #ifdef PLATFORM_FREEBSD pbuf = malloc(sz, M_DEVBUF, M_NOWAIT); #endif #ifdef PLATFORM_WINDOWS NdisAllocateMemoryWithTag(&pbuf, sz, RT_TAG); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX if (pbuf != NULL) { atomic_inc(&_malloc_cnt); atomic_add(sz, &_malloc_size); } #endif #endif /* DBG_MEMORY_LEAK */ return pbuf; } void *_rtw_zmalloc(u32 sz) { #ifdef PLATFORM_FREEBSD return malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT); #else /* PLATFORM_FREEBSD */ void *pbuf = _rtw_malloc(sz); if (pbuf != NULL) { #ifdef PLATFORM_LINUX memset(pbuf, 0, sz); #endif #ifdef PLATFORM_WINDOWS NdisFillMemory(pbuf, sz, 0); #endif } return pbuf; #endif /* PLATFORM_FREEBSD */ } void _rtw_mfree(void *pbuf, u32 sz) { #ifdef PLATFORM_LINUX #ifdef RTK_DMP_PLATFORM if (sz > 0x4000) dvr_free(pbuf); else #endif kfree(pbuf); #endif #ifdef PLATFORM_FREEBSD free(pbuf, M_DEVBUF); #endif #ifdef PLATFORM_WINDOWS NdisFreeMemory(pbuf, sz, 0); #endif #ifdef DBG_MEMORY_LEAK #ifdef PLATFORM_LINUX atomic_dec(&_malloc_cnt); atomic_sub(sz, &_malloc_size); #endif #endif /* DBG_MEMORY_LEAK */ } #ifdef PLATFORM_FREEBSD /* review again */ struct sk_buff *dev_alloc_skb(unsigned int size) { struct sk_buff *skb = NULL; u8 *data = NULL; /* skb = _rtw_zmalloc(sizeof(struct sk_buff)); */ /* for skb->len, etc. */ skb = _rtw_malloc(sizeof(struct sk_buff)); if (!skb) goto out; data = _rtw_malloc(size); if (!data) goto nodata; skb->head = (unsigned char *)data; skb->data = (unsigned char *)data; skb->tail = (unsigned char *)data; skb->end = (unsigned char *)data + size; skb->len = 0; /* printf("%s()-%d: skb=%p, skb->head = %p\n", __FUNCTION__, __LINE__, skb, skb->head); */ out: return skb; nodata: _rtw_mfree(skb, sizeof(struct sk_buff)); skb = NULL; goto out; } void dev_kfree_skb_any(struct sk_buff *skb) { /* printf("%s()-%d: skb->head = %p\n", __FUNCTION__, __LINE__, skb->head); */ if (skb->head) _rtw_mfree(skb->head, 0); /* printf("%s()-%d: skb = %p\n", __FUNCTION__, __LINE__, skb); */ if (skb) _rtw_mfree(skb, 0); } struct sk_buff *skb_clone(const struct sk_buff *skb) { return NULL; } #endif /* PLATFORM_FREEBSD */ inline struct sk_buff *_rtw_skb_alloc(u32 sz) { #ifdef PLATFORM_LINUX return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return dev_alloc_skb(sz); #endif /* PLATFORM_FREEBSD */ } inline void _rtw_skb_free(struct sk_buff *skb) { dev_kfree_skb_any(skb); } inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb) { #ifdef PLATFORM_LINUX return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return NULL; #endif /* PLATFORM_FREEBSD */ } inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb) { #ifdef PLATFORM_LINUX return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return skb_clone(skb); #endif /* PLATFORM_FREEBSD */ } inline struct sk_buff *_rtw_pskb_copy(struct sk_buff *skb) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) return pskb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #else return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL); #endif #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return NULL; #endif /* PLATFORM_FREEBSD */ } inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb) { #if defined(PLATFORM_LINUX) skb->dev = ndev; return netif_rx(skb); #elif defined(PLATFORM_FREEBSD) return (*ndev->if_input)(ndev, skb); #else rtw_warn_on(1); return -1; #endif } #ifdef CONFIG_RTW_NAPI inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb) { #if defined(PLATFORM_LINUX) skb->dev = ndev; return netif_receive_skb(skb); #else rtw_warn_on(1); return -1; #endif } #ifdef CONFIG_RTW_GRO inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) { #if defined(PLATFORM_LINUX) return napi_gro_receive(napi, skb); #else rtw_warn_on(1); return -1; #endif } #endif /* CONFIG_RTW_GRO */ #endif /* CONFIG_RTW_NAPI */ void _rtw_skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) _rtw_skb_free(skb); } #ifdef CONFIG_USB_HCI inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma); #else return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma); #endif #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD return malloc(size, M_USBDEV, M_NOWAIT | M_ZERO); #endif /* PLATFORM_FREEBSD */ } inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) usb_free_coherent(dev, size, addr, dma); #else usb_buffer_free(dev, size, addr, dma); #endif #endif /* PLATFORM_LINUX */ #ifdef PLATFORM_FREEBSD free(addr, M_USBDEV); #endif /* PLATFORM_FREEBSD */ } #endif /* CONFIG_USB_HCI */ #if defined(DBG_MEM_ALLOC) struct rtw_mem_stat { ATOMIC_T alloc; /* the memory bytes we allocate currently */ ATOMIC_T peak; /* the peak memory bytes we allocate */ ATOMIC_T alloc_cnt; /* the alloc count for alloc currently */ ATOMIC_T alloc_err_cnt; /* the error times we fail to allocate memory */ }; struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)]; #ifdef RTW_MEM_FUNC_STAT struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)]; #endif char *MSTAT_TYPE_str[] = { "VIR", "PHY", "SKB", "USB", }; #ifdef RTW_MEM_FUNC_STAT char *MSTAT_FUNC_str[] = { "UNSP", "IO", "TXIO", "RXIO", "TX", "RX", }; #endif void rtw_mstat_dump(void *sel) { int i; int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)]; #ifdef RTW_MEM_FUNC_STAT int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)]; #endif int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err; int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err; for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) { value_t[0][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc)); value_t[1][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].peak)); value_t[2][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_cnt)); value_t[3][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_err_cnt)); } #ifdef RTW_MEM_FUNC_STAT for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) { value_f[0][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc)); value_f[1][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].peak)); value_f[2][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_cnt)); value_f[3][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_err_cnt)); } #endif RTW_PRINT_SEL(sel, "===================== MSTAT =====================\n"); RTW_PRINT_SEL(sel, "%4s %10s %10s %10s %10s\n", "TAG", "alloc", "peak", "aloc_cnt", "err_cnt"); RTW_PRINT_SEL(sel, "-------------------------------------------------\n"); for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_TYPE_str[i], value_t[0][i], value_t[1][i], value_t[2][i], value_t[3][i]); #ifdef RTW_MEM_FUNC_STAT RTW_PRINT_SEL(sel, "-------------------------------------------------\n"); for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_FUNC_str[i], value_f[0][i], value_f[1][i], value_f[2][i], value_f[3][i]); #endif } void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz) { static systime update_time = 0; int peak, alloc; int i; /* initialization */ if (!update_time) { for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) { ATOMIC_SET(&(rtw_mem_type_stat[i].alloc), 0); ATOMIC_SET(&(rtw_mem_type_stat[i].peak), 0); ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_cnt), 0); ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_err_cnt), 0); } #ifdef RTW_MEM_FUNC_STAT for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) { ATOMIC_SET(&(rtw_mem_func_stat[i].alloc), 0); ATOMIC_SET(&(rtw_mem_func_stat[i].peak), 0); ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_cnt), 0); ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_err_cnt), 0); } #endif } switch (status) { case MSTAT_ALLOC_SUCCESS: ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt)); alloc = ATOMIC_ADD_RETURN(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz); peak = ATOMIC_READ(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak)); if (peak < alloc) ATOMIC_SET(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak), alloc); #ifdef RTW_MEM_FUNC_STAT ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt)); alloc = ATOMIC_ADD_RETURN(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz); peak = ATOMIC_READ(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak)); if (peak < alloc) ATOMIC_SET(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak), alloc); #endif break; case MSTAT_ALLOC_FAIL: ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_err_cnt)); #ifdef RTW_MEM_FUNC_STAT ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_err_cnt)); #endif break; case MSTAT_FREE: ATOMIC_DEC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt)); ATOMIC_SUB(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz); #ifdef RTW_MEM_FUNC_STAT ATOMIC_DEC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt)); ATOMIC_SUB(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz); #endif break; }; /* if (rtw_get_passing_time_ms(update_time) > 5000) { */ /* rtw_mstat_dump(RTW_DBGDUMP); */ update_time = rtw_get_current_time(); /* } */ } #ifndef SIZE_MAX #define SIZE_MAX (~(size_t)0) #endif struct mstat_sniff_rule { enum mstat_f flags; size_t lb; size_t hb; }; struct mstat_sniff_rule mstat_sniff_rules[] = { {MSTAT_TYPE_PHY, 4097, SIZE_MAX}, }; int mstat_sniff_rule_num = sizeof(mstat_sniff_rules) / sizeof(struct mstat_sniff_rule); bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size) { int i; for (i = 0; i < mstat_sniff_rule_num; i++) { if (mstat_sniff_rules[i].flags == flags && mstat_sniff_rules[i].lb <= size && mstat_sniff_rules[i].hb >= size) return _TRUE; } return _FALSE; } inline void *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { void *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p = _rtw_vmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { void *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p = _rtw_zvmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void dbg_rtw_vmfree(void *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line) { if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); _rtw_vmfree((pbuf), (sz)); rtw_mstat_update( flags , MSTAT_FREE , sz ); } inline void *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { void *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p = _rtw_malloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line) { void *p; if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); p = _rtw_zmalloc((sz)); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , sz ); return p; } inline void dbg_rtw_mfree(void *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line) { if (match_mstat_sniff_rules(flags, sz)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz)); _rtw_mfree((pbuf), (sz)); rtw_mstat_update( flags , MSTAT_FREE , sz ); } inline struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line) { struct sk_buff *skb; unsigned int truesize = 0; skb = _rtw_skb_alloc(size); if (skb) truesize = skb->truesize; if (!skb || truesize < size || match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, size, skb, truesize); rtw_mstat_update( flags , skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , truesize ); return skb; } inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); _rtw_skb_free(skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); } inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line) { struct sk_buff *skb_cp; unsigned int truesize = skb->truesize; unsigned int cp_truesize = 0; skb_cp = _rtw_skb_copy(skb); if (skb_cp) cp_truesize = skb_cp->truesize; if (!skb_cp || cp_truesize < truesize || match_mstat_sniff_rules(flags, cp_truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cp, cp_truesize); rtw_mstat_update( flags , skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , cp_truesize ); return skb_cp; } inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line) { struct sk_buff *skb_cl; unsigned int truesize = skb->truesize; unsigned int cl_truesize = 0; skb_cl = _rtw_skb_clone(skb); if (skb_cl) cl_truesize = skb_cl->truesize; if (!skb_cl || cl_truesize < truesize || match_mstat_sniff_rules(flags, cl_truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cl, cl_truesize); rtw_mstat_update( flags , skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , cl_truesize ); return skb_cl; } inline int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); ret = _rtw_netif_rx(ndev, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } #ifdef CONFIG_RTW_NAPI inline int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); ret = _rtw_netif_receive_skb(ndev, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } #ifdef CONFIG_RTW_GRO inline gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line) { int ret; unsigned int truesize = skb->truesize; if (match_mstat_sniff_rules(flags, truesize)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize); ret = _rtw_napi_gro_receive(napi, skb); rtw_mstat_update( flags , MSTAT_FREE , truesize ); return ret; } #endif /* CONFIG_RTW_GRO */ #endif /* CONFIG_RTW_NAPI */ inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) dbg_rtw_skb_free(skb, flags, func, line); } #ifdef CONFIG_USB_HCI inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line) { void *p; if (match_mstat_sniff_rules(flags, size)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __FUNCTION__, size); p = _rtw_usb_buffer_alloc(dev, size, dma); rtw_mstat_update( flags , p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL , size ); return p; } inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line) { if (match_mstat_sniff_rules(flags, size)) RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __FUNCTION__, size); _rtw_usb_buffer_free(dev, size, addr, dma); rtw_mstat_update( flags , MSTAT_FREE , size ); } #endif /* CONFIG_USB_HCI */ #endif /* defined(DBG_MEM_ALLOC) */ void *rtw_malloc2d(int h, int w, size_t size) { int j; void **a = (void **) rtw_zmalloc(h * sizeof(void *) + h * w * size); if (a == NULL) { RTW_INFO("%s: alloc memory fail!