/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _RTL8812A_HAL_INIT_C_ /* #include */ #include #ifdef CONFIG_RTL8812A #include "hal8812a_fw.h" #else #include "hal8821a_fw.h" #endif /* ------------------------------------------------------------------------- * * LLT R/W/Init function * * ------------------------------------------------------------------------- */ s32 _LLTWrite_8812A( IN PADAPTER Adapter, IN u32 address, IN u32 data ) { u32 status = _SUCCESS; s32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtw_write32(Adapter, REG_LLT_INIT, value); /* polling */ do { value = rtw_read32(Adapter, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { status = _FAIL; break; } } while (++count); return status; } static u8 _LLTRead_8812A( IN PADAPTER Adapter, IN u32 address ) { u32 count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_OP(_LLT_READ_ACCESS); u16 LLTReg = REG_LLT_INIT; rtw_write32(Adapter, LLTReg, value); /* polling and get value */ do { value = rtw_read32(Adapter, LLTReg); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) return (u8)value; if (count > POLLING_LLT_THRESHOLD) { break; } } while (++count); return 0xFF; } s32 InitLLTTable8812A(PADAPTER padapter, u8 txpktbuf_bndy) { s32 status = _FAIL; u32 i; u32 Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER_8812; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _LLTWrite_8812A(padapter, i, i + 1); if (_SUCCESS != status) return status; } /* end of list */ status = _LLTWrite_8812A(padapter, (txpktbuf_bndy - 1), 0xFF); if (_SUCCESS != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) { status = _LLTWrite_8812A(padapter, i, (i + 1)); if (_SUCCESS != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _LLTWrite_8812A(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy); if (_SUCCESS != status) return status; return status; } BOOLEAN HalDetectPwrDownMode8812(PADAPTER Adapter) { u8 tmpvalue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(Adapter); EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_8812, (u32 *)&tmpvalue); /* 2010/08/25 MH INF priority > PDN Efuse value. */ if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode) pHalData->pwrdown = _TRUE; else pHalData->pwrdown = _FALSE; RTW_INFO("HalDetectPwrDownMode(): PDN=%d\n", pHalData->pwrdown); return pHalData->pwrdown; } /* HalDetectPwrDownMode */ #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) void Hal_DetectWoWMode(PADAPTER pAdapter) { adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE; } #endif static VOID _FWDownloadEnable_8812( IN PADAPTER padapter, IN BOOLEAN enable ) { u8 tmp; if (enable) { /* MCU firmware download enable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01); /* 8051 reset */ tmp = rtw_read8(padapter, REG_MCUFWDL + 2); rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7); } else { /* MCU firmware download disable. */ tmp = rtw_read8(padapter, REG_MCUFWDL); rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe); } } #define MAX_REG_BOLCK_SIZE 196 static int _BlockWrite_8812( IN PADAPTER padapter, IN PVOID buffer, IN u32 buffSize ) { int ret = _SUCCESS; u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */ u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */ u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */ u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0; u32 remainSize_p1 = 0, remainSize_p2 = 0; u8 *bufferPtr = (u8 *)buffer; u32 i = 0, offset = 0; #ifdef CONFIG_PCI_HCI u8 remainFW[4] = {0, 0, 0, 0}; u8 *p = NULL; #endif #ifdef CONFIG_USB_HCI blockSize_p1 = MAX_REG_BOLCK_SIZE; #endif /* 3 Phase #1 */ blockCount_p1 = buffSize / blockSize_p1; remainSize_p1 = buffSize % blockSize_p1; for (i = 0; i < blockCount_p1; i++) { #ifdef CONFIG_USB_HCI ret = rtw_writeN(padapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1)); #else ret = rtw_write32(padapter, (FW_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1)))); #endif if (ret == _FAIL) goto exit; } #ifdef CONFIG_PCI_HCI p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1)); if (remainSize_p1) { switch (remainSize_p1) { case 0: break; case 3: remainFW[2] = *(p + 2); case 2: remainFW[1] = *(p + 1); case 1: remainFW[0] = *(p); ret = rtw_write32(padapter, (FW_START_ADDRESS + blockCount_p1 * blockSize_p1), le32_to_cpu(*(u32 *)remainFW)); } return ret; } #endif /* 3 Phase #2 */ if (remainSize_p1) { offset = blockCount_p1 * blockSize_p1; blockCount_p2 = remainSize_p1 / blockSize_p2; remainSize_p2 = remainSize_p1 % blockSize_p2; #ifdef CONFIG_USB_HCI for (i = 0; i < blockCount_p2; i++) { ret = rtw_writeN(padapter, (FW_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2)); if (ret == _FAIL) goto exit; } #endif } /* 3 Phase #3 */ if (remainSize_p2) { offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2); blockCount_p3 = remainSize_p2 / blockSize_p3; for (i = 0 ; i < blockCount_p3 ; i++) { ret = rtw_write8(padapter, (FW_START_ADDRESS + offset + i), *(bufferPtr + offset + i)); if (ret == _FAIL) goto exit; } } exit: return ret; } static int _PageWrite_8812( IN PADAPTER padapter, IN u32 page, IN PVOID buffer, IN u32 size ) { u8 value8; u8 u8Page = (u8)(page & 0x07) ; value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page ; rtw_write8(padapter, REG_MCUFWDL + 2, value8); return _BlockWrite_8812(padapter, buffer, size); } static VOID _FillDummy_8812( u8 *pFwBuf, u32 *pFwLen ) { u32 FwLen = *pFwLen; u8 remain = (u8)(FwLen % 4); remain = (remain == 0) ? 0 : (4 - remain); while (remain > 0) { pFwBuf[FwLen] = 0; FwLen++; remain--; } *pFwLen = FwLen; } static int _WriteFW_8812( IN PADAPTER padapter, IN PVOID buffer, IN u32 size ) { /* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */ int ret = _SUCCESS; u32 pageNums, remainSize ; u32 page, offset; u8 *bufferPtr = (u8 *)buffer; #ifdef CONFIG_PCI_HCI /* 20100120 Joseph: Add for 88CE normal chip. */ /* Fill in zero to make firmware image to dword alignment. * _FillDummy(bufferPtr, &size); */ #endif pageNums = size / MAX_DLFW_PAGE_SIZE ; /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */ remainSize = size % MAX_DLFW_PAGE_SIZE; for (page = 0; page < pageNums; page++) { offset = page * MAX_DLFW_PAGE_SIZE; ret = _PageWrite_8812(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE); if (ret == _FAIL) goto exit; } if (remainSize) { offset = pageNums * MAX_DLFW_PAGE_SIZE; page = pageNums; ret = _PageWrite_8812(padapter, page, bufferPtr + offset, remainSize); if (ret == _FAIL) goto exit; } exit: return ret; } void _8051Reset8812(PADAPTER padapter) { u8 u1bTmp, u1bTmp2; /* Reset MCU IO Wrapper- sugggest by SD1-Gimmy */ if (IS_HARDWARE_TYPE_8812(padapter)) { u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1)); u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 & (~BIT3)); } else if (IS_HARDWARE_TYPE_8821(padapter)) { u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1)); u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 & (~BIT0)); } u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1); rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2)); /* Enable MCU IO Wrapper */ if (IS_HARDWARE_TYPE_8812(padapter)) { u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1)); u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 | (BIT3)); } else if (IS_HARDWARE_TYPE_8821(padapter)) { u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL); rtw_write8(padapter, REG_RSV_CTRL, u1bTmp2 & (~BIT1)); u1bTmp2 = rtw_read8(padapter, REG_RSV_CTRL + 1); rtw_write8(padapter, REG_RSV_CTRL + 1, u1bTmp2 | (BIT0)); } rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp | (BIT2)); RTW_INFO("=====> _8051Reset8812(): 8051 reset success .\n"); } static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = rtw_get_current_time(); u32 cnt = 0; /* polling CheckSum report */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter)) break; rtw_yield_os(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & FWDL_ChkSum_rpt)) goto exit; if (rtw_fwdl_test_trigger_chksum_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } static s32 _FWFreeToGo8812(_adapter *adapter, u32 min_cnt, u32 timeout_ms) { s32 ret = _FAIL; u32 value32; systime start = rtw_get_current_time(); u32 cnt = 0; value32 = rtw_read32(adapter, REG_MCUFWDL); value32 |= MCUFWDL_RDY; value32 &= ~WINTINI_RDY; rtw_write32(adapter, REG_MCUFWDL, value32); _8051Reset8812(adapter); /* polling for FW ready */ do { cnt++; value32 = rtw_read32(adapter, REG_MCUFWDL); if (value32 & WINTINI_RDY || RTW_CANNOT_IO(adapter)) break; rtw_yield_os(); } while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt); if (!(value32 & WINTINI_RDY)) goto exit; if (rtw_fwdl_test_trigger_wintint_rdy_fail()) goto exit; ret = _SUCCESS; exit: RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __FUNCTION__ , (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32); return ret; } #ifdef CONFIG_FILE_FWIMG u8 FwBuffer8812[FW_SIZE_8812]; u8 FwBuffer[FW_SIZE_8812]; #endif /* CONFIG_FILE_FWIMG */ s32 FirmwareDownload8812( IN PADAPTER Adapter, IN BOOLEAN bUsedWoWLANFw ) { s32 rtStatus = _SUCCESS; u8 write_fw = 0; systime fwdl_start_time; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter); u8 *pFwImageFileName; u8 *pucMappedFile = NULL; PRT_FIRMWARE_8812 pFirmware = NULL; u8 *pFwHdr = NULL; u8 *pFirmwareBuf; u32 FirmwareLen; pFirmware = (PRT_FIRMWARE_8812)rtw_zmalloc(sizeof(RT_FIRMWARE_8812)); if (!pFirmware) { rtStatus = _FAIL; goto exit; } #ifdef CONFIG_FILE_FWIMG #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw && rtw_is_file_readable(rtw_fw_wow_file_path) == _TRUE) { RTW_INFO("%s acquire FW from file:%s\n", __FUNCTION__, rtw_fw_wow_file_path); pFirmware->eFWSource = FW_SOURCE_IMG_FILE; } else #endif if (rtw_is_file_readable(rtw_fw_file_path) == _TRUE) { RTW_INFO("%s acquire FW from file:%s\n", __FUNCTION__, rtw_fw_file_path); pFirmware->eFWSource = FW_SOURCE_IMG_FILE; } else #endif /* CONFIG_FILE_FWIMG */ { RTW_INFO("%s fw source from Header\n", __FUNCTION__); pFirmware->eFWSource = FW_SOURCE_HEADER_FILE; } switch (pFirmware->eFWSource) { case FW_SOURCE_IMG_FILE: #ifdef CONFIG_FILE_FWIMG #ifdef CONFIG_WOWLAN if (bUsedWoWLANFw) rtStatus = rtw_retrieve_from_file(rtw_fw_wow_file_path, FwBuffer8812, FW_SIZE_8812); else #endif rtStatus = rtw_retrieve_from_file(rtw_fw_file_path, FwBuffer8812, FW_SIZE_8812); pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0; pFirmware->szFwBuffer = FwBuffer8812; #endif /* CONFIG_FILE_FWIMG */ break; case FW_SOURCE_HEADER_FILE: if (bUsedWoWLANFw) { #ifdef CONFIG_WOWLAN if (pwrpriv->wowlan_mode) { #ifdef CONFIG_RTL8812A pFirmware->szFwBuffer = array_mp_8812a_fw_wowlan; pFirmware->ulFwLength = array_length_mp_8812a_fw_wowlan; #else pFirmware->szFwBuffer = array_mp_8821a_fw_wowlan; pFirmware->ulFwLength = array_length_mp_8821a_fw_wowlan; #endif RTW_INFO("%s fw:%s, size: %d\n", __func__, "WoWLAN", pFirmware->ulFwLength); } #endif /* CONFIG_WOWLAN */ #ifdef CONFIG_AP_WOWLAN if (pwrpriv->wowlan_ap_mode) { #ifdef CONFIG_RTL8812A pFirmware->szFwBuffer = array_mp_8812a_fw_ap; pFirmware->ulFwLength = array_length_mp_8812a_fw_ap; #else pFirmware->szFwBuffer = array_mp_8821a_fw_ap; pFirmware->ulFwLength = array_length_mp_8821a_fw_ap; #endif RTW_INFO("%s fw: %s, size: %d\n", __func__, "AP_WoWLAN", pFirmware->ulFwLength); } #endif /* CONFIG_AP_WOWLAN */ } else { #ifdef CONFIG_BT_COEXIST if (pHalData->EEPROMBluetoothCoexist == _TRUE) { #ifdef CONFIG_RTL8812A pFirmware->szFwBuffer = array_mp_8812a_fw_nic_bt; pFirmware->ulFwLength = array_length_mp_8812a_fw_nic_bt; #else pFirmware->szFwBuffer = array_mp_8821a_fw_nic_bt; pFirmware->ulFwLength = array_length_mp_8821a_fw_nic_bt; #endif RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC-BTCOEX", pFirmware->ulFwLength); } else #endif /* CONFIG_BT_COEXIST */ { #ifdef CONFIG_RTL8812A pFirmware->szFwBuffer = array_mp_8812a_fw_nic; pFirmware->ulFwLength = array_length_mp_8812a_fw_nic; #else pFirmware->szFwBuffer = array_mp_8821a_fw_nic; pFirmware->ulFwLength = array_length_mp_8821a_fw_nic; #endif RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength); } } break; } if ((pFirmware->ulFwLength - 32) > FW_SIZE_8812) { rtStatus = _FAIL; RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE_8812); goto exit; } pFirmwareBuf = pFirmware->szFwBuffer; FirmwareLen = pFirmware->ulFwLength; pFwHdr = (u8 *)pFirmware->szFwBuffer; pHalData->firmware_version = (u16)GET_FIRMWARE_HDR_VERSION_8812(pFwHdr); pHalData->firmware_sub_version = (u16)GET_FIRMWARE_HDR_SUB_VER_8812(pFwHdr); pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_8812(pFwHdr); RTW_INFO("%s: fw_ver=%d fw_subver=%d sig=0x%x\n", __FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature); if (IS_FW_HEADER_EXIST_8812(pFwHdr) || IS_FW_HEADER_EXIST_8821(pFwHdr)) { /* Shift 32 bytes for FW header */ pFirmwareBuf = pFirmwareBuf + 32; FirmwareLen = FirmwareLen - 32; } /* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */ /* or it will cause download Fw fail. 2010.02.01. by tynli. */ if (rtw_read8(Adapter, REG_MCUFWDL) & BIT7) { /* 8051 RAM code */ rtw_write8(Adapter, REG_MCUFWDL, 0x00); _8051Reset8812(Adapter); } _FWDownloadEnable_8812(Adapter, _TRUE); fwdl_start_time = rtw_get_current_time(); while (!RTW_CANNOT_IO(Adapter) && (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) { /* reset FWDL chksum */ rtw_write8(Adapter, REG_MCUFWDL, rtw_read8(Adapter, REG_MCUFWDL) | FWDL_ChkSum_rpt); rtStatus = _WriteFW_8812(Adapter, pFirmwareBuf, FirmwareLen); if (rtStatus != _SUCCESS) continue; rtStatus = polling_fwdl_chksum(Adapter, 5, 50); if (rtStatus == _SUCCESS) break; } _FWDownloadEnable_8812(Adapter, _FALSE); if (_SUCCESS != rtStatus) goto fwdl_stat; rtStatus = _FWFreeToGo8812(Adapter, 10, 200); if (_SUCCESS != rtStatus) goto fwdl_stat; fwdl_stat: RTW_INFO("FWDL %s. write_fw:%u, %dms\n" , (rtStatus == _SUCCESS) ? "success" : "fail" , write_fw , rtw_get_passing_time_ms(fwdl_start_time) ); exit: if (pFirmware) rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8812)); InitializeFirmwareVars8812(Adapter); return rtStatus; } void InitializeFirmwareVars8812(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); /* Init Fw LPS related. */ pwrpriv->bFwCurrentInPSMode = _FALSE; /* Init H2C cmd. */ rtw_write8(padapter, REG_HMETFR, 0x0f); /* Init H2C counter. by tynli. 2009.12.09. */ pHalData->LastHMEBoxNum = 0; } /* * Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW. * 2013.01.23 by tynli * Porting from 8723B. 2013.04.01 * */ VOID SetFwBTFwPatchCmd_8821( IN PADAPTER Adapter, IN u2Byte FwSize ) { u1Byte u1BTFwPatchParm[6] = {0}; RTW_INFO("SetFwBTFwPatchCmd_8821(): FwSize = %d\n", FwSize); /* SET_8812_H2CCMD_BT_FW_PATCH_ENABLE(u1BTFwPatchParm, 1); */ SET_8812_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize); SET_8812_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, 0); SET_8812_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, 0xa0); SET_8812_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, 0x10); SET_8812_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, 0x80); fill_h2c_cmd_8812(Adapter, H2C_8812_BT_FW_PATCH, 6 , u1BTFwPatchParm); } #ifdef CONFIG_MP_INCLUDED int ReservedPage_Compare(PADAPTER Adapter, PRT_MP_FIRMWARE pFirmware, u32 BTPatchSize) { u8 temp, ret, lastBTsz; u32 u1bTmp = 0, address_start = 0, count = 0, i = 0; u8 *myBTFwBuffer = NULL; myBTFwBuffer = rtw_zmalloc(BTPatchSize); if (myBTFwBuffer == NULL) { RTW_INFO("%s can't be executed due to the failed malloc.\n", __FUNCTION__); Adapter->mppriv.bTxBufCkFail = _TRUE; return _FALSE; } temp = rtw_read8(Adapter, 0x209); address_start = (temp * 128) / 8; rtw_write32(Adapter, 0x140, 0x00000000); rtw_write32(Adapter, 0x144, 0x00000000); rtw_write32(Adapter, 0x148, 0x00000000); rtw_write8(Adapter, 0x106, 0x69); for (i = 0; i < (BTPatchSize / 8); i++) { rtw_write32(Adapter, 0x140, address_start + 5 + i) ; /* polling until reg 0x140[23]=1; */ do { u1bTmp = rtw_read32(Adapter, 0x140); if (u1bTmp & BIT(23)) { ret = _SUCCESS; break; } count++; RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count); rtw_msleep_os(10); /* 10ms */ } while (!(u1bTmp & BIT(23)) && count < 50); myBTFwBuffer[i * 8 + 0] = rtw_read8(Adapter, 0x144); myBTFwBuffer[i * 8 + 1] = rtw_read8(Adapter, 0x145); myBTFwBuffer[i * 8 + 2] = rtw_read8(Adapter, 0x146); myBTFwBuffer[i * 8 + 3] = rtw_read8(Adapter, 0x147); myBTFwBuffer[i * 8 + 4] = rtw_read8(Adapter, 0x148); myBTFwBuffer[i * 8 + 5] = rtw_read8(Adapter, 0x149); myBTFwBuffer[i * 8 + 6] = rtw_read8(Adapter, 0x14a); myBTFwBuffer[i * 8 + 7] = rtw_read8(Adapter, 0x14b); } rtw_write32(Adapter, 0x140, address_start + 5 + BTPatchSize / 8) ; lastBTsz = BTPatchSize % 8; /* polling until reg 0x140[23]=1; */ u1bTmp = 0; count = 0; do { u1bTmp = rtw_read32(Adapter, 0x140); if (u1bTmp & BIT(23)) { ret = _SUCCESS; break; } count++; RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count); rtw_msleep_os(10); /* 10ms */ } while (!(u1bTmp & BIT(23)) && count < 50); for (i = 0; i < lastBTsz; i++) myBTFwBuffer[(BTPatchSize / 8) * 8 + i] = rtw_read8(Adapter, (0x144 + i)); for (i = 0; i < BTPatchSize; i++) { if (myBTFwBuffer[i] != pFirmware->szFwBuffer[i]) { RTW_INFO(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n", i, myBTFwBuffer[i], pFirmware->szFwBuffer[i]); Adapter->mppriv.bTxBufCkFail = _TRUE; break; } } if (myBTFwBuffer != NULL) rtw_mfree(myBTFwBuffer, BTPatchSize); return _TRUE; } #endif /* *********************************************************** * Efuse related code * *********************************************************** */ VOID Hal_EfuseParseBTCoexistInfo8812A( IN PADAPTER Adapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { struct registry_priv *regsty = &Adapter->registrypriv; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 tmp_u8; u32 tmp_u32; if (IS_HARDWARE_TYPE_8812(Adapter)) { pHalData->EEPROMBluetoothType = BT_RTL8812A; if (!AutoLoadFail) { tmp_u8 = hwinfo[EEPROM_RF_BOARD_OPTION_8812]; if (((tmp_u8 & 0xe0) >> 5) == 0x1) /* [7:5] */ pHalData->EEPROMBluetoothCoexist = _TRUE; else pHalData->EEPROMBluetoothCoexist = _FALSE; tmp_u8 = hwinfo[EEPROM_RF_BT_SETTING_8812]; pHalData->EEPROMBluetoothAntNum = (tmp_u8 & 0x1); /* bit [0] */ } else { pHalData->EEPROMBluetoothCoexist = _FALSE; pHalData->EEPROMBluetoothAntNum = Ant_x1; } } else if (IS_HARDWARE_TYPE_8821(Adapter)) { pHalData->EEPROMBluetoothType = BT_RTL8821; if (!AutoLoadFail) { tmp_u32 = rtw_read32(Adapter, REG_MULTI_FUNC_CTRL); if (tmp_u32 & BT_FUNC_EN) pHalData->EEPROMBluetoothCoexist = _TRUE; else pHalData->EEPROMBluetoothCoexist = _FALSE; tmp_u8 = hwinfo[EEPROM_RF_BT_SETTING_8821]; pHalData->EEPROMBluetoothAntNum = (tmp_u8 & 0x1); /* bit [0] */ } else { pHalData->EEPROMBluetoothCoexist = _FALSE; pHalData->EEPROMBluetoothAntNum = Ant_x2; } #ifdef CONFIG_BTCOEX_FORCE_CSR pHalData->EEPROMBluetoothType = BT_CSR_BC8; pHalData->EEPROMBluetoothCoexist = _TRUE; pHalData->EEPROMBluetoothAntNum = Ant_x2; #endif } else rtw_warn_on(1); #ifdef CONFIG_BT_COEXIST if (_TRUE == pHalData->EEPROMBluetoothCoexist && IS_HARDWARE_TYPE_8812(Adapter)) { #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE if (!hal_btcoex_AntIsolationConfig_ParaFile(Adapter , PHY_FILE_WIFI_ANT_ISOLATION)) { #endif pHalData->EEPROMBluetoothCoexist = _TRUE; hal_btcoex_SetAntIsolationType(Adapter, 0); #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE } #endif } if (regsty->ant_num != 0) { if (regsty->ant_num == 1) pHalData->EEPROMBluetoothAntNum = Ant_x1; else if (regsty->ant_num == 2) pHalData->EEPROMBluetoothAntNum = Ant_x2; else RTW_WARN("%s: Discard invalid driver defined antenna number(%d)!\n" , __func__, regsty->ant_num); } if (regsty->single_ant_path == 0) pHalData->ant_path = 0; else if (regsty->single_ant_path == 1) pHalData->ant_path = 1; else RTW_WARN("%s: Discard invalid driver defined antenna path(%d)!\n" , __func__, regsty->single_ant_path); if (regsty->btcoex != 2) pHalData->EEPROMBluetoothCoexist = regsty->btcoex ? _TRUE : _FALSE; /*Add by YiWei , btcoex 1 ant module , ant band switch by btcoex , driver have to disable ant band switch feature*/ if (pHalData->EEPROMBluetoothCoexist == 1 && pHalData->EEPROMBluetoothAntNum == Ant_x1) regsty->drv_ant_band_switch = 0; RTW_INFO("%s: BTCoexist=%s, AntNum=%d, AntPath=%d\n", __func__, pHalData->EEPROMBluetoothCoexist == _TRUE ? "Enable" : "Disable" , pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1, pHalData->ant_path); #endif /* CONFIG_BT_COEXIST */ } void Hal_EfuseParseIDCode8812A( IN PADAPTER padapter, IN u8 *hwinfo ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u16 EEPROMId; /* Checl 0x8129 again for making sure autoload status!! */ EEPROMId = ReadLE2Byte(&hwinfo[0]); if (EEPROMId != RTL_EEPROM_ID) { RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId); pHalData->bautoload_fail_flag = _TRUE; } else pHalData->bautoload_fail_flag = _FALSE; RTW_INFO("EEPROM ID=0x%04x\n", EEPROMId); } VOID Hal_ReadPROMVersion8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (AutoloadFail) pHalData->EEPROMVersion = EEPROM_Default_Version; else { if (IS_HARDWARE_TYPE_8812(Adapter)) pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8812]; else pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8821]; if (pHalData->EEPROMVersion == 0xFF) pHalData->EEPROMVersion = EEPROM_Default_Version; } /* RTW_INFO("pHalData->EEPROMVersion is 0x%x\n", pHalData->EEPROMVersion); */ } void Hal_ReadTxPowerInfo8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); TxPowerInfo24G pwrInfo24G; TxPowerInfo5G pwrInfo5G; hal_load_txpwr_info(Adapter, &pwrInfo24G, &pwrInfo5G, PROMContent); /* 2010/10/19 MH Add Regulator recognize for CU. */ if (!AutoLoadFail) { struct registry_priv *registry_par = &Adapter->registrypriv; if (PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF) pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */ else pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8812] & 0x7); /* bit0~2 */ } else pHalData->EEPROMRegulatory = 0; RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory); } VOID Hal_ReadBoardType8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (!AutoloadFail) { pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8812] & 0xE0) >> 5; if (PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF) pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION & 0xE0) >> 5; } else pHalData->InterfaceSel = 0; RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel); } VOID Hal_ReadThermalMeter_8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); /* u8 tempval; */ /* */ /* ThermalMeter from EEPROM */ /* */ if (!AutoloadFail) pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8812]; else pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8812; /* pHalData->eeprom_thermal_meter = (tempval&0x1f); */ /* [4:0] */ if (pHalData->eeprom_thermal_meter == 0xff || AutoloadFail) { pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE; pHalData->eeprom_thermal_meter = 0xFF; } /* pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter; */ RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter); } void Hal_ReadRemoteWakeup_8812A( PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 tmpvalue; if (AutoLoadFail) { pwrctl->bHWPowerdown = _FALSE; pwrctl->bSupportRemoteWakeup = _FALSE; } else { /* decide hw if support remote wakeup function */ /* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */ #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8821U(padapter)) pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0_8811AU] & BIT1) ? _TRUE : _FALSE; else pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? _TRUE : _FALSE; #endif /* CONFIG_USB_HCI */ RTW_INFO("%s...bSupportRemoteWakeup(%x)\n", __FUNCTION__, pwrctl->bSupportRemoteWakeup); } } VOID Hal_ReadChannelPlan8812A( IN PADAPTER padapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { hal_com_config_channel_plan( padapter , hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8812] : NULL , hwinfo ? hwinfo[EEPROM_ChannelPlan_8812] : 0xFF , padapter->registrypriv.alpha2 , padapter->registrypriv.channel_plan , RTW_CHPLAN_REALTEK_DEFINE , AutoLoadFail ); } VOID Hal_EfuseParseXtal_8812A( IN PADAPTER pAdapter, IN u8 *hwinfo, IN BOOLEAN AutoLoadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (!AutoLoadFail) { pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8812]; if (pHalData->crystal_cap == 0xFF) pHalData->crystal_cap = EEPROM_Default_CrystalCap_8812; /* what value should 8812 set? */ } else pHalData->crystal_cap = EEPROM_Default_CrystalCap_8812; RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap); } /* for both 8812A and 8821A */ VOID Hal_ReadAntennaDiversity8812A( IN PADAPTER pAdapter, IN u8 *PROMContent, IN BOOLEAN AutoLoadFail ) { #ifdef CONFIG_ANTENNA_DIVERSITY HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); struct registry_priv *registry_par = &pAdapter->registrypriv; if (!AutoLoadFail) { if (registry_par->antdiv_cfg == 2) { if (PROMContent[EEPROM_RF_BOARD_OPTION_8812] == 0xFF) pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION & BIT3) ? 