\n", __FUNCTION__); return NULL; } for (j = 0; j < h; j++) a[j] = ((char *)(a + h)) + j * w * size; return a; } void rtw_mfree2d(void *pbuf, int h, int w, int size) { rtw_mfree((u8 *)pbuf, h * sizeof(void *) + w * h * size); } inline void rtw_os_pkt_free(_pkt *pkt) { #if defined(PLATFORM_LINUX) rtw_skb_free(pkt); #elif defined(PLATFORM_FREEBSD) m_freem(pkt); #else #error "TBD\n" #endif } inline _pkt *rtw_os_pkt_copy(_pkt *pkt) { #if defined(PLATFORM_LINUX) return rtw_skb_copy(pkt); #elif defined(PLATFORM_FREEBSD) return m_dup(pkt, M_NOWAIT); #else #error "TBD\n" #endif } inline void *rtw_os_pkt_data(_pkt *pkt) { #if defined(PLATFORM_LINUX) return pkt->data; #elif defined(PLATFORM_FREEBSD) return pkt->m_data; #else #error "TBD\n" #endif } inline u32 rtw_os_pkt_len(_pkt *pkt) { #if defined(PLATFORM_LINUX) return pkt->len; #elif defined(PLATFORM_FREEBSD) return pkt->m_pkthdr.len; #else #error "TBD\n" #endif } void _rtw_memcpy(void *dst, const void *src, u32 sz) { #if defined(PLATFORM_LINUX) || defined (PLATFORM_FREEBSD) memcpy(dst, src, sz); #endif #ifdef PLATFORM_WINDOWS NdisMoveMemory(dst, src, sz); #endif } inline void _rtw_memmove(void *dst, const void *src, u32 sz) { #if defined(PLATFORM_LINUX) memmove(dst, src, sz); #else #error "TBD\n" #endif } int _rtw_memcmp(const void *dst, const void *src, u32 sz) { #if defined(PLATFORM_LINUX) || defined (PLATFORM_FREEBSD) /* under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0 */ if (!(memcmp(dst, src, sz))) return _TRUE; else return _FALSE; #endif #ifdef PLATFORM_WINDOWS /* under Windows, the return value of NdisEqualMemory for two same mem. chunk is 1 */ if (NdisEqualMemory(dst, src, sz)) return _TRUE; else return _FALSE; #endif } void _rtw_memset(void *pbuf, int c, u32 sz) { #if defined(PLATFORM_LINUX) || defined (PLATFORM_FREEBSD) memset(pbuf, c, sz); #endif #ifdef PLATFORM_WINDOWS #if 0 NdisZeroMemory(pbuf, sz); if (c != 0) memset(pbuf, c, sz); #else NdisFillMemory(pbuf, sz, c); #endif #endif } #ifdef PLATFORM_FREEBSD static inline void __list_add(_list *pnew, _list *pprev, _list *pnext) { pnext->prev = pnew; pnew->next = pnext; pnew->prev = pprev; pprev->next = pnew; } #endif /* PLATFORM_FREEBSD */ void _rtw_init_listhead(_list *list) { #ifdef PLATFORM_LINUX INIT_LIST_HEAD(list); #endif #ifdef PLATFORM_FREEBSD list->next = list; list->prev = list; #endif #ifdef PLATFORM_WINDOWS NdisInitializeListHead(list); #endif } /* For the following list_xxx operations, caller must guarantee the atomic context. Otherwise, there will be racing condition. */ u32 rtw_is_list_empty(_list *phead) { #ifdef PLATFORM_LINUX if (list_empty(phead)) return _TRUE; else return _FALSE; #endif #ifdef PLATFORM_FREEBSD if (phead->next == phead) return _TRUE; else return _FALSE; #endif #ifdef PLATFORM_WINDOWS if (IsListEmpty(phead)) return _TRUE; else return _FALSE; #endif } void rtw_list_insert_head(_list *plist, _list *phead) { #ifdef PLATFORM_LINUX list_add(plist, phead); #endif #ifdef PLATFORM_FREEBSD __list_add(plist, phead, phead->next); #endif #ifdef PLATFORM_WINDOWS InsertHeadList(phead, plist); #endif } void rtw_list_insert_tail(_list *plist, _list *phead) { #ifdef PLATFORM_LINUX list_add_tail(plist, phead); #endif #ifdef PLATFORM_FREEBSD __list_add(plist, phead->prev, phead); #endif #ifdef PLATFORM_WINDOWS InsertTailList(phead, plist); #endif } inline void rtw_list_splice(_list *list, _list *head) { #ifdef PLATFORM_LINUX list_splice(list, head); #else #error "TBD\n" #endif } inline void rtw_list_splice_init(_list *list, _list *head) { #ifdef PLATFORM_LINUX list_splice_init(list, head); #else #error "TBD\n" #endif } inline void rtw_list_splice_tail(_list *list, _list *head) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 27)) if (!list_empty(list)) __list_splice(list, head); #else list_splice_tail(list, head); #endif #else #error "TBD\n" #endif } inline void rtw_hlist_head_init(rtw_hlist_head *h) { #ifdef PLATFORM_LINUX INIT_HLIST_HEAD(h); #else #error "TBD\n" #endif } inline void rtw_hlist_add_head(rtw_hlist_node *n, rtw_hlist_head *h) { #ifdef PLATFORM_LINUX hlist_add_head(n, h); #else #error "TBD\n" #endif } inline void rtw_hlist_del(rtw_hlist_node *n) { #ifdef PLATFORM_LINUX hlist_del(n); #else #error "TBD\n" #endif } inline void rtw_hlist_add_head_rcu(rtw_hlist_node *n, rtw_hlist_head *h) { #ifdef PLATFORM_LINUX hlist_add_head_rcu(n, h); #else #error "TBD\n" #endif } inline void rtw_hlist_del_rcu(rtw_hlist_node *n) { #ifdef PLATFORM_LINUX hlist_del_rcu(n); #else #error "TBD\n" #endif } void rtw_init_timer(_timer *ptimer, void *padapter, void *pfunc, void *ctx) { _adapter *adapter = (_adapter *)padapter; #ifdef PLATFORM_LINUX _init_timer(ptimer, adapter->pnetdev, pfunc, ctx); #endif #ifdef PLATFORM_FREEBSD _init_timer(ptimer, adapter->pifp, pfunc, ctx); #endif #ifdef PLATFORM_WINDOWS _init_timer(ptimer, adapter->hndis_adapter, pfunc, ctx); #endif } /* Caller must check if the list is empty before calling rtw_list_delete */ void _rtw_init_sema(_sema *sema, int init_val) { #ifdef PLATFORM_LINUX sema_init(sema, init_val); #endif #ifdef PLATFORM_FREEBSD sema_init(sema, init_val, "rtw_drv"); #endif #ifdef PLATFORM_OS_XP KeInitializeSemaphore(sema, init_val, SEMA_UPBND); /* count=0; */ #endif #ifdef PLATFORM_OS_CE if (*sema == NULL) *sema = CreateSemaphore(NULL, init_val, SEMA_UPBND, NULL); #endif } void _rtw_free_sema(_sema *sema) { #ifdef PLATFORM_FREEBSD sema_destroy(sema); #endif #ifdef PLATFORM_OS_CE CloseHandle(*sema); #endif } void _rtw_up_sema(_sema *sema) { #ifdef PLATFORM_LINUX up(sema); #endif #ifdef PLATFORM_FREEBSD sema_post(sema); #endif #ifdef PLATFORM_OS_XP KeReleaseSemaphore(sema, IO_NETWORK_INCREMENT, 1, FALSE); #endif #ifdef PLATFORM_OS_CE ReleaseSemaphore(*sema, 1, NULL); #endif } u32 _rtw_down_sema(_sema *sema) { #ifdef PLATFORM_LINUX if (down_interruptible(sema)) return _FAIL; else return _SUCCESS; #endif #ifdef PLATFORM_FREEBSD sema_wait(sema); return _SUCCESS; #endif #ifdef PLATFORM_OS_XP if (STATUS_SUCCESS == KeWaitForSingleObject(sema, Executive, KernelMode, TRUE, NULL)) return _SUCCESS; else return _FAIL; #endif #ifdef PLATFORM_OS_CE if (WAIT_OBJECT_0 == WaitForSingleObject(*sema, INFINITE)) return _SUCCESS; else return _FAIL; #endif } #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 17, 0) inline void