1 : 0; else pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_8812] & BIT3) ? 1 : 0; } else { /* by registry */ pHalData->AntDivCfg = registry_par->antdiv_cfg; } if (registry_par->antdiv_type == 0) pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_8812]; else pHalData->TRxAntDivType = registry_par->antdiv_type; } else { /* Disable */ pHalData->AntDivCfg = 0; } #ifdef CONFIG_BT_COEXIST if (hal_btcoex_1Ant(pAdapter)) { pHalData->AntDivCfg = 0; /*Add by YiWei , btcoex 1 ant module , ant band switch by btcoex , driver have to disable ant band switch feature*/ pAdapter->registrypriv.drv_ant_band_switch = 0; } #endif RTW_INFO("[ANTDIV] AntDivCfg=%d, TRxAntDivType=0x%02x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType); #endif } VOID hal_ReadPAType_8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (!AutoloadFail) { if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */ pHalData->PAType_2G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]); pHalData->LNAType_2G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_2G_8812AU]); if (pHalData->PAType_2G == 0xFF) pHalData->PAType_2G = 0; if (pHalData->LNAType_2G == 0xFF) pHalData->LNAType_2G = 0; pHalData->ExternalPA_2G = ((pHalData->PAType_2G & BIT5) && (pHalData->PAType_2G & BIT4)) ? 1 : 0; pHalData->ExternalLNA_2G = ((pHalData->LNAType_2G & BIT7) && (pHalData->LNAType_2G & BIT3)) ? 1 : 0; } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->PAType_5G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]); pHalData->LNAType_5G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_5G_8812AU]); if (pHalData->PAType_5G == 0xFF) pHalData->PAType_5G = 0; if (pHalData->LNAType_5G == 0xFF) pHalData->LNAType_5G = 0; pHalData->external_pa_5g = ((pHalData->PAType_5G & BIT1) && (pHalData->PAType_5G & BIT0)) ? 1 : 0; pHalData->external_lna_5g = ((pHalData->LNAType_5G & BIT7) && (pHalData->LNAType_5G & BIT3)) ? 1 : 0; } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } } else { pHalData->ExternalPA_2G = EEPROM_Default_PAType; pHalData->external_pa_5g = 0xFF; pHalData->ExternalLNA_2G = EEPROM_Default_LNAType; pHalData->external_lna_5g = 0xFF; if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */ pHalData->ExternalPA_2G = 0; pHalData->ExternalLNA_2G = 0; } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->external_pa_5g = 0; pHalData->external_lna_5g = 0; } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } } RTW_INFO("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G); RTW_INFO("pHalData->PAType_5G is 0x%x, pHalData->external_pa_5g = %d\n", pHalData->PAType_5G, pHalData->external_pa_5g); RTW_INFO("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G); RTW_INFO("pHalData->LNAType_5G is 0x%x, pHalData->external_lna_5g = %d\n", pHalData->LNAType_5G, pHalData->external_lna_5g); } VOID Hal_ReadAmplifierType_8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 extTypePA_2G_A = (PROMContent[0xBD] & BIT2) >> 2; /* 0xBD[2] */ u8 extTypePA_2G_B = (PROMContent[0xBD] & BIT6) >> 6; /* 0xBD[6] */ u8 extTypePA_5G_A = (PROMContent[0xBF] & BIT2) >> 2; /* 0xBF[2] */ u8 extTypePA_5G_B = (PROMContent[0xBF] & BIT6) >> 6; /* 0xBF[6] */ u8 extTypeLNA_2G_A = (PROMContent[0xBD] & (BIT1 | BIT0)) >> 0; /* 0xBD[1:0] */ u8 extTypeLNA_2G_B = (PROMContent[0xBD] & (BIT5 | BIT4)) >> 4; /* 0xBD[5:4] */ u8 extTypeLNA_5G_A = (PROMContent[0xBF] & (BIT1 | BIT0)) >> 0; /* 0xBF[1:0] */ u8 extTypeLNA_5G_B = (PROMContent[0xBF] & (BIT5 | BIT4)) >> 4; /* 0xBF[5:4] */ hal_ReadPAType_8812A(Adapter, PROMContent, AutoloadFail); if ((pHalData->PAType_2G & (BIT5 | BIT4)) == (BIT5 | BIT4)) /* [2.4G] Path A and B are both extPA */ pHalData->TypeGPA = extTypePA_2G_B << 2 | extTypePA_2G_A; if ((pHalData->PAType_5G & (BIT1 | BIT0)) == (BIT1 | BIT0)) /* [5G] Path A and B are both extPA */ pHalData->TypeAPA = extTypePA_5G_B << 2 | extTypePA_5G_A; if ((pHalData->LNAType_2G & (BIT7 | BIT3)) == (BIT7 | BIT3)) /* [2.4G] Path A and B are both extLNA */ pHalData->TypeGLNA = extTypeLNA_2G_B << 2 | extTypeLNA_2G_A; if ((pHalData->LNAType_5G & (BIT7 | BIT3)) == (BIT7 | BIT3)) /* [5G] Path A and B are both extLNA */ pHalData->TypeALNA = extTypeLNA_5G_B << 2 | extTypeLNA_5G_A; RTW_INFO("pHalData->TypeGPA = 0x%X\n", pHalData->TypeGPA); RTW_INFO("pHalData->TypeAPA = 0x%X\n", pHalData->TypeAPA); RTW_INFO("pHalData->TypeGLNA = 0x%X\n", pHalData->TypeGLNA); RTW_INFO("pHalData->TypeALNA = 0x%X\n", pHalData->TypeALNA); } VOID Hal_ReadPAType_8821A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (!AutoloadFail) { if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */ pHalData->PAType_2G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]); pHalData->LNAType_2G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_2G_8812AU]); if (pHalData->PAType_2G == 0xFF) pHalData->PAType_2G = 0; if (pHalData->LNAType_2G == 0xFF) pHalData->LNAType_2G = 0; pHalData->ExternalPA_2G = (pHalData->PAType_2G & BIT4) ? 1 : 0; pHalData->ExternalLNA_2G = (pHalData->LNAType_2G & BIT3) ? 1 : 0; } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->PAType_5G = ReadLE1Byte(&PROMContent[EEPROM_PA_TYPE_8812AU]); pHalData->LNAType_5G = ReadLE1Byte(&PROMContent[EEPROM_LNA_TYPE_5G_8812AU]); if (pHalData->PAType_5G == 0xFF) pHalData->PAType_5G = 0; if (pHalData->LNAType_5G == 0xFF) pHalData->LNAType_5G = 0; pHalData->external_pa_5g = (pHalData->PAType_5G & BIT0) ? 1 : 0; pHalData->external_lna_5g = (pHalData->LNAType_5G & BIT3) ? 1 : 0; } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } } else { pHalData->ExternalPA_2G = EEPROM_Default_PAType; pHalData->external_pa_5g = 0xFF; pHalData->ExternalLNA_2G = EEPROM_Default_LNAType; pHalData->external_lna_5g = 0xFF; if (GetRegAmplifierType2G(Adapter) == 0) { /* AUTO */ pHalData->ExternalPA_2G = 0; pHalData->ExternalLNA_2G = 0; } else { pHalData->ExternalPA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_PA) ? 1 : 0; pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter) & ODM_BOARD_EXT_LNA) ? 1 : 0; } if (GetRegAmplifierType5G(Adapter) == 0) { /* AUTO */ pHalData->external_pa_5g = 0; pHalData->external_lna_5g = 0; } else { pHalData->external_pa_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_PA_5G) ? 1 : 0; pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter) & ODM_BOARD_EXT_LNA_5G) ? 1 : 0; } } RTW_INFO("pHalData->PAType_2G is 0x%x, pHalData->ExternalPA_2G = %d\n", pHalData->PAType_2G, pHalData->ExternalPA_2G); RTW_INFO("pHalData->PAType_5G is 0x%x, pHalData->external_pa_5g = %d\n", pHalData->PAType_5G, pHalData->external_pa_5g); RTW_INFO("pHalData->LNAType_2G is 0x%x, pHalData->ExternalLNA_2G = %d\n", pHalData->LNAType_2G, pHalData->ExternalLNA_2G); RTW_INFO("pHalData->LNAType_5G is 0x%x, pHalData->external_lna_5g = %d\n", pHalData->LNAType_5G, pHalData->external_lna_5g); } VOID Hal_ReadRFEType_8812A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (!AutoloadFail) { if ((GetRegRFEType(Adapter) != 64) || 0xFF == PROMContent[EEPROM_RFE_OPTION_8812]) { if (GetRegRFEType(Adapter) != 64) pHalData->rfe_type = GetRegRFEType(Adapter); else { if (IS_HARDWARE_TYPE_8812AU(Adapter)) pHalData->rfe_type = 0; else if (IS_HARDWARE_TYPE_8812E(Adapter)) pHalData->rfe_type = 2; else pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION; } } else if (PROMContent[EEPROM_RFE_OPTION_8812] & BIT7) { if (pHalData->external_lna_5g) { if (pHalData->external_pa_5g) { if (pHalData->ExternalLNA_2G && pHalData->ExternalPA_2G) pHalData->rfe_type = 3; else pHalData->rfe_type = 0; } else pHalData->rfe_type = 2; } else pHalData->rfe_type = 4; } else { pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8812] & 0x3F; /* 2013/03/19 MH Due to othe customer already use incorrect EFUSE map */ /* to for their product. We need to add workaround to prevent to modify */ /* spec and notify all customer to revise the IC 0xca content. After */ /* discussing with Willis an YN, revise driver code to prevent. */ if (pHalData->rfe_type == 4 && (pHalData->external_pa_5g == _TRUE || pHalData->ExternalPA_2G == _TRUE || pHalData->external_lna_5g == _TRUE || pHalData->ExternalLNA_2G == _TRUE)) { if (IS_HARDWARE_TYPE_8812AU(Adapter)) pHalData->rfe_type = 0; else if (IS_HARDWARE_TYPE_8812E(Adapter)) pHalData->rfe_type = 2; } } } else { if (GetRegRFEType(Adapter) != 64) pHalData->rfe_type = GetRegRFEType(Adapter); else { if (IS_HARDWARE_TYPE_8812AU(Adapter)) pHalData->rfe_type = 0; else if (IS_HARDWARE_TYPE_8812E(Adapter)) pHalData->rfe_type = 2; else pHalData->rfe_type = EEPROM_DEFAULT_RFE_OPTION; } } RTW_INFO("RFE Type: 0x%2x\n", pHalData->rfe_type); } void Hal_EfuseParseKFreeData_8821A( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail) { #ifdef CONFIG_RF_POWER_TRIM HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct kfree_data_t *kfree_data = &pHalData->kfree_data; u8 pg_pwrtrim = 0xFF, pg_pwrtrim_5g_a = 0xFF, pg_pwrtrim_5g_lb1 = 0xFF, pg_pwrtrim_5g_lb2 = 0xFF, pg_pwrtrim_5g_mb1 = 0xFF, pg_pwrtrim_5g_mb2 = 0xFF, pg_pwrtrim_5g_hb = 0xFF, pg_therm = 0xFF; if ((Adapter->registrypriv.RegPwrTrimEnable == 1) || !AutoloadFail) { efuse_OneByteRead(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8821A, &pg_pwrtrim, _FALSE); efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GLB1_TXA_OFFSET_8821A, &pg_pwrtrim_5g_lb1, _FALSE); efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GLB2_TXA_OFFSET_8821A, &pg_pwrtrim_5g_lb2, _FALSE); efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GMB1_TXA_OFFSET_8821A, &pg_pwrtrim_5g_mb1, _FALSE); efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GMB2_TXA_OFFSET_8821A, &pg_pwrtrim_5g_mb2, _FALSE); efuse_OneByteRead(Adapter, PPG_BB_GAIN_5GHB_TXA_OFFSET_8821A, &pg_pwrtrim_5g_hb, _FALSE); efuse_OneByteRead(Adapter, PPG_THERMAL_OFFSET_8821A, &pg_therm, _FALSE); kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A] = KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK); kfree_data->bb_gain[BB_GAIN_5GLB1][RF_PATH_A] = KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_lb1 & PPG_BB_GAIN_5G_TX_OFFSET_MASK); kfree_data->bb_gain[BB_GAIN_5GLB2][RF_PATH_A] = KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_lb2 & PPG_BB_GAIN_5G_TX_OFFSET_MASK); kfree_data->bb_gain[BB_GAIN_5GMB1][RF_PATH_A] = KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_mb1 & PPG_BB_GAIN_5G_TX_OFFSET_MASK); kfree_data->bb_gain[BB_GAIN_5GMB2][RF_PATH_A] = KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_mb2) & PPG_BB_GAIN_5G_TX_OFFSET_MASK); kfree_data->bb_gain[BB_GAIN_5GHB][RF_PATH_A] = KFREE_BB_GAIN_5G_TX_OFFSET(pg_pwrtrim_5g_hb & PPG_BB_GAIN_5G_TX_OFFSET_MASK); kfree_data->thermal = KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK); } if (!AutoloadFail) { if (GET_PG_KFREE_ON_8821A(PROMContent)) kfree_data->flag |= KFREE_FLAG_ON; if (GET_PG_KFREE_THERMAL_K_ON_8821A(PROMContent)) kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; } else { if (!kfree_data_is_bb_gain_empty(kfree_data)) kfree_data->flag |= KFREE_FLAG_ON; if (kfree_data->thermal != 0) kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; } if (Adapter->registrypriv.RegPwrTrimEnable == 1) { kfree_data->flag |= KFREE_FLAG_ON; kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; } if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON) pHalData->eeprom_thermal_meter += kfree_data->thermal; RTW_INFO("kfree flag:0x%02x\n", kfree_data->flag); if (Adapter->registrypriv.RegPwrTrimEnable || kfree_data->flag & KFREE_FLAG_ON) { int i; RTW_PRINT_SEL(RTW_DBGDUMP, "bb_gain:"); for (i = 0; i < BB_GAIN_NUM; i++) _RTW_PRINT_SEL(RTW_DBGDUMP, "%d ", kfree_data->bb_gain[i][RF_PATH_A]); _RTW_PRINT_SEL(RTW_DBGDUMP, "\n"); } if (Adapter->registrypriv.RegPwrTrimEnable || kfree_data->flag & KFREE_FLAG_THERMAL_K_ON) RTW_INFO("thermal:%d\n", kfree_data->thermal); #endif /*CONFIG_RF_POWER_TRIM */ } /* * 2013/04/15 MH Add 8812AU- VL/VS/VN for different board type. * */ VOID hal_ReadUsbType_8812AU( IN PADAPTER Adapter, IN u8 *PROMContent, IN BOOLEAN AutoloadFail ) { /* if (IS_HARDWARE_TYPE_8812AU(Adapter) && Adapter->UsbModeMechanism.RegForcedUsbMode == 5) */ { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); struct hal_spec_t *hal_spc = GET_HAL_SPEC(Adapter); u8 reg_tmp, i, j, antenna = 0, wmode = 0; /* Read anenna type from EFUSE 1019/1018 */ for (i = 0; i < 2; i++) { /* Check efuse address 1019 Check efuse address 1018 */ efuse_OneByteRead(Adapter, 1019 - i, ®_tmp, _FALSE); /* CHeck bit 7-5 Check bit 3-1 */ if (((reg_tmp >> 5) & 0x7) != 0) { antenna = ((reg_tmp >> 5) & 0x7); break; } else if ((reg_tmp >> 1 & 0x07) != 0) { antenna = ((reg_tmp >> 1) & 0x07); break; } } /* Read anenna type from EFUSE 1021/1020 */ for (i = 0; i < 2; i++) { /* Check efuse address 1021 Check efuse address 1020 */ efuse_OneByteRead(Adapter, 1021 - i, ®_tmp, _FALSE); /* CHeck bit 3-2 */ if (((reg_tmp >> 2) & 0x3) != 0) { wmode = ((reg_tmp >> 2) & 0x3); break; } } RTW_INFO("%s: antenna=%d, wmode=%d\n", __func__, antenna, wmode); /* Antenna == 1 WMODE = 3 RTL8812AU-VL 11AC + USB2.0 Mode */ if (antenna == 1) { /* Config 8812AU as 1*1 mode AC mode. */ pHalData->rf_type = RF_1T1R; /* UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE); */ /* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VL; */ RTW_INFO("%s(): EFUSE_HIDDEN_812AU_VL\n", __FUNCTION__); } else if (antenna == 2) { if (wmode == 3) { if (PROMContent[EEPROM_USB_MODE_8812] == 0x2) { /* RTL8812AU Normal Mode. No further action. */ /* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU; */ RTW_INFO("%s(): EFUSE_HIDDEN_812AU\n", __FUNCTION__); } else { /* Antenna == 2 WMODE = 3 RTL8812AU-VS 11AC + USB2.0 Mode */ /* Driver will not support USB automatic switch */ /* UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE); */ /* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VS; */ RTW_INFO("%s(): EFUSE_HIDDEN_8812AU_VS\n", __func__); } } else if (wmode == 2) { /* Antenna == 2 WMODE = 2 RTL8812AU-VN 11N only + USB2.0 Mode */ /* UsbModeSwitch_SetUsbModeMechOn(Adapter, FALSE); */ /* pHalData->EFUSEHidden = EFUSE_HIDDEN_812AU_VN; */ RTW_INFO("%s(): EFUSE_HIDDEN_8812AU_VN\n", __func__); hal_spc->proto_cap &= ~PROTO_CAP_11AC; } } } } enum { VOLTAGE_V25 = 0x03, LDOE25_SHIFT = 28 , }; static VOID Hal_EfusePowerSwitch8812A( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { u8 tempval; u16 tmpV16; #define EFUSE_ACCESS_ON_JAGUAR 0x69 #define EFUSE_ACCESS_OFF_JAGUAR 0x00 if (PwrState == _TRUE) { rtw_write8(pAdapter, REG_EFUSE_BURN_GNT_8812, EFUSE_ACCESS_ON_JAGUAR); /* 1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL); if (!(tmpV16 & PWC_EV12V)) { tmpV16 |= PWC_EV12V ; /* rtw_write16(pAdapter,REG_SYS_ISO_CTRL,tmpV16); */ } /* Reset: 0x0000h[28], default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_FUNC_EN); if (!(tmpV16 & FEN_ELDR)) { tmpV16 |= FEN_ELDR ; rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16); } /* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */ tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR); if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) { tmpV16 |= (LOADER_CLK_EN | ANA8M) ; rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16); } if (bWrite == _TRUE) { /* Enable LDO 2.5V before read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST + 3); tempval &= ~(BIT3 | BIT4 | BIT5 | BIT6); tempval |= (VOLTAGE_V25 << 3); tempval |= BIT7; rtw_write8(pAdapter, EFUSE_TEST + 3, tempval); } } else { rtw_write8(pAdapter, REG_EFUSE_BURN_GNT_8812, EFUSE_ACCESS_OFF_JAGUAR); if (bWrite == _TRUE) { /* Disable LDO 2.5V after read/write action */ tempval = rtw_read8(pAdapter, EFUSE_TEST + 3); rtw_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F)); } } } static BOOLEAN Hal_EfuseSwitchToBank8812A( IN PADAPTER pAdapter, IN u1Byte bank, IN BOOLEAN bPseudoTest ) { return _FALSE; } static VOID Hal_EfuseReadEFuse8812A( PADAPTER Adapter, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { u8 *efuseTbl = NULL; u8 rtemp8[1]; u16 eFuse_Addr = 0; u8 offset, wren; u16 i, j; u16 **eFuseWord = NULL; u16 efuse_utilized = 0; u8 efuse_usage = 0; u8 u1temp = 0; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_MAP_LEN_JAGUAR) { /* total E-Fuse table is 512bytes */ RTW_INFO("Hal_EfuseReadEFuse8812A(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte); goto exit; } efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_JAGUAR); if (efuseTbl == NULL) { RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__); goto exit; } eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, 2); if (eFuseWord == NULL) { RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__); goto exit; } /* 0. Refresh efuse init map as all oxFF. */ for (i = 0; i < EFUSE_MAX_SECTION_JAGUAR; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) eFuseWord[i][j] = 0xFFFF; /* */ /* 1. Read the first byte to check if efuse is empty!!! */ /* */ /* */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF) { efuse_utilized++; /* RTW_INFO("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); */ eFuse_Addr++; } else { RTW_INFO("EFUSE is empty efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8); goto exit; } /* */ /* 2. Read real efuse content. Filter PG header and every section data. */ /* */ while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8)); */ /* Check PG header for section num. */ if ((*rtemp8 & 0x1F) == 0x0F) { /* extended header */ u1temp = ((*rtemp8 & 0xE0) >> 5); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x *rtemp&0xE0 0x%x\n", u1temp, *rtemp8 & 0xE0)); */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header u1temp=%x\n", u1temp)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("extended header efuse_Addr-%d efuse_data=%x\n", eFuse_Addr, *rtemp8)); */ if ((*rtemp8 & 0x0F) == 0x0F) { eFuse_Addr++; ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) eFuse_Addr++; continue; } else { offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); eFuse_Addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < EFUSE_MAX_SECTION_JAGUAR) { /* Get word enable value from PG header */ /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Offset-%d Worden=%x\n", offset, wren)); */ for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d\n", eFuse_Addr)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] = (*rtemp8 & 0xff); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR) break; /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d", eFuse_Addr)); */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); eFuse_Addr++; efuse_utilized++; eFuseWord[offset][i] |= (((u2Byte)*rtemp8 << 8) & 0xff00); if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR) break; } wren >>= 1; } } else { /* deal with error offset,skip error data */ RTW_PRINT("invalid offset:0x%02x\n", offset); for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wren & 0x01)) { eFuse_Addr++; efuse_utilized++; if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR) break; eFuse_Addr++; efuse_utilized++; if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_JAGUAR) break; } } } /* Read next PG header */ ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest); /* RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8)); */ if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) { efuse_utilized++; eFuse_Addr++; } } /* */ /* 3. Collect 16 sections and 4 word unit into Efuse map. */ /* */ for (i = 0; i < EFUSE_MAX_SECTION_JAGUAR; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff); efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff); } } /* */ /* 4. Copy from Efuse map to output pointer memory!!! */ /* */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* 5. Calculate Efuse utilization. */ /* */ efuse_usage = (u1Byte)((eFuse_Addr * 100) / EFUSE_REAL_CONTENT_LEN_JAGUAR); rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr); RTW_INFO("%s: eFuse_Addr offset(%#x) !!\n", __FUNCTION__, eFuse_Addr); exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_MAP_LEN_JAGUAR); if (eFuseWord) rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_JAGUAR, EFUSE_MAX_WORD_UNIT, sizeof(u16)); } /* *********************************************************** * Efuse related code * *********************************************************** */ static u8 hal_EfuseSwitchToBank( PADAPTER padapter, u8 bank, u8 bPseudoTest) { u8 bRet = _FALSE; u32 value32 = 0; #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank); if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeEfuseBank = bank; #else fakeEfuseBank = bank; #endif bRet = _TRUE; } else { value32 = rtw_read32(padapter, EFUSE_TEST); bRet = _TRUE; switch (bank) { case 0: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); break; case 1: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0); break; case 2: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1); break; case 3: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2); break; default: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); bRet = _FALSE; break; } rtw_write32(padapter, EFUSE_TEST, value32); } return bRet; } static VOID hal_ReadEFuse_BT( PADAPTER padapter, u16 _offset, u16 _size_byte, u8 *pbuf, u8 bPseudoTest ) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u8 *efuseTbl; u8 bank; u16 eFuse_Addr; u8 efuseHeader, efuseExtHdr, efuseData; u8 offset, wden; u16 i, total, used; u8 efuse_usage; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) { RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte); return; } efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN); if (efuseTbl == NULL) { RTW_INFO("%s: efuseTbl malloc fail!\n", __FUNCTION__); return; } /* 0xff will be efuse default value instead of 0x00. */ _rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN); total = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest); for (bank = 1; bank < 3; bank++) { /* 8821a BT 2 bank 512 size */ if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) { RTW_INFO("%s: hal_EfuseSwitchToBank Fail!!