thread_exit(_completion *comp) #else inline void kthread_thread_exit(_completion *comp) #endif { #ifdef PLATFORM_LINUX #if LINUX_VERSION_CODE < KERNEL_VERSION(5, 17, 0) complete_and_exit(comp, 0); #else kthread_complete_and_exit(comp, 0); #endif #endif #ifdef PLATFORM_FREEBSD printf("%s", "RTKTHREAD_exit"); #endif #ifdef PLATFORM_OS_CE ExitThread(STATUS_SUCCESS); #endif #ifdef PLATFORM_OS_XP PsTerminateSystemThread(STATUS_SUCCESS); #endif } inline void _rtw_init_completion(_completion *comp) { #ifdef PLATFORM_LINUX init_completion(comp); #endif } inline void _rtw_wait_for_comp_timeout(_completion *comp) { #ifdef PLATFORM_LINUX wait_for_completion_timeout(comp, msecs_to_jiffies(3000)); #endif } inline void _rtw_wait_for_comp(_completion *comp) { #ifdef PLATFORM_LINUX wait_for_completion(comp); #endif } void _rtw_mutex_init(_mutex *pmutex) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) mutex_init(pmutex); #else init_MUTEX(pmutex); #endif #endif #ifdef PLATFORM_FREEBSD mtx_init(pmutex, "", NULL, MTX_DEF | MTX_RECURSE); #endif #ifdef PLATFORM_OS_XP KeInitializeMutex(pmutex, 0); #endif #ifdef PLATFORM_OS_CE *pmutex = CreateMutex(NULL, _FALSE, NULL); #endif } void _rtw_mutex_free(_mutex *pmutex); void _rtw_mutex_free(_mutex *pmutex) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37)) mutex_destroy(pmutex); #else #endif #ifdef PLATFORM_FREEBSD sema_destroy(pmutex); #endif #endif #ifdef PLATFORM_OS_XP #endif #ifdef PLATFORM_OS_CE #endif } void _rtw_spinlock_init(_lock *plock) { #ifdef PLATFORM_LINUX spin_lock_init(plock); #endif #ifdef PLATFORM_FREEBSD mtx_init(plock, "", NULL, MTX_DEF | MTX_RECURSE); #endif #ifdef PLATFORM_WINDOWS NdisAllocateSpinLock(plock); #endif } void _rtw_spinlock_free(_lock *plock) { #ifdef PLATFORM_FREEBSD mtx_destroy(plock); #endif #ifdef PLATFORM_WINDOWS NdisFreeSpinLock(plock); #endif } #ifdef PLATFORM_FREEBSD extern PADAPTER prtw_lock; void rtw_mtx_lock(_lock *plock) { if (prtw_lock) mtx_lock(&prtw_lock->glock); else printf("%s prtw_lock==NULL", __FUNCTION__); } void rtw_mtx_unlock(_lock *plock) { if (prtw_lock) mtx_unlock(&prtw_lock->glock); else printf("%s prtw_lock==NULL", __FUNCTION__); } #endif /* PLATFORM_FREEBSD */ void _rtw_spinlock(_lock *plock) { #ifdef PLATFORM_LINUX spin_lock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_lock(plock); #endif #ifdef PLATFORM_WINDOWS NdisAcquireSpinLock(plock); #endif } void _rtw_spinunlock(_lock *plock) { #ifdef PLATFORM_LINUX spin_unlock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_unlock(plock); #endif #ifdef PLATFORM_WINDOWS NdisReleaseSpinLock(plock); #endif } void _rtw_spinlock_ex(_lock *plock) { #ifdef PLATFORM_LINUX spin_lock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_lock(plock); #endif #ifdef PLATFORM_WINDOWS NdisDprAcquireSpinLock(plock); #endif } void _rtw_spinunlock_ex(_lock *plock) { #ifdef PLATFORM_LINUX spin_unlock(plock); #endif #ifdef PLATFORM_FREEBSD mtx_unlock(plock); #endif #ifdef PLATFORM_WINDOWS NdisDprReleaseSpinLock(plock); #endif } void _rtw_init_queue(_queue *pqueue) { _rtw_init_listhead(&(pqueue->queue)); _rtw_spinlock_init(&(pqueue->lock)); } void _rtw_deinit_queue(_queue *pqueue) { _rtw_spinlock_free(&(pqueue->lock)); } u32 _rtw_queue_empty(_queue *pqueue) { return rtw_is_list_empty(&(pqueue->queue)); } u32 rtw_end_of_queue_search(_list *head, _list *plist) { if (head == plist) return _TRUE; else return _FALSE; } systime _rtw_get_current_time(void) { #ifdef PLATFORM_LINUX return jiffies; #endif #ifdef PLATFORM_FREEBSD struct timeval tvp; getmicrotime(&tvp); return tvp.tv_sec; #endif #ifdef PLATFORM_WINDOWS LARGE_INTEGER SystemTime; NdisGetCurrentSystemTime(&SystemTime); return SystemTime.LowPart;/* count of 100-nanosecond intervals */ #endif } inline u32 _rtw_systime_to_ms(systime stime) { #ifdef PLATFORM_LINUX return jiffies_to_msecs(stime); #endif #ifdef PLATFORM_FREEBSD return stime * 1000; #endif #ifdef PLATFORM_WINDOWS return stime / 10000 ; #endif } inline systime _rtw_ms_to_systime(u32 ms) { #ifdef PLATFORM_LINUX return msecs_to_jiffies(ms); #endif #ifdef PLATFORM_FREEBSD return ms / 1000; #endif #ifdef PLATFORM_WINDOWS return ms * 10000 ; #endif } inline systime _rtw_us_to_systime(u32 us) { #ifdef PLATFORM_LINUX return usecs_to_jiffies(us); #else #error "TBD\n" #endif } /* the input parameter start use the same unit as returned by rtw_get_current_time */ inline s32 _rtw_get_passing_time_ms(systime start) { return _rtw_systime_to_ms(_rtw_get_current_time() - start); } inline s32 _rtw_get_remaining_time_ms(systime end) { return _rtw_systime_to_ms(end - _rtw_get_current_time()); } inline s32 _rtw_get_time_interval_ms(systime start, systime end) { return _rtw_systime_to_ms(end - start); } inline bool _rtw_time_after(systime a, systime b) { #ifdef PLATFORM_LINUX return time_after(a, b); #else #error "TBD\n" #endif } void rtw_sleep_schedulable(int ms) { #ifdef PLATFORM_LINUX u32 delta; delta = (ms * HZ) / 1000; /* (ms) */ if (delta == 0) { delta = 1;/* 1 ms */ } set_current_state(TASK_INTERRUPTIBLE); if (schedule_timeout(delta) != 0) return ; return; #endif #ifdef PLATFORM_FREEBSD DELAY(ms * 1000); return ; #endif #ifdef PLATFORM_WINDOWS NdisMSleep(ms * 1000); /* (us)*1000=(ms) */ #endif } void rtw_msleep_os(int ms) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) if (ms < 20) { unsigned long us = ms * 1000UL; usleep_range(us, us + 1000UL); } else #endif msleep((unsigned int)ms); #endif #ifdef PLATFORM_FREEBSD /* Delay for delay microseconds */ DELAY(ms * 1000); return ; #endif #ifdef PLATFORM_WINDOWS NdisMSleep(ms * 1000); /* (us)*1000=(ms) */ #endif } void rtw_usleep_os(int us) { #ifdef PLATFORM_LINUX /* msleep((unsigned int)us); */ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)) usleep_range(us, us + 1); #else if (1 < (us / 1000)) msleep(1); else msleep((us / 1000) + 1); #endif #endif #ifdef PLATFORM_FREEBSD /* Delay for delay microseconds */ DELAY(us); return ; #endif #ifdef PLATFORM_WINDOWS NdisMSleep(us); /* (us) */ #endif } #ifdef DBG_DELAY_OS void _rtw_mdelay_os(int ms, const char *func, const int line) { #if 0 if (ms > 10) RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms); rtw_msleep_os(ms); return; #endif RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms); #if defined(PLATFORM_LINUX) mdelay((unsigned long)ms); #elif defined(PLATFORM_WINDOWS) NdisStallExecution(ms * 1000); /* (us)*1000=(ms) */ #endif } void _rtw_udelay_os(int us, const char *func, const int line) { #if 0 if (us > 1000) { RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, us); rtw_usleep_os(us); return; } #endif RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, us); #if defined(PLATFORM_LINUX) udelay((unsigned long)us); #elif defined(PLATFORM_WINDOWS) NdisStallExecution(us); /* (us) */ #endif } #else void rtw_mdelay_os(int ms) { #ifdef PLATFORM_LINUX mdelay((unsigned long)ms); #endif #ifdef PLATFORM_FREEBSD DELAY(ms * 1000); return ; #endif #ifdef PLATFORM_WINDOWS NdisStallExecution(ms * 1000); /* (us)*1000=(ms) */ #endif } void rtw_udelay_os(int us) { #ifdef PLATFORM_LINUX udelay((unsigned long)us); #endif #ifdef PLATFORM_FREEBSD /* Delay for delay microseconds */ DELAY(us); return ; #endif #ifdef PLATFORM_WINDOWS NdisStallExecution(us); /* (us) */ #endif } #endif void rtw_yield_os(void) { #ifdef PLATFORM_LINUX yield(); #endif #ifdef PLATFORM_FREEBSD yield(); #endif #ifdef PLATFORM_WINDOWS SwitchToThread(); #endif } bool rtw_macaddr_is_larger(const u8 *a, const u8 *b) { u32 va, vb; va = be32_to_cpu(*((u32 *)a)); vb = be32_to_cpu(*((u32 *)b)); if (va > vb) return 1; else if (va < vb) return 0; return be16_to_cpu(*((u16 *)(a + 4))) > be16_to_cpu(*((u16 *)(b + 4))); } #define RTW_SUSPEND_LOCK_NAME "rtw_wifi" #define RTW_SUSPEND_TRAFFIC_LOCK_NAME "rtw_wifi_traffic" #define RTW_SUSPEND_RESUME_LOCK_NAME "rtw_wifi_resume" #ifdef CONFIG_WAKELOCK static struct wake_lock rtw_suspend_lock; static struct wake_lock rtw_suspend_traffic_lock; static struct wake_lock rtw_suspend_resume_lock; #elif defined(CONFIG_ANDROID_POWER) static android_suspend_lock_t rtw_suspend_lock = { .name = RTW_SUSPEND_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_traffic_lock = { .name = RTW_SUSPEND_TRAFFIC_LOCK_NAME }; static android_suspend_lock_t rtw_suspend_resume_lock = { .name = RTW_SUSPEND_RESUME_LOCK_NAME }; #endif inline void rtw_suspend_lock_init(void) { #ifdef CONFIG_WAKELOCK wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME); wake_lock_init(&rtw_suspend_traffic_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_TRAFFIC_LOCK_NAME); wake_lock_init(&rtw_suspend_resume_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RESUME_LOCK_NAME); #elif defined(CONFIG_ANDROID_POWER) android_init_suspend_lock(&rtw_suspend_lock); android_init_suspend_lock(&rtw_suspend_traffic_lock); android_init_suspend_lock(&rtw_suspend_resume_lock); #endif } inline void rtw_suspend_lock_uninit(void) { #ifdef CONFIG_WAKELOCK wake_lock_destroy(&rtw_suspend_lock); wake_lock_destroy(&rtw_suspend_traffic_lock); wake_lock_destroy(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_uninit_suspend_lock(&rtw_suspend_lock); android_uninit_suspend_lock(&rtw_suspend_traffic_lock); android_uninit_suspend_lock(&rtw_suspend_resume_lock); #endif } inline void rtw_lock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_unlock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_resume_lock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_lock(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend(&rtw_suspend_resume_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_resume_unlock_suspend(void) { #ifdef CONFIG_WAKELOCK wake_unlock(&rtw_suspend_resume_lock); #elif defined(CONFIG_ANDROID_POWER) android_unlock_suspend(&rtw_suspend_resume_lock); #endif #if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER) /* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */ #endif } inline void rtw_lock_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms)); #endif } inline void rtw_lock_traffic_suspend_timeout(u32 timeout_ms) { #ifdef CONFIG_WAKELOCK wake_lock_timeout(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms)); #elif defined(CONFIG_ANDROID_POWER) android_lock_suspend_auto_expire(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms)); #endif /* RTW_INFO("traffic lock timeout:%d\n", timeout_ms); */ } inline void rtw_set_bit(int nr, unsigned long *addr) { #ifdef PLATFORM_LINUX set_bit(nr, addr); #else #error "TBD\n"; #endif } inline void rtw_clear_bit(int nr, unsigned long *addr) { #ifdef PLATFORM_LINUX clear_bit(nr, addr); #else #error "TBD\n"; #endif } inline int rtw_test_and_clear_bit(int nr, unsigned long *addr) { #ifdef PLATFORM_LINUX return test_and_clear_bit(nr, addr); #else #error "TBD\n"; #endif } inline void ATOMIC_SET(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX atomic_set(v, i); #elif defined(PLATFORM_WINDOWS) *v = i; /* other choice???? */ #elif defined(PLATFORM_FREEBSD) atomic_set_int(v, i); #endif } inline int ATOMIC_READ(ATOMIC_T *v) { #ifdef PLATFORM_LINUX return atomic_read(v); #elif defined(PLATFORM_WINDOWS) return *v; /* other choice???? */ #elif defined(PLATFORM_FREEBSD) return atomic_load_acq_32(v); #endif } inline void ATOMIC_ADD(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX atomic_add(i, v); #elif defined(PLATFORM_WINDOWS) InterlockedAdd(v, i); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v, i); #endif } inline void ATOMIC_SUB(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX atomic_sub(i, v); #elif defined(PLATFORM_WINDOWS) InterlockedAdd(v, -i); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v, i); #endif } inline void ATOMIC_INC(ATOMIC_T *v) { #ifdef PLATFORM_LINUX atomic_inc(v); #elif defined(PLATFORM_WINDOWS) InterlockedIncrement(v); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v, 1); #endif } inline void ATOMIC_DEC(ATOMIC_T *v) { #ifdef PLATFORM_LINUX atomic_dec(v); #elif defined(PLATFORM_WINDOWS) InterlockedDecrement(v); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v, 1); #endif } inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX return atomic_add_return(i, v); #elif defined(PLATFORM_WINDOWS) return InterlockedAdd(v, i); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v, i); return atomic_load_acq_32(v); #endif } inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i) { #ifdef PLATFORM_LINUX return atomic_sub_return(i, v); #elif defined(PLATFORM_WINDOWS) return InterlockedAdd(v, -i); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v, i); return atomic_load_acq_32(v); #endif } inline int ATOMIC_INC_RETURN(ATOMIC_T *v) { #ifdef PLATFORM_LINUX return atomic_inc_return(v); #elif defined(PLATFORM_WINDOWS) return InterlockedIncrement(v); #elif defined(PLATFORM_FREEBSD) atomic_add_int(v, 1); return atomic_load_acq_32(v); #endif } inline int ATOMIC_DEC_RETURN(ATOMIC_T *v) { #ifdef PLATFORM_LINUX return atomic_dec_return(v); #elif defined(PLATFORM_WINDOWS) return InterlockedDecrement(v); #elif defined(PLATFORM_FREEBSD) atomic_subtract_int(v, 1); return atomic_load_acq_32(v); #endif } inline bool ATOMIC_INC_UNLESS(ATOMIC_T *v, int u) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 15)) return atomic_add_unless(v, 1, u); #else /* only make sure not exceed after this function */ if (ATOMIC_INC_RETURN(v) > u) { ATOMIC_DEC(v); return 0; } return 1; #endif #else #error "TBD\n" #endif } #ifdef PLATFORM_LINUX /* * Open a file with the specific @param path, @param flag, @param mode * @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success * @param path the path of the file to open * @param flag file operation flags, please refer to linux document * @param mode please refer to linux document * @return Linux specific error code */ static int openFile(struct file **fpp, const char *path, int flag, int mode) { struct file *fp; fp = filp_open(path, flag, mode); if (IS_ERR(fp)) { *fpp = NULL; return PTR_ERR(fp); } else { *fpp = fp; return 0; } } /* * Close the file with the specific @param fp * @param fp the pointer of struct file to close * @return always 0 */ static int closeFile(struct file *fp) { filp_close(fp, NULL); return 0; } static int readFile(struct file *fp, char *buf, int len) { int rlen = 0, sum = 0; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)) if (!