\n", __FUNCTION__); goto exit; } eFuse_Addr = 0; while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) { /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); if (efuseHeader == 0xFF) break; RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader); /* Check PG header for section num. */ if (EXT_HEADER(efuseHeader)) { /* extended header */ offset = GET_HDR_OFFSET_2_0(efuseHeader); RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset); /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr); if (ALL_WORDS_DISABLED(efuseExtHdr)) continue; offset |= ((efuseExtHdr & 0xF0) >> 1); wden = (efuseExtHdr & 0x0F); } else { offset = ((efuseHeader >> 4) & 0x0f); wden = (efuseHeader & 0x0f); } if (offset < EFUSE_BT_MAX_SECTION) { u16 addr; /* Get word enable value from PG header */ RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden); addr = offset * PGPKT_DATA_SIZE; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wden & (0x01 << i))) { efuseData = 0; /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest); RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData); efuseTbl[addr] = efuseData; efuseData = 0; /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest); RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData); efuseTbl[addr + 1] = efuseData; } addr += 2; } } else { RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset); eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2; } } if ((eFuse_Addr - 1) < total) { RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1); break; } } /* switch bank back to bank 0 for later BT and wifi use. */ hal_EfuseSwitchToBank(padapter, 0, bPseudoTest); /* Copy from Efuse map to output pointer memory!!! */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* */ /* Calculate Efuse utilization. */ /* */ EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest); used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1; RTW_INFO("%s: bank(%d) data end at %#x ,used =%d\n", __FUNCTION__, bank, eFuse_Addr - 1, used); efuse_usage = (u8)((used * 100) / total); if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeBTEfuseUsedBytes = used; #else fakeBTEfuseUsedBytes = used; #endif } else { rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used); rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage); } exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN); } static VOID rtl8812_ReadEFuse( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, IN BOOLEAN bPseudoTest ) { if (efuseType == EFUSE_WIFI) Hal_EfuseReadEFuse8812A(Adapter, _offset, _size_byte, pbuf, bPseudoTest); else hal_ReadEFuse_BT(Adapter, _offset, _size_byte, pbuf, bPseudoTest); } /* Do not support BT */ VOID Hal_EFUSEGetEfuseDefinition8812A( IN PADAPTER pAdapter, IN u1Byte efuseType, IN u1Byte type, OUT PVOID pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (u8 *)pOut; if (efuseType == EFUSE_WIFI) *pMax_section = EFUSE_MAX_SECTION_JAGUAR; else *pMax_section = EFUSE_BT_MAX_SECTION; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR; else *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR; else *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR); else *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR); else *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN - (EFUSE_PROTECT_BYTES_BANK * 3)); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (u16 *)pOut; if (efuseType == EFUSE_WIFI) *pu2Tmp = (u16)EFUSE_MAP_LEN_JAGUAR; else *pu2Tmp = EFUSE_BT_MAP_LEN; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; if (efuseType == EFUSE_WIFI) *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_JAGUAR); else *pu1Tmp = EFUSE_PROTECT_BYTES_BANK; } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } VOID Hal_EFUSEGetEfuseDefinition_Pseudo8812A( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT PVOID pOut ) { switch (type) { case TYPE_EFUSE_MAX_SECTION: { u8 *pMax_section; pMax_section = (pu1Byte)pOut; *pMax_section = EFUSE_MAX_SECTION_JAGUAR; } break; case TYPE_EFUSE_REAL_CONTENT_LEN: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR; } break; case TYPE_EFUSE_CONTENT_LEN_BANK: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = EFUSE_REAL_CONTENT_LEN_JAGUAR; } break; case TYPE_AVAILABLE_EFUSE_BYTES_BANK: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR); } break; case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)(EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR); } break; case TYPE_EFUSE_MAP_LEN: { u16 *pu2Tmp; pu2Tmp = (pu2Byte)pOut; *pu2Tmp = (u2Byte)EFUSE_MAP_LEN_JAGUAR; } break; case TYPE_EFUSE_PROTECT_BYTES_BANK: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_JAGUAR); } break; default: { u8 *pu1Tmp; pu1Tmp = (u8 *)pOut; *pu1Tmp = 0; } break; } } static VOID rtl8812_EFUSE_GetEfuseDefinition( IN PADAPTER pAdapter, IN u8 efuseType, IN u8 type, OUT void *pOut, IN BOOLEAN bPseudoTest ) { if (bPseudoTest) Hal_EFUSEGetEfuseDefinition_Pseudo8812A(pAdapter, efuseType, type, pOut); else Hal_EFUSEGetEfuseDefinition8812A(pAdapter, efuseType, type, pOut); } static u8 Hal_EfuseWordEnableDataWrite8812A(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[8]; _rtw_memset((PVOID)tmpdata, 0xff, PGPKT_DATA_SIZE); if (!(word_en & BIT0)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1], bPseudoTest); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT0); } if (!(word_en & BIT1)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr , &tmpdata[2], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3], bPseudoTest); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT1); } if (!(word_en & BIT2)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5], bPseudoTest); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT2); } if (!(word_en & BIT3)) { tmpaddr = start_addr; efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest); efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest); efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7], bPseudoTest); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT3); } return badworden; } static u8 rtl8812_Efuse_WordEnableDataWrite(IN PADAPTER pAdapter, IN u16 efuse_addr, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ret = 0; ret = Hal_EfuseWordEnableDataWrite8812A(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u16 hal_EfuseGetCurrentSize_8812A(IN PADAPTER pAdapter, IN BOOLEAN bPseudoTest) { int bContinual = _TRUE; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; if (bPseudoTest) efuse_addr = (u16)(fakeEfuseUsedBytes); else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); RTW_INFO("%s(), start_efuse_addr = %d\n", __func__, efuse_addr); while (bContinual && efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) { if (efuse_data != 0xFF) { if ((efuse_data & 0x1F) == 0x0F) { /* extended header */ hoffset = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if ((efuse_data & 0x0F) == 0x0F) { efuse_addr++; continue; } else { hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; } else bContinual = _FALSE ; } if (bPseudoTest) { fakeEfuseUsedBytes = efuse_addr; RTW_INFO("%s(), return %d\n", __func__, fakeEfuseUsedBytes); } else { rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr); RTW_INFO("%s(), return %d\n", __func__, efuse_addr); } return efuse_addr; } static u16 hal_EfuseGetCurrentSize_BT( PADAPTER padapter, u8 bPseudoTest) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u16 btusedbytes; u16 efuse_addr; u8 bank, startBank; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; u16 retU2 = 0; u8 bContinual = _TRUE; if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes; #else btusedbytes = fakeBTEfuseUsedBytes; #endif } else { btusedbytes = 0; rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes); } efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN)); startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN)); RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr); EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest); for (bank = startBank; bank < 3; bank++) { if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) { RTW_INFO(KERN_ERR "%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank); /* bank = EFUSE_MAX_BANK; */ break; } /* only when bank is switched we have to reset the efuse_addr. */ if (bank != startBank) efuse_addr = 0; while (AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE) { RTW_INFO(KERN_ERR "%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr); /* bank = EFUSE_MAX_BANK; */ break; } RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank); if (efuse_data == 0xFF) break; if (EXT_HEADER(efuse_data)) { hoffset = GET_HDR_OFFSET_2_0(efuse_data); efuse_addr++; efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest); RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank); if (ALL_WORDS_DISABLED(efuse_data)) { efuse_addr++; continue; } /* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */ hoffset |= ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n", FUNC_ADPT_ARG(padapter), hoffset, hworden); word_cnts = Efuse_CalculateWordCnts(hworden); /* read next header */ efuse_addr += (word_cnts * 2) + 1; } /* Check if we need to check next bank efuse */ if (efuse_addr < retU2) break;/* don't need to check next bank. */ } retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr; if (bPseudoTest) { pEfuseHal->fakeBTEfuseUsedBytes = retU2; /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */ } else { pEfuseHal->BTEfuseUsedBytes = retU2; /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */ } RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2); return retU2; } static u16 rtl8812_EfuseGetCurrentSize( IN PADAPTER pAdapter, IN u8 efuseType, IN BOOLEAN bPseudoTest) { u16 ret = 0; if (efuseType == EFUSE_WIFI) ret = hal_EfuseGetCurrentSize_8812A(pAdapter, bPseudoTest); else ret = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest); return ret; } static int hal_EfusePgPacketRead_8812A( IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { u8 ReadState = PG_STATE_HEADER; int bContinual = _TRUE; int bDataEmpty = _TRUE ; u8 efuse_data, word_cnts = 0; u16 efuse_addr = 0; u8 hoffset = 0, hworden = 0; u8 tmpidx = 0; u8 tmpdata[8]; u8 max_section = 0; u8 tmp_header = 0; if (data == NULL) return _FALSE; if (offset > EFUSE_MAX_SECTION_JAGUAR) return _FALSE; _rtw_memset((PVOID)data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE); _rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE); /* */ /* Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */ /* Skip dummy parts to prevent unexpected data read from Efuse. */ /* By pass right now. 2009.02.19. */ /* */ while (bContinual && (efuse_addr < EFUSE_REAL_CONTENT_LEN_JAGUAR)) { /* ------- Header Read ------------- */ if (ReadState & PG_STATE_HEADER) { if (efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { tmp_header = efuse_data; efuse_addr++; efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest); if (!ALL_WORDS_DISABLED(efuse_data)) { hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { RTW_INFO("Error, All words disabled\n"); efuse_addr++; break; } } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } word_cnts = Efuse_CalculateWordCnts(hworden); bDataEmpty = _TRUE ; if (hoffset == offset) { for (tmpidx = 0; tmpidx < word_cnts * 2 ; tmpidx++) { if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx , &efuse_data, bPseudoTest)) { tmpdata[tmpidx] = efuse_data; if (efuse_data != 0xff) bDataEmpty = _FALSE; } } if (bDataEmpty == _FALSE) ReadState = PG_STATE_DATA; else { /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } else { /* read next header */ efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } else bContinual = _FALSE ; } /* ------- Data section Read ------------- */ else if (ReadState & PG_STATE_DATA) { efuse_WordEnableDataRead(hworden, tmpdata, data); efuse_addr = efuse_addr + (word_cnts * 2) + 1; ReadState = PG_STATE_HEADER; } } if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) && (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff)) return _FALSE; else return _TRUE; } static int rtl8812_Efuse_PgPacketRead(IN PADAPTER pAdapter, IN u8 offset, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret = 0; ret = hal_EfusePgPacketRead_8812A(pAdapter, offset, data, bPseudoTest); return ret; } BOOLEAN hal_EfuseFixHeaderProcess( IN PADAPTER pAdapter, IN u8 efuseType, IN PPGPKT_STRUCT pFixPkt, IN u16 *pAddr, IN BOOLEAN bPseudoTest ) { u8 originaldata[8], badworden = 0; u16 efuse_addr = *pAddr; u32 PgWriteSuccess = 0; _rtw_memset((PVOID)originaldata, 0xff, 8); if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) { /* check if data exist */ badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata, bPseudoTest); if (badworden != 0xf) { /* write fail */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest); if (!PgWriteSuccess) return _FALSE; else efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); } else efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1; } else efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1; *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWrite2ByteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr, efuse_max_available_len = 0; u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0; u8 repeatcnt = 0; /* RTW_INFO("%s\n", __FUNCTION__); */ EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest); efuse_addr = *pAddr; if (efuse_addr >= efuse_max_available_len) { RTW_INFO("%s: addr(%d) over available(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len); return _FALSE; } while (efuse_addr < efuse_max_available_len) { pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s, Repeat over limit for pg_header!!