(fp->f_mode & FMODE_CAN_READ)) #else if (!fp->f_op || !fp->f_op->read) #endif return -EPERM; while (sum < len) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) rlen = kernel_read(fp, buf + sum, len - sum, &fp->f_pos); #elif (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)) rlen = __vfs_read(fp, buf + sum, len - sum, &fp->f_pos); #else rlen = fp->f_op->read(fp, buf + sum, len - sum, &fp->f_pos); #endif if (rlen > 0) sum += rlen; else if (0 != rlen) return rlen; else break; } return sum; } static int writeFile(struct file *fp, char *buf, int len) { int wlen = 0, sum = 0; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)) if (!(fp->f_mode & FMODE_CAN_WRITE)) #else if (!fp->f_op || !fp->f_op->write) #endif return -EPERM; while (sum < len) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) wlen = kernel_write(fp, buf + sum, len - sum, &fp->f_pos); #elif (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)) wlen = __vfs_write(fp, buf + sum, len - sum, &fp->f_pos); #else wlen = fp->f_op->write(fp, buf + sum, len - sum, &fp->f_pos); #endif if (wlen > 0) sum += wlen; else if (0 != wlen) return wlen; else break; } return sum; } /* * Test if the specifi @param path is a file and readable * If readable, @param sz is got * @param path the path of the file to test * @return Linux specific error code */ static int isFileReadable(const char *path, u32 *sz) { struct file *fp; int ret = 0; #ifdef set_fs mm_segment_t oldfs; #endif char buf; fp = filp_open(path, O_RDONLY, 0); if (IS_ERR(fp)) ret = PTR_ERR(fp); else { #ifdef set_fs oldfs = get_fs(); set_fs(KERNEL_DS); #endif if (1 != readFile(fp, &buf, 1)) ret = PTR_ERR(fp); if (ret == 0 && sz) { #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0)) *sz = i_size_read(fp->f_path.dentry->d_inode); #else *sz = i_size_read(fp->f_dentry->d_inode); #endif } #ifdef set_fs set_fs(oldfs); #endif filp_close(fp, NULL); } return ret; } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read, or Linux specific error code */ static int retriveFromFile(const char *path, u8 *buf, u32 sz) { int ret = -1; #ifdef set_fs mm_segment_t oldfs; #endif struct file *fp; if (path && buf) { ret = openFile(&fp, path, O_RDONLY, 0); if (0 == ret) { RTW_INFO("%s openFile path:%s fp=%p\n", __FUNCTION__, path , fp); #ifdef set_fs oldfs = get_fs(); set_fs(KERNEL_DS); ret = readFile(fp, buf, sz); set_fs(oldfs); #else ret = readFile(fp, buf, sz); #endif closeFile(fp); RTW_INFO("%s readFile, ret:%d\n", __FUNCTION__, ret); } else RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __FUNCTION__, path, ret); } else { RTW_INFO("%s NULL pointer\n", __FUNCTION__); ret = -EINVAL; } return ret; } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written, or Linux specific error code */ static int storeToFile(const char *path, u8 *buf, u32 sz) { int ret = 0; #ifdef set_fs mm_segment_t oldfs; #endif struct file *fp; if (path && buf) { ret = openFile(&fp, path, O_CREAT | O_WRONLY, 0666); if (0 == ret) { RTW_INFO("%s openFile path:%s fp=%p\n", __FUNCTION__, path , fp); #ifdef set_fs oldfs = get_fs(); set_fs(KERNEL_DS); ret = writeFile(fp, buf, sz); set_fs(oldfs); #else ret = writeFile(fp, buf, sz); #endif closeFile(fp); RTW_INFO("%s writeFile, ret:%d\n", __FUNCTION__, ret); } else RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __FUNCTION__, path, ret); } else { RTW_INFO("%s NULL pointer\n", __FUNCTION__); ret = -EINVAL; } return ret; } #endif /* PLATFORM_LINUX */ /* * Test if the specifi @param path is a file and readable * @param path the path of the file to test * @return _TRUE or _FALSE */ int rtw_is_file_readable(const char *path) { #ifdef PLATFORM_LINUX if (isFileReadable(path, NULL) == 0) return _TRUE; else return _FALSE; #else /* Todo... */ return _FALSE; #endif } /* * Test if the specifi @param path is a file and readable. * If readable, @param sz is got * @param path the path of the file to test * @return _TRUE or _FALSE */ int rtw_is_file_readable_with_size(const char *path, u32 *sz) { #ifdef PLATFORM_LINUX if (isFileReadable(path, sz) == 0) return _TRUE; else return _FALSE; #else /* Todo... */ return _FALSE; #endif } /* * Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most * @param path the path of the file to open and read * @param buf the starting address of the buffer to store file content * @param sz how many bytes to read at most * @return the byte we've read */ int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz) { #ifdef PLATFORM_LINUX int ret = retriveFromFile(path, buf, sz); return ret >= 0 ? ret : 0; #else /* Todo... */ return 0; #endif } /* * Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file * @param path the path of the file to open and write * @param buf the starting address of the data to write into file * @param sz how many bytes to write at most * @return the byte we've written */ int rtw_store_to_file(const char *path, u8 *buf, u32 sz) { #ifdef PLATFORM_LINUX int ret = storeToFile(path, buf, sz); return ret >= 0 ? ret : 0; #else /* Todo... */ return 0; #endif } #ifdef PLATFORM_LINUX struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnetdev->mtu = WLAN_MAX_ETHFRM_LEN; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) pnetdev->min_mtu = WLAN_MIN_ETHFRM_LEN; pnetdev->max_mtu = WLAN_DATA_MAXLEN; #endif pnpi = netdev_priv(pnetdev); pnpi->priv = old_priv; pnpi->sizeof_priv = sizeof_priv; RETURN: return pnetdev; } struct net_device *rtw_alloc_etherdev(int sizeof_priv) { struct net_device *pnetdev; struct rtw_netdev_priv_indicator *pnpi; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)) pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4); #else pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator)); #endif if (!pnetdev) goto RETURN; pnetdev->mtu = WLAN_MAX_ETHFRM_LEN; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)) pnetdev->min_mtu = WLAN_MIN_ETHFRM_LEN; pnetdev->max_mtu = WLAN_DATA_MAXLEN; #endif pnpi = netdev_priv(pnetdev); pnpi->priv = rtw_zvmalloc(sizeof_priv); if (!pnpi->priv) { free_netdev(pnetdev); pnetdev = NULL; goto RETURN; } pnpi->sizeof_priv = sizeof_priv; RETURN: return pnetdev; } void rtw_free_netdev(struct net_device *netdev) { struct rtw_netdev_priv_indicator *pnpi; if (!netdev) goto RETURN; pnpi = netdev_priv(netdev); if (!pnpi->priv) goto RETURN; free_netdev(netdev); RETURN: return; } int rtw_change_ifname(_adapter *padapter, const char *ifname) { struct dvobj_priv *dvobj; struct net_device *pnetdev; struct net_device *cur_pnetdev; struct rereg_nd_name_data *rereg_priv; int ret; u8 rtnl_lock_needed; if (!padapter) goto error; dvobj = adapter_to_dvobj(padapter); cur_pnetdev = padapter->pnetdev; rereg_priv = &padapter->rereg_nd_name_priv; /* free the old_pnetdev */ if (rereg_priv->old_pnetdev) { free_netdev(rereg_priv->old_pnetdev); rereg_priv->old_pnetdev = NULL; } rtnl_lock_needed = rtw_rtnl_lock_needed(dvobj); if (rtnl_lock_needed) unregister_netdev(cur_pnetdev); else unregister_netdevice(cur_pnetdev); rereg_priv->old_pnetdev = cur_pnetdev; pnetdev = rtw_init_netdev(padapter); if (!pnetdev) { ret = -1; goto error; } SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter))); rtw_init_netdev_name(pnetdev, ifname); _rtw_memcpy(pnetdev->dev_addr, adapter_mac_addr(padapter), ETH_ALEN); if (rtnl_lock_needed) ret = register_netdev(pnetdev); else ret = register_netdevice(pnetdev); if (ret != 0) { goto error; } return 0; error: return -1; } #endif #ifdef PLATFORM_FREEBSD /* * Copy a buffer from userspace and write into kernel address * space. * * This emulation just calls the FreeBSD copyin function (to * copy data from user space buffer into a kernel space buffer) * and is designed to be used with the above io_write_wrapper. * * This function should return the number of bytes not copied. * I.e. success results in a zero value. * Negative error values are not returned. */ unsigned long copy_from_user(void *to, const void *from, unsigned long n) { if (copyin(from, to, n) != 0) { /* Any errors will be treated as a failure to copy any of the requested bytes */ return n; } return 0; } unsigned long copy_to_user(void *to, const void *from, unsigned long n) { if (copyout(from, to, n) != 0) { /* Any errors will be treated as a failure to copy any of the requested bytes */ return n; } return 0; } /* * The usb_register and usb_deregister functions are used to register * usb drivers with the usb subsystem. In this compatibility layer * emulation a list of drivers (struct usb_driver) is maintained * and is used for probing/attaching etc. * * usb_register and usb_deregister simply call these functions. */ int usb_register(struct usb_driver *driver) { rtw_usb_linux_register(driver); return 0; } int usb_deregister(struct usb_driver *driver) { rtw_usb_linux_deregister(driver); return 0; } void module_init_exit_wrapper(void *arg) { int (*func)(void) = arg; func(); return; } #endif /* PLATFORM_FREEBSD */ #ifdef CONFIG_PLATFORM_SPRD #ifdef do_div #undef do_div #endif #include #endif u64 rtw_modular64(u64 x, u64 y) { #ifdef PLATFORM_LINUX return do_div(x, y); #elif defined(PLATFORM_WINDOWS) return x % y; #elif defined(PLATFORM_FREEBSD) return x % y; #endif } u64 rtw_division64(u64 x, u64 y) { #ifdef PLATFORM_LINUX do_div(x, y); return x; #elif defined(PLATFORM_WINDOWS) return x / y; #elif defined(PLATFORM_FREEBSD) return x / y; #endif } inline u32 rtw_random32(void) { #ifdef PLATFORM_LINUX #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)) return prandom_u32(); #elif (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18)) u32 random_int; get_random_bytes(&random_int , 4); return random_int; #else return random32(); #endif #elif defined(PLATFORM_WINDOWS) #error "to be implemented\n" #elif defined(PLATFORM_FREEBSD) #error "to be implemented\n" #endif } void rtw_buf_free(u8 **buf, u32 *buf_len) { u32 ori_len; if (!buf || !buf_len) return; ori_len = *buf_len; if (*buf) { u32 tmp_buf_len = *buf_len; *buf_len = 0; rtw_mfree(*buf, tmp_buf_len); *buf = NULL; } } void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len) { u32 ori_len = 0, dup_len = 0; u8 *ori = NULL; u8 *dup = NULL; if (!buf || !buf_len) return; if (!src || !src_len) goto keep_ori; /* duplicate src */ dup = rtw_malloc(src_len); if (dup) { dup_len = src_len; _rtw_memcpy(dup, src, dup_len); } keep_ori: ori = *buf; ori_len = *buf_len; /* replace buf with dup */ *buf_len = 0; *buf = dup; *buf_len = dup_len; /* free ori */ if (ori && ori_len > 0) rtw_mfree(ori, ori_len); } /** * rtw_cbuf_full - test if cbuf is full * @cbuf: pointer of struct rtw_cbuf * * Returns: _TRUE if cbuf is full */ inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read - 1) ? _TRUE : _FALSE; } /** * rtw_cbuf_empty - test if cbuf is empty * @cbuf: pointer of struct rtw_cbuf * * Returns: _TRUE if cbuf is empty */ inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf) { return (cbuf->write == cbuf->read) ? _TRUE : _FALSE; } /** * rtw_cbuf_push - push a pointer into cbuf * @cbuf: pointer of struct rtw_cbuf * @buf: pointer to push in * * Lock free operation, be careful of the use scheme * Returns: _TRUE push success */ bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf) { if (rtw_cbuf_full(cbuf)) return _FAIL; if (0) RTW_INFO("%s on %u\n", __func__, cbuf->write); cbuf->bufs[cbuf->write] = buf; cbuf->write = (cbuf->write + 1) % cbuf->size; return _SUCCESS; } /** * rtw_cbuf_pop - pop a pointer from cbuf * @cbuf: pointer of struct rtw_cbuf * * Lock free operation, be careful of the use scheme * Returns: pointer popped out */ void *rtw_cbuf_pop(struct rtw_cbuf *cbuf) { void *buf; if (rtw_cbuf_empty(cbuf)) return NULL; if (0) RTW_INFO("%s on %u\n", __func__, cbuf->read); buf = cbuf->bufs[cbuf->read]; cbuf->read = (cbuf->read + 1) % cbuf->size; return buf; } /** * rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization * @size: size of pointer * * Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure */ struct rtw_cbuf *rtw_cbuf_alloc(u32 size) { struct rtw_cbuf *cbuf; cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void *) * size); if (cbuf) { cbuf->write = cbuf->read = 0; cbuf->size = size; } return cbuf; } /** * rtw_cbuf_free - free the given rtw_cbuf * @cbuf: pointer of struct rtw_cbuf to free */ void rtw_cbuf_free(struct rtw_cbuf *cbuf) { rtw_mfree((u8 *)cbuf, sizeof(*cbuf) + sizeof(void *) * cbuf->size); } /** * map_readN - read a range of map data * @map: map to read * @offset: start address to read * @len: length to read * @buf: pointer of buffer to store data read * * Returns: _SUCCESS or _FAIL */ int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf) { const struct map_seg_t *seg; int ret = _FAIL; int