\n", __FUNCTION__); return _FALSE; } efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); } /*to write ext_header*/ if (tmp_header == pg_header) { efuse_addr++; pg_header_temp = pg_header; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s, Repeat over limit for ext_header!!\n", __FUNCTION__); return _FALSE; } efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest); } if ((tmp_header & 0x0F) == 0x0F) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("Repeat over limit for word_en!!\n"); return _FALSE; } else { efuse_addr++; continue; } } else if (pg_header != tmp_header) { PGPKT_STRUCT fixPkt; RTW_ERR("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n"); RTW_ERR("Error condition for offset PG fail, need to cover the existed data\n"); fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1); fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(padapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return _FALSE; } else break; } else if ((tmp_header & 0x1F) == 0x0F) {/*wrong extended header*/ efuse_addr += 2; continue; } } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWrite1ByteHeader( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; u8 pg_header = 0, tmp_header = 0; u16 efuse_addr = *pAddr; u8 repeatcnt = 0; RTW_INFO("%s\n", __func__); pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en; efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); while (tmp_header == 0xFF || pg_header != tmp_header) { if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("retry %d times fail!!\n", repeatcnt); return FALSE; } efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest); efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest); RTW_INFO("===> %s: Keep %d-th retrying, tmp_header = 0x%X\n", __func__, repeatcnt, tmp_header); } if (tmp_header != pg_header) { PGPKT_STRUCT fixPkt; RTW_INFO("Error, %s(), offset PG fail, need to cover the existed data!!\n", __func__); RTW_INFO("pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header); RTW_INFO("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n", efuse_addr, tmp_header); fixPkt.offset = (tmp_header>>4) & 0x0F; fixPkt.word_en = tmp_header & 0x0F; fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en); if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest)) return FALSE; } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWriteData( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr; u8 badworden; efuse_addr = *pAddr; badworden = rtl8812_Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { RTW_INFO("%s: Fail!!\n", __FUNCTION__); return _FALSE; } /* RTW_INFO("%s: ok\n", __FUNCTION__); */ return _TRUE; } BOOLEAN efuse_PgPacketCheck( PADAPTER pAdapter, u8 efuseType, BOOLEAN bPseudoTest ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR)) { RTW_INFO("%s()error: %x >= %x\n", __func__, Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_JAGUAR - EFUSE_OOB_PROTECT_BYTES_JAGUAR)); return _FALSE; } return _TRUE; } VOID efuse_PgPacketConstruct( IN u8 offset, IN u8 word_en, IN u8 *pData, IN OUT PPGPKT_STRUCT pTargetPkt ) { _rtw_memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8) * 8); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); RTW_INFO("efuse_PgPacketConstruct(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts); } u2Byte Hal_EfusePgPacketExceptionHandle_8812A( PADAPTER pAdapter, u2Byte ErrOffset ) { BOOLEAN bPseudoTest = FALSE; u8 next = 0, next_next = 0, data = 0, i = 0, header = 0; u8 s = 0; u2Byte offset = ErrOffset; efuse_OneByteRead(pAdapter, offset, &header, bPseudoTest); if (EXT_HEADER(header)) { s = ((header & 0xF0) >> 4); /* Skip bad word enable to look two bytes ahead and determine if recoverable.*/ offset += 1; efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest); efuse_OneByteRead(pAdapter, offset+2, &next_next, bPseudoTest); if (next == 0xFF && next_next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/ switch (s) { case 0x0: case 0x2: case 0x4: case 0x6: case 0x8: case 0xA: case 0xC: for (i = 0; i < 3; ++i) { efuse_OneByteWrite(pAdapter, offset, 0x27, bPseudoTest); efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest); if (data == 0x27) break; } break; case 0xE: for (i = 0; i < 3; ++i) { efuse_OneByteWrite(pAdapter, offset, 0x17, bPseudoTest); efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest); if (data == 0x17) break; break; default: break; } efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest); efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest); offset += 3; ErrOffset = offset; } } else {/* 1-Byte header*/ if (ALL_WORDS_DISABLED(header)) { u8 next = 0; efuse_OneByteRead(pAdapter, offset+1, &next, bPseudoTest); if (next == 0xFF) {/* Have enough space to make fake data to recover bad header.*/ header = (header & 0xF0) | 0x7; for (i = 0; i < 3; ++i) { efuse_OneByteWrite(pAdapter, offset, header, bPseudoTest); efuse_OneByteRead(pAdapter, offset, &data, bPseudoTest); if (data == header) break; } efuse_OneByteWrite(pAdapter, offset+1, 0xFF, bPseudoTest); efuse_OneByteWrite(pAdapter, offset+2, 0xFF, bPseudoTest); offset += 2; ErrOffset = offset; } } } } return ErrOffset; } BOOLEAN hal_EfuseCheckIfDatafollowed( IN PADAPTER pAdapter, IN u8 word_cnts, IN u16 startAddr, IN BOOLEAN bPseudoTest ) { BOOLEAN bRet = FALSE; u8 i, efuse_data; for (i = 0; i < (word_cnts * 2) ; i++) { if (efuse_OneByteRead(pAdapter, (startAddr + i) , &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) bRet = TRUE; } return bRet; } BOOLEAN hal_EfuseWordEnMatched( IN PPGPKT_STRUCT pTargetPkt, IN PPGPKT_STRUCT pCurPkt, IN u8 *pWden ) { u8 match_word_en = 0x0F; /* default all words are disabled */ /* check if the same words are enabled both target and current PG packet */ if (((pTargetPkt->word_en & BIT0) == 0) && ((pCurPkt->word_en & BIT0) == 0)) { match_word_en &= ~BIT0; /* enable word 0 */ } if (((pTargetPkt->word_en & BIT1) == 0) && ((pCurPkt->word_en & BIT1) == 0)) { match_word_en &= ~BIT1; /* enable word 1 */ } if (((pTargetPkt->word_en & BIT2) == 0) && ((pCurPkt->word_en & BIT2) == 0)) { match_word_en &= ~BIT2; /* enable word 2 */ } if (((pTargetPkt->word_en & BIT3) == 0) && ((pCurPkt->word_en & BIT3) == 0)) { match_word_en &= ~BIT3; /* enable word 3 */ } *pWden = match_word_en; if (match_word_en != 0xf) return TRUE; else return FALSE; } BOOLEAN efuse_PgPacketPartialWrite( IN PADAPTER pAdapter, IN u8 efuseType, IN OUT u16 *pAddr, IN PPGPKT_STRUCT pTargetPkt, IN BOOLEAN bPseudoTest ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal); BOOLEAN bRet = _FALSE; u8 i, efuse_data = 0, cur_header = 0; u8 matched_wden = 0, badworden = 0; u16 startAddr = 0; PGPKT_STRUCT curPkt; u16 max_sec_num = (efuseType == EFUSE_WIFI) ? pEfuseHal->MaxSecNum_WiFi : pEfuseHal->MaxSecNum_BT; u16 efuse_max = pEfuseHal->BankSize; u16 efuse_max_available_len = (efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT; RTW_INFO("efuse_PgPacketPartialWrite()\n"); if (bPseudoTest) { pEfuseHal->fakeEfuseBank = (efuseType == EFUSE_WIFI) ? 0 : pEfuseHal->fakeEfuseBank; Efuse_GetCurrentSize(pAdapter, efuseType, _TRUE); } EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes; #else startAddr = (u16)fakeEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); } else { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes; #else startAddr = (u16)fakeBTEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr); } startAddr %= efuse_max; RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr); RTW_INFO("efuse_PgPacketPartialWrite(), startAddr = 0x%X\n", startAddr); while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; RTW_INFO("startAddr(%d) >= efuse_max_available_len(%d)\n", startAddr, efuse_max_available_len); break; } if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { if (EXT_HEADER(efuse_data)) { cur_header = efuse_data; startAddr++; efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); if (ALL_WORDS_DISABLED(efuse_data)) { u16 recoveredAddr = startAddr; recoveredAddr = Hal_EfusePgPacketExceptionHandle_8812A(pAdapter, startAddr - 1); if (recoveredAddr == (startAddr - 1)) { RTW_INFO("Error! All words disabled and the recovery failed, (Addr, Data) = (0x%X, 0x%X)\n", startAddr, efuse_data); pAdapter->LastError = ERR_INVALID_DATA; break; } else { startAddr = recoveredAddr; RTW_INFO("Bad extension header but recovered => Keep going.\n"); continue; } } else { curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); curPkt.word_en = efuse_data & 0x0F; } } else { if (ALL_WORDS_DISABLED(efuse_data)) { u16 recoveredAddr = startAddr; recoveredAddr = Hal_EfusePgPacketExceptionHandle_8812A(pAdapter, startAddr); if (recoveredAddr != startAddr) { efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest); RTW_INFO("Bad header but recovered => Read header again.\n"); } } cur_header = efuse_data; curPkt.offset = (cur_header >> 4) & 0x0F; curPkt.word_en = cur_header & 0x0F; } if (curPkt.offset > max_sec_num) { pAdapter->LastError = ERR_OUT_OF_RANGE; pEfuseHal->Status = ERR_OUT_OF_RANGE; bRet = _FALSE; break; } curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en); /* if same header is found but no data followed */ /* write some part of data followed by the header. */ if ((curPkt.offset == pTargetPkt->offset) && (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1, bPseudoTest)) && hal_EfuseWordEnMatched(pTargetPkt, &curPkt, &matched_wden)) { RTW_INFO("Need to partial write data by the previous wrote header\n"); /* RT_ASSERT(_FALSE, ("Error, Need to partial write data by the previous wrote header!!\n")); */ /* Here to write partial data */ badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { u32 PgWriteSuccess = 0; /* if write fail on some words, write these bad words again */ PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest); if (!PgWriteSuccess) { bRet = _FALSE; /* write fail, return */ break; } } /* partial write ok, update the target packet for later use */ for (i = 0; i < 4; i++) { if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */ pTargetPkt->word_en |= (0x1 << i); /* disable the word */ } } pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } /* read from next header */ startAddr = startAddr + (curPkt.word_cnts * 2) + 1; } else { /* not used header, 0xff */ *pAddr = startAddr; RTW_INFO("Started from unused header offset=%d\n", startAddr); bRet = _TRUE; break; } } return bRet; } BOOLEAN efuse_PgPacketWriteHeader( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, BOOLEAN bPseudoTest) { BOOLEAN bRet = _FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } int hal_EfusePgPacketWrite_8812A(IN PADAPTER pAdapter, u8 offset, u8 word_en, u8 *pData, BOOLEAN bPseudoTest) { u8 efuseType = EFUSE_WIFI; PGPKT_STRUCT targetPkt; u16 startAddr = 0; RTW_INFO("===> efuse_PgPacketWrite[%s], offset: 0x%X\n", (efuseType == EFUSE_WIFI) ? "WIFI" : "BT", offset); /* 4 [1] Check if the remaining space is available to write. */ if (!efuse_PgPacketCheck(pAdapter, efuseType, bPseudoTest)) { pAdapter->LastError = ERR_WRITE_PROTECT; RTW_INFO("efuse_PgPacketCheck(), fail!!