i; if (len == 0) { rtw_warn_on(1); goto exit; } if (offset + len > map->len) { rtw_warn_on(1); goto exit; } _rtw_memset(buf, map->init_value, len); for (i = 0; i < map->seg_num; i++) { u8 *c_dst, *c_src; u16 c_len; seg = map->segs + i; if (seg->sa + seg->len <= offset || seg->sa >= offset + len) continue; if (seg->sa >= offset) { c_dst = buf + (seg->sa - offset); c_src = seg->c; if (seg->sa + seg->len <= offset + len) c_len = seg->len; else c_len = offset + len - seg->sa; } else { c_dst = buf; c_src = seg->c + (offset - seg->sa); if (seg->sa + seg->len >= offset + len) c_len = len; else c_len = seg->sa + seg->len - offset; } _rtw_memcpy(c_dst, c_src, c_len); } exit: return ret; } /** * map_read8 - read 1 byte of map data * @map: map to read * @offset: address to read * * Returns: value of data of specified offset. map.init_value if offset is out of range */ u8 map_read8(const struct map_t *map, u16 offset) { const struct map_seg_t *seg; u8 val = map->init_value; int i; if (offset + 1 > map->len) { rtw_warn_on(1); goto exit; } for (i = 0; i < map->seg_num; i++) { seg = map->segs + i; if (seg->sa + seg->len <= offset || seg->sa >= offset + 1) continue; val = *(seg->c + offset - seg->sa); break; } exit: return val; } int rtw_blacklist_add(_queue *blist, const u8 *addr, u32 timeout_ms) { struct blacklist_ent *ent; _list *list, *head; u8 exist = _FALSE, timeout = _FALSE; enter_critical_bh(&blist->lock); head = &blist->queue; list = get_next(head); while (rtw_end_of_queue_search(head, list) == _FALSE) { ent = LIST_CONTAINOR(list, struct blacklist_ent, list); list = get_next(list); if (_rtw_memcmp(ent->addr, addr, ETH_ALEN) == _TRUE) { exist = _TRUE; if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) timeout = _TRUE; ent->exp_time = rtw_get_current_time() + rtw_ms_to_systime(timeout_ms); break; } if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) { rtw_list_delete(&ent->list); rtw_mfree(ent, sizeof(struct blacklist_ent)); } } if (exist == _FALSE) { ent = rtw_malloc(sizeof(struct blacklist_ent)); if (ent) { _rtw_memcpy(ent->addr, addr, ETH_ALEN); ent->exp_time = rtw_get_current_time() + rtw_ms_to_systime(timeout_ms); rtw_list_insert_tail(&ent->list, head); } } exit_critical_bh(&blist->lock); exit: return (exist == _TRUE && timeout == _FALSE) ? RTW_ALREADY : (ent ? _SUCCESS : _FAIL); } int rtw_blacklist_del(_queue *blist, const u8 *addr) { struct blacklist_ent *ent = NULL; _list *list, *head; u8 exist = _FALSE; enter_critical_bh(&blist->lock); head = &blist->queue; list = get_next(head); while (rtw_end_of_queue_search(head, list) == _FALSE) { ent = LIST_CONTAINOR(list, struct blacklist_ent, list); list = get_next(list); if (_rtw_memcmp(ent->addr, addr, ETH_ALEN) == _TRUE) { rtw_list_delete(&ent->list); rtw_mfree(ent, sizeof(struct blacklist_ent)); exist = _TRUE; break; } if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) { rtw_list_delete(&ent->list); rtw_mfree(ent, sizeof(struct blacklist_ent)); } } exit_critical_bh(&blist->lock); exit: return exist == _TRUE ? _SUCCESS : RTW_ALREADY; } int rtw_blacklist_search(_queue *blist, const u8 *addr) { struct blacklist_ent *ent = NULL; _list *list, *head; u8 exist = _FALSE; enter_critical_bh(&blist->lock); head = &blist->queue; list = get_next(head); while (rtw_end_of_queue_search(head, list) == _FALSE) { ent = LIST_CONTAINOR(list, struct blacklist_ent, list); list = get_next(list); if (_rtw_memcmp(ent->addr, addr, ETH_ALEN) == _TRUE) { if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) { rtw_list_delete(&ent->list); rtw_mfree(ent, sizeof(struct blacklist_ent)); } else exist = _TRUE; break; } if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) { rtw_list_delete(&ent->list); rtw_mfree(ent, sizeof(struct blacklist_ent)); } } exit_critical_bh(&blist->lock); exit: return exist; } void rtw_blacklist_flush(_queue *blist) { struct blacklist_ent *ent; _list *list, *head; _list tmp; _rtw_init_listhead(&tmp); enter_critical_bh(&blist->lock); rtw_list_splice_init(&blist->queue, &tmp); exit_critical_bh(&blist->lock); head = &tmp; list = get_next(head); while (rtw_end_of_queue_search(head, list) == _FALSE) { ent = LIST_CONTAINOR(list, struct blacklist_ent, list); list = get_next(list); rtw_list_delete(&ent->list); rtw_mfree(ent, sizeof(struct blacklist_ent)); } } void dump_blacklist(void *sel, _queue *blist, const char *title) { struct blacklist_ent *ent = NULL; _list *list, *head; enter_critical_bh(&blist->lock); head = &blist->queue; list = get_next(head); if (rtw_end_of_queue_search(head, list) == _FALSE) { if (title) RTW_PRINT_SEL(sel, "%s:\n", title); while (rtw_end_of_queue_search(head, list) == _FALSE) { ent = LIST_CONTAINOR(list, struct blacklist_ent, list); list = get_next(list); if (rtw_time_after(rtw_get_current_time(), ent->exp_time)) RTW_PRINT_SEL(sel, MAC_FMT" expired\n", MAC_ARG(ent->addr)); else RTW_PRINT_SEL(sel, MAC_FMT" %u\n", MAC_ARG(ent->addr) , rtw_get_remaining_time_ms(ent->exp_time)); } } exit_critical_bh(&blist->lock); } /** * is_null - * * Return TRUE if c is null character * FALSE otherwise. */ inline BOOLEAN is_null(char c) { if (c == '\0') return _TRUE; else return _FALSE; } inline BOOLEAN is_all_null(char *c, int len) { for (; len > 0; len--) if (c[len - 1] != '\0') return _FALSE; return _TRUE; } /** * is_eol - * * Return TRUE if c is represent for EOL (end of line) * FALSE otherwise. */ inline BOOLEAN is_eol(char c) { if (c == '\r' || c == '\n') return _TRUE; else return _FALSE; } /** * is_space - * * Return TRUE if c is represent for space * FALSE otherwise. */ inline BOOLEAN is_space(char c) { if (c == ' ' || c == '\t') return _TRUE; else return _FALSE; } /** * IsHexDigit - * * Return TRUE if chTmp is represent for hex digit * FALSE otherwise. */ inline BOOLEAN IsHexDigit(char chTmp) { if ((chTmp >= '0' && chTmp <= '9') || (chTmp >= 'a' && chTmp <= 'f') || (chTmp >= 'A' && chTmp <= 'F')) return _TRUE; else return _FALSE; } /** * is_alpha - * * Return TRUE if chTmp is represent for alphabet * FALSE otherwise. */ inline BOOLEAN is_alpha(char chTmp) { if ((chTmp >= 'a' && chTmp <= 'z') || (chTmp >= 'A' && chTmp <= 'Z')) return _TRUE; else return _FALSE; } inline char alpha_to_upper(char c) { if ((c >= 'a' && c <= 'z')) c = 'A' + (c - 'a'); return c; } int hex2num_i(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return -1; } int hex2byte_i(const char *hex) { int a, b; a = hex2num_i(*hex++); if (a < 0) return -1; b = hex2num_i(*hex++); if (b < 0) return -1; return (a << 4) | b; } int hexstr2bin(const char *hex, u8 *buf, size_t len) { size_t i; int a; const char *ipos = hex; u8 *opos = buf; for (i = 0; i < len; i++) { a = hex2byte_i(ipos); if (a < 0) return -1; *opos++ = a; ipos += 2; } return 0; }