\n"); return _FALSE; } /* 4 [2] Construct a packet to write: (Data, Offset, and WordEnable) */ efuse_PgPacketConstruct(offset, word_en, pData, &targetPkt); /* 4 [3] Fix headers without data or fix bad headers, and then return the address where to get started. */ if (!efuse_PgPacketPartialWrite(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) { pAdapter->LastError = ERR_INVALID_DATA; RTW_INFO("efuse_PgPacketPartialWrite(), fail!!\n"); return _FALSE; } /* 4 [4] Write the (extension) header. */ if (!efuse_PgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) { pAdapter->LastError = ERR_IO_FAILURE; RTW_INFO("efuse_PgPacketWriteHeader(), fail!!\n"); return _FALSE; } /* 4 [5] Write the data. */ if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) { pAdapter->LastError = ERR_IO_FAILURE; RTW_INFO("efuse_PgPacketWriteData(), fail!!\n"); return _FALSE; } RTW_INFO("<=== efuse_PgPacketWrite\n"); return _TRUE; } static VOID rtl8812_EfusePowerSwitch( IN PADAPTER pAdapter, IN u8 bWrite, IN u8 PwrState) { Hal_EfusePowerSwitch8812A(pAdapter, bWrite, PwrState); } static int rtl8812_Efuse_PgPacketWrite(IN PADAPTER pAdapter, IN u8 offset, IN u8 word_en, IN u8 *data, IN BOOLEAN bPseudoTest) { int ret; ret = hal_EfusePgPacketWrite_8812A(pAdapter, offset, word_en, data, bPseudoTest); return ret; } static u8 hal_EfusePgCheckAvailableAddr( PADAPTER pAdapter, u8 efuseType, u8 bPseudoTest) { u16 max_available = 0; u16 current_size; EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest); /* RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available); */ current_size = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest); if (current_size >= max_available) { RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available); return _FALSE; } return _TRUE; } static void hal_EfuseConstructPGPkt( u8 offset, u8 word_en, u8 *pData, PPGPKT_STRUCT pTargetPkt) { _rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } static u8 hal_EfusePartialWriteCheck( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; u8 bRet = _FALSE; u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0; u8 efuse_data = 0; EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest); EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest); if (efuseType == EFUSE_WIFI) { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes; #else startAddr = (u16)fakeEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); } else { if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes; #else startAddr = (u16)fakeBTEfuseUsedBytes; #endif } else rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr); } startAddr %= efuse_max; RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr); while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __FUNCTION__, startAddr, efuse_max_available_len); break; } if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) { bRet = _FALSE; RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n", __FUNCTION__, startAddr, efuse_data); break; } else { /* not used header, 0xff */ *pAddr = startAddr; /* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */ bRet = _TRUE; break; } } return bRet; } static u8 hal_EfusePgPacketWriteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } static u8 Hal_EfusePgPacketWrite_BT( PADAPTER pAdapter, u8 offset, u8 word_en, u8 *pData, u8 bPseudoTest) { PGPKT_STRUCT targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_BT; if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } void InitRDGSetting8812A(PADAPTER padapter) { rtw_write8(padapter, REG_RD_CTRL, 0xFF); rtw_write16(padapter, REG_RD_NAV_NXT, 0x200); rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05); } void ReadRFType8812A(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); #if DISABLE_BB_RF pHalData->rf_chip = RF_PSEUDO_11N; #else pHalData->rf_chip = RF_6052; #endif /* if (pHalData->rf_type == RF_1T1R){ */ /* pHalData->bRFPathRxEnable[0] = _TRUE; */ /* } */ /* else { */ /* Default unknow type is 2T2r */ /* pHalData->bRFPathRxEnable[0] = pHalData->bRFPathRxEnable[1] = _TRUE; */ /* } */ if (IsSupported24G(padapter->registrypriv.wireless_mode) && is_supported_5g(padapter->registrypriv.wireless_mode)) pHalData->BandSet = BAND_ON_BOTH; else if (is_supported_5g(padapter->registrypriv.wireless_mode)) pHalData->BandSet = BAND_ON_5G; else pHalData->BandSet = BAND_ON_2_4G; /* if(padapter->bInHctTest) */ /* pHalData->BandSet = BAND_ON_2_4G; */ } void rtl8812_start_thread(PADAPTER padapter) { } void rtl8812_stop_thread(PADAPTER padapter) { } void hal_notch_filter_8812(_adapter *adapter, bool enable) { if (enable) { RTW_INFO("Enable notch filter\n"); /* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1); */ } else { RTW_INFO("Disable notch filter\n"); /* rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1); */ } } u8 GetEEPROMSize8812A( IN PADAPTER Adapter ) { u8 size = 0; u32 curRCR; curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL); size = (curRCR & EEPROMSEL) ? 6 : 4; /* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */ RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46"); /* return size; */ return 4; /* <20120713, Kordan> The default value of HW is 6 ?!! */ } void CheckAutoloadState8812A(PADAPTER padapter) { u8 val8; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); /* check system boot selection */ val8 = rtw_read8(padapter, REG_9346CR); pHalData->EepromOrEfuse = (val8 & BOOT_FROM_EEPROM) ? _TRUE : _FALSE; pHalData->bautoload_fail_flag = (val8 & EEPROM_EN) ? _FALSE : _TRUE; RTW_INFO("%s: 9346CR(%#x)=0x%02x, Boot from %s, Autoload %s!\n", __FUNCTION__, REG_9346CR, val8, (pHalData->EepromOrEfuse ? "EEPROM" : "EFUSE"), (pHalData->bautoload_fail_flag ? "Fail" : "OK")); } void InitPGData8812A(PADAPTER padapter) { u32 i; u16 val16; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); if (_FALSE == pHalData->bautoload_fail_flag) { /* autoload OK. */ if (is_boot_from_eeprom(padapter)) { /* Read all Content from EEPROM or EFUSE. */ for (i = 0; i < HWSET_MAX_SIZE_JAGUAR; i += 2) { /* val16 = EF2Byte(ReadEEprom(pAdapter, (u2Byte) (i>>1))); */ /* *((u16*)(&PROMContent[i])) = val16; */ } } else { /* Read EFUSE real map to shadow. */ EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } } else { /* update to default value 0xFF */ if (!is_boot_from_eeprom(padapter)) EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE); } #ifdef CONFIG_EFUSE_CONFIG_FILE if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) { if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS) RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n"); } #endif } static void read_chip_version_8812a(PADAPTER Adapter) { u32 value32; PHAL_DATA_TYPE pHalData; pHalData = GET_HAL_DATA(Adapter); value32 = rtw_read32(Adapter, REG_SYS_CFG); RTW_INFO("%s SYS_CFG(0x%X)=0x%08x\n", __FUNCTION__, REG_SYS_CFG, value32); if (IS_HARDWARE_TYPE_8812(Adapter)) pHalData->version_id.ICType = CHIP_8812; else pHalData->version_id.ICType = CHIP_8821; pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP); if (IS_HARDWARE_TYPE_8812(Adapter)) pHalData->version_id.RFType = RF_TYPE_2T2R; /* RF_2T2R; */ else pHalData->version_id.RFType = RF_TYPE_1T1R; /* RF_1T1R; */ if (Adapter->registrypriv.special_rf_path == 1) pHalData->version_id.RFType = RF_TYPE_1T1R; /* RF_1T1R; */ if (IS_HARDWARE_TYPE_8812(Adapter)) pHalData->version_id.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC); else { u32 vendor; vendor = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT; switch (vendor) { case 0: vendor = CHIP_VENDOR_TSMC; break; case 1: vendor = CHIP_VENDOR_SMIC; break; case 2: vendor = CHIP_VENDOR_UMC; break; } pHalData->version_id.VendorType = vendor; } pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */ if (IS_HARDWARE_TYPE_8812(Adapter)) pHalData->version_id.CUTVersion += 1; /* value32 = rtw_read32(Adapter, REG_GPIO_OUTSTS); */ pHalData->version_id.ROMVer = 0; /* ROM code version. */ /* For multi-function consideration. Added by Roger, 2010.10.06. */ pHalData->MultiFunc = RT_MULTI_FUNC_NONE; value32 = rtw_read32(Adapter, REG_MULTI_FUNC_CTRL); pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0); pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0); pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT); rtw_hal_config_rftype(Adapter); #if 1 dump_chip_info(pHalData->version_id); #endif } VOID Hal_PatchwithJaguar_8812( IN PADAPTER Adapter, IN RT_MEDIA_STATUS MediaStatus ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_ext_priv *pmlmeext = &(Adapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); if ((MediaStatus == RT_MEDIA_CONNECT) && (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP)) { rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x1); rtw_write8(Adapter, REG_TCR + 3, BIT2); } else { rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x3F); if (rtw_get_chip_type(Adapter) == RTL8812) rtw_write8(Adapter, REG_TCR + 3, BIT0 | BIT1 | BIT2); else /* * 20150707 yiwei.sun * set 0x604[24] = 0 , to fix 11ac vht 80Mhz mode mcs 8 , 9 udp pkt lose issue * suggest by MAC team Jong & Scott */ rtw_write8(Adapter , REG_TCR + 3 , BIT1 | BIT2); } if ((MediaStatus == RT_MEDIA_CONNECT) && ((pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP) || (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP))) { rtw_write8(Adapter, rBWIndication_Jaguar + 3, (rtw_read8(Adapter, rBWIndication_Jaguar + 3) | BIT2)); } else { rtw_write8(Adapter, rBWIndication_Jaguar + 3, (rtw_read8(Adapter, rBWIndication_Jaguar + 3) & (~BIT2))); } } #ifdef CONFIG_RTL8821A void init_hal_spec_8821a(_adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); hal_spec->ic_name = "rtl8821a"; hal_spec->macid_num = 128; hal_spec->sec_cam_ent_num = 64; hal_spec->sec_cap = 0; hal_spec->rfpath_num_2g = 1; hal_spec->rfpath_num_5g = 1; hal_spec->txgi_max = 63; hal_spec->txgi_pdbm = 2; hal_spec->max_tx_cnt = 1; hal_spec->tx_nss_num = 1; hal_spec->rx_nss_num = 1; hal_spec->band_cap = BAND_CAP_2G | BAND_CAP_5G; hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M | BW_CAP_80M; hal_spec->port_num = 2; hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N | PROTO_CAP_11AC; hal_spec->wl_func = 0 | WL_FUNC_P2P | WL_FUNC_MIRACAST | WL_FUNC_TDLS ; hal_spec->pg_txpwr_saddr = 0x10; hal_spec->pg_txgi_diff_factor = 1; rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter) , REG_MACID_SLEEP , REG_MACID_SLEEP_1 , REG_MACID_SLEEP_2 , REG_MACID_SLEEP_3); } #endif /* CONFIG_RTL8821A */ void init_hal_spec_8812a(_adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); hal_spec->ic_name = "rtl8812a"; hal_spec->macid_num = 128; hal_spec->sec_cam_ent_num = 64; hal_spec->sec_cap = 0; hal_spec->rfpath_num_2g = 2; hal_spec->rfpath_num_5g = 2; hal_spec->txgi_max = 63; hal_spec->txgi_pdbm = 2; hal_spec->max_tx_cnt = 2; hal_spec->tx_nss_num = 2; hal_spec->rx_nss_num = 2; hal_spec->band_cap = BAND_CAP_2G | BAND_CAP_5G; hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M | BW_CAP_80M; hal_spec->port_num = 2; hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N | PROTO_CAP_11AC; hal_spec->wl_func = 0 | WL_FUNC_P2P | WL_FUNC_MIRACAST | WL_FUNC_TDLS ; hal_spec->pg_txpwr_saddr = 0x10; hal_spec->pg_txgi_diff_factor = 1; rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter) , REG_MACID_SLEEP , REG_MACID_SLEEP_1 , REG_MACID_SLEEP_2 , REG_MACID_SLEEP_3); } void InitDefaultValue8821A(PADAPTER padapter) { PHAL_DATA_TYPE pHalData; struct pwrctrl_priv *pwrctrlpriv; u8 i; pHalData = GET_HAL_DATA(padapter); pwrctrlpriv = adapter_to_pwrctl(padapter); /* init default value */ pHalData->fw_ractrl = _FALSE; if (!pwrctrlpriv->bkeepfwalive) pHalData->LastHMEBoxNum = 0; /* init dm default value */ pHalData->bChnlBWInitialized = _FALSE; pHalData->bIQKInitialized = _FALSE; pHalData->EfuseHal.fakeEfuseBank = 0; pHalData->EfuseHal.fakeEfuseUsedBytes = 0; _rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE); _rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN); _rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN); } VOID _InitBeaconParameters_8812A( IN PADAPTER Adapter ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u16 val16; u8 val8; val8 = DIS_TSF_UDT; val16 = val8 | (val8 << 8); /* port0 and port1 */ #ifdef CONFIG_BT_COEXIST if (pHalData->EEPROMBluetoothCoexist == 1) { /* Enable prot0 beacon function for PSTDMA */ val16 |= EN_BCN_FUNCTION; } #endif rtw_write16(Adapter, REG_BCN_CTRL, val16); /* TBTT setup time */ rtw_write8(Adapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME); /* TBTT hold time: 0x540[19:8] */ rtw_write8(Adapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF); rtw_write8(Adapter, REG_TBTT_PROHIBIT + 2, (rtw_read8(Adapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8)); rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8812);/* 5ms */ rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8812); /* 2ms */ /* Suggested by designer timchen. Change beacon AIFS to the largest number */ /* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */ rtw_write16(Adapter, REG_BCNTCFG, 0x4413); } static VOID _BeaconFunctionEnable( IN PADAPTER Adapter, IN BOOLEAN Enable, IN BOOLEAN Linked ) { rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB)); rtw_write8(Adapter, REG_RD_CTRL + 1, 0x6F); } void SetBeaconRelatedRegisters8812A(PADAPTER padapter) { u32 value32; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); u32 bcn_ctrl_reg = REG_BCN_CTRL; /* reset TSF, enable update TSF, correcting TSF On Beacon */ /* REG_MBSSID_BCN_SPACE */ /* REG_BCNDMATIM */ /* REG_ATIMWND */ /* REG_TBTT_PROHIBIT */ /* REG_DRVERLYINT */ /* REG_BCN_MAX_ERR */ /* REG_BCNTCFG */ /* (0x510) */ /* REG_DUAL_TSF_RST */ /* REG_BCN_CTRL */ /* (0x550) */ #ifdef CONFIG_CONCURRENT_MODE if (padapter->hw_port == HW_PORT1) bcn_ctrl_reg = REG_BCN_CTRL_1; #endif /* BCN interval */ rtw_hal_set_hwreg(padapter, HW_VAR_BEACON_INTERVAL, (u8 *)&pmlmeinfo->bcn_interval); rtw_write8(padapter, REG_ATIMWND, 0x02);/* 2ms */ _InitBeaconParameters_8812A(padapter); rtw_write8(padapter, REG_SLOT, 0x09); value32 = rtw_read32(padapter, REG_TCR); value32 &= ~TSFRST; rtw_write32(padapter, REG_TCR, value32); value32 |= TSFRST; rtw_write32(padapter, REG_TCR, value32); /* NOTE: Fix test chip's bug (about contention windows's randomness) */ rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50); rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50); _BeaconFunctionEnable(padapter, _TRUE, _TRUE); ResumeTxBeacon(padapter); /* rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6)); */ /* rtw_write8(padapter, 0x541, 0xff); */ /* rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0)); */ rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg) | DIS_BCNQ_SUB); } #ifdef CONFIG_BEAMFORMING #if (BEAMFORMING_SUPPORT == 0) VOID SetBeamformingCLK_8812( IN PADAPTER Adapter ) { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(Adapter); u16 u2btmp; u8 Count = 0, u1btmp; RTW_INFO(" ==>%s\n", __FUNCTION__); if (rtw_mi_check_fwstate(Adapter, _FW_UNDER_SURVEY)) { RTW_INFO(" <==%s return by Scan\n", __FUNCTION__); return; } /* Stop Usb TxDMA */ rtw_write_port_cancel(Adapter); #ifdef CONFIG_PCI_HCI /* Stop PCIe TxDMA */ rtw_write8(Adapter, REG_PCIE_CTRL_REG + 1, 0xFE); #endif /* Wait TXFF empty */ for (Count = 0; Count < 100; Count++) { u2btmp = rtw_read16(Adapter, REG_TXPKT_EMPTY); u2btmp = u2btmp & 0xfff; if (u2btmp != 0xfff) { rtw_mdelay_os(10); continue; } else break; } RTW_INFO(" Tx Empty count %d\n", Count); /* TX pause */ rtw_write8(Adapter, REG_TXPAUSE, 0xFF); /* Wait TX State Machine OK */ for (Count = 0; Count < 100; Count++) { if (rtw_read32(Adapter, REG_SCH_TXCMD_8812A) != 0) continue; else break; } RTW_INFO(" Tx Status count %d\n", Count); /* Stop RX DMA path */ u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A); rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp | BIT2); for (Count = 0; Count < 100; Count++) { u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A); if (u1btmp & BIT1) break; else rtw_mdelay_os(10); } RTW_INFO(" Rx Empty count %d\n", Count); /* Disable clock */ rtw_write8(Adapter, REG_SYS_CLKR + 1, 0xf0); /* Disable 320M */ rtw_write8(Adapter, REG_AFE_PLL_CTRL + 3, 0x8); /* Enable 320M */ rtw_write8(Adapter, REG_AFE_PLL_CTRL + 3, 0xa); /* Enable clock */ rtw_write8(Adapter, REG_SYS_CLKR + 1, 0xfc); /* Release Tx pause */ rtw_write8(Adapter, REG_TXPAUSE, 0); /* Enable RX DMA path */ u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A); rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp & (~BIT2)); /* Start Usb TxDMA */ RTW_ENABLE_FUNC(Adapter, DF_TX_BIT); RTW_INFO("%s\n", __FUNCTION__); RTW_INFO("<==%s\n", __FUNCTION__); } VOID SetBeamformRfMode_8812( IN PADAPTER Adapter, IN struct beamforming_info *pBeamInfo ) { BOOLEAN bSelfBeamformer = _FALSE; BOOLEAN bSelfBeamformee = _FALSE; BEAMFORMING_CAP BeamformCap = BEAMFORMING_CAP_NONE; BeamformCap = beamforming_get_beamform_cap(pBeamInfo); if (BeamformCap == pBeamInfo->beamforming_cap) return; else pBeamInfo->beamforming_cap = BeamformCap; if (GET_RF_TYPE(Adapter) == RF_1T1R) return; bSelfBeamformer = BeamformCap & BEAMFORMER_CAP; bSelfBeamformee = BeamformCap & BEAMFORMEE_CAP; phy_set_rf_reg(Adapter, RF_PATH_A, RF_WeLut_Jaguar, 0x80000, 0x1); /* RF Mode table write enable */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_WeLut_Jaguar, 0x80000, 0x1); /* RF Mode table write enable */ if (bSelfBeamformer) { /* Paath_A */ phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */ phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */ phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData1, 0xfffff, 0xE26BF); /* Enable TXIQGEN in RX mode */ /* Path_B */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData1, 0xfffff, 0xE26BF); /* Enable TXIQGEN in RX mode */ } else { /* Paath_A */ phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */ phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */ phy_set_rf_reg(Adapter, RF_PATH_A, RF_ModeTableData1, 0xfffff, 0xC26BF); /* Disable TXIQGEN in RX mode */ /* Path_B */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); /* Select RX mode */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData0, 0xfffff, 0x3F7FF); /* Set Table data */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_ModeTableData1, 0xfffff, 0xC26BF); /* Disable TXIQGEN in RX mode */ } phy_set_rf_reg(Adapter, RF_PATH_A, RF_WeLut_Jaguar, 0x80000, 0x0); /* RF Mode table write disable */ phy_set_rf_reg(Adapter, RF_PATH_B, RF_WeLut_Jaguar, 0x80000, 0x0); /* RF Mode table write disable */ if (bSelfBeamformer) phy_set_bb_reg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x33); else phy_set_bb_reg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x11); } VOID SetBeamformEnter_8812( IN PADAPTER Adapter, IN u8 Idx ) { u8 i = 0; u32 CSI_Param; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv); struct beamforming_entry BeamformEntry = pBeamInfo->beamforming_entry[Idx]; u16 STAid = 0; SetBeamformRfMode_8812(Adapter, pBeamInfo); if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE)) STAid = BeamformEntry.mac_id; else STAid = BeamformEntry.p_aid; /* Sounding protocol control */ rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB); /* MAC addresss/Partial AID of Beamformer */ if (Idx == 0) { for (i = 0; i < ETH_ALEN ; i++) rtw_write8(Adapter, (REG_BFMER0_INFO_8812A + i), BeamformEntry.mac_addr[i]); /* CSI report use legacy ofdm so don't need to fill P_AID.*/ /*rtw_write16(Adapter, REG_BFMER0_INFO_8812A+6, BeamformEntry.P_AID);*/ } else { for (i = 0; i < ETH_ALEN ; i++) rtw_write8(Adapter, (REG_BFMER1_INFO_8812A + i), BeamformEntry.mac_addr[i]); /* CSI report use legacy ofdm so don't need to fill P_AID.*/ /*rtw_write16(Adapter, REG_BFMER1_INFO_8812A+6, BeamformEntry.P_AID);*/ } /* CSI report parameters of Beamformee */ if ((BeamformEntry.beamforming_entry_cap & BEAMFORMEE_CAP_VHT_SU) || (BeamformEntry.beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU)) { if (pHalData->rf_type == RF_2T2R) CSI_Param = 0x01090109; else CSI_Param = 0x01080108; } else { if (pHalData->rf_type == RF_2T2R) CSI_Param = 0x03090309; else CSI_Param = 0x03080308; } if (pHalData->rf_type == RF_2T2R) rtw_write32(Adapter, 0x9B4, 0x00000000); /* Nc =2 */ else rtw_write32(Adapter, 0x9B4, 0x01081008); /* Nc =1 */ rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW20_8812A, CSI_Param); rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW40_8812A, CSI_Param); rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW80_8812A, CSI_Param); /* P_AID of Beamformee & enable NDPA transmission & enable NDPA interrupt */ if (Idx == 0) { rtw_write16(Adapter, REG_TXBF_CTRL_8812A, STAid); rtw_write8(Adapter, REG_TXBF_CTRL_8812A + 3, rtw_read8(Adapter, REG_TXBF_CTRL_8812A + 3) | BIT4 | BIT6 | BIT7); } else rtw_write16(Adapter, REG_TXBF_CTRL_8812A + 2, STAid | BIT12 | BIT14 | BIT15); /* CSI report parameters of Beamformee */ if (Idx == 0) { /* Get BIT24 & BIT25*/ u8 tmp = rtw_read8(Adapter, REG_BFMEE_SEL_8812A + 3) & 0x3; rtw_write8(Adapter, REG_BFMEE_SEL_8812A + 3, tmp | 0x60); rtw_write16(Adapter, REG_BFMEE_SEL_8812A, STAid | BIT9); } else { /* Set BIT25 */ rtw_write16(Adapter, REG_BFMEE_SEL_8812A + 2, STAid | (0xE2 << 8)); } /* Timeout value for MAC to leave NDP_RX_standby_state (60 us, Test chip) (80 us, MP chip) */ rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A + 3, 0x50); beamforming_notify(Adapter); } VOID SetBeamformLeave_8812( IN PADAPTER Adapter, IN u8 Idx ) { struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv)); SetBeamformRfMode_8812(Adapter, pBeamInfo); /* Clear P_AID of Beamformee * Clear MAC addresss of Beamformer * Clear Associated Bfmee Sel */ if (pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE) rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8); if (Idx == 0) { rtw_write16(Adapter, REG_TXBF_CTRL_8812A, 0); rtw_write32(Adapter, REG_BFMER0_INFO_8812A, 0); rtw_write16(Adapter, REG_BFMER0_INFO_8812A + 4, 0); rtw_write16(Adapter, REG_BFMEE_SEL_8812A, 0); } else { rtw_write16(Adapter, REG_TXBF_CTRL_8812A + 2, rtw_read16(Adapter, REG_TXBF_CTRL_8812A + 2) & 0xF000); rtw_write32(Adapter, REG_BFMER1_INFO_8812A, 0); rtw_write16(Adapter, REG_BFMER1_INFO_8812A + 4, 0); rtw_write16(Adapter, REG_BFMEE_SEL_8812A + 2, rtw_read16(Adapter, REG_BFMEE_SEL_8812A + 2) & 0x60); } } VOID SetBeamformStatus_8812( IN PADAPTER Adapter, IN u8 Idx ) { u16 BeamCtrlVal; u32 BeamCtrlReg; struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv); struct beamforming_entry BeamformEntry = pBeamInfo->beamforming_entry[Idx]; if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE)) BeamCtrlVal = BeamformEntry.mac_id; else BeamCtrlVal = BeamformEntry.p_aid; if (Idx == 0) BeamCtrlReg = REG_TXBF_CTRL_8812A; else { BeamCtrlReg = REG_TXBF_CTRL_8812A + 2; BeamCtrlVal |= BIT12 | BIT14 | BIT15; } if (BeamformEntry.beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED) { if (BeamformEntry.sound_bw == CHANNEL_WIDTH_20) BeamCtrlVal |= BIT9; else if (BeamformEntry.sound_bw == CHANNEL_WIDTH_40) BeamCtrlVal |= BIT10; else if (BeamformEntry.sound_bw == CHANNEL_WIDTH_80) BeamCtrlVal |= BIT11; } else BeamCtrlVal &= ~(BIT9 | BIT10 | BIT11); rtw_write16(Adapter, BeamCtrlReg, BeamCtrlVal); RTW_INFO("%s Idx %d BeamCtrlReg %x BeamCtrlVal %x\n", __FUNCTION__, Idx, BeamCtrlReg, BeamCtrlVal); } VOID SetBeamformFwTxBFCmd_8812( IN PADAPTER Adapter ) { u8 Idx, Period0 = 0, Period1 = 0; u8 PageNum0 = 0xFF, PageNum1 = 0xFF; u8 u1TxBFParm[3] = {0}; struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv); for (Idx = 0; Idx < BEAMFORMING_ENTRY_NUM; Idx++) { if (pBeamInfo->beamforming_entry[Idx].beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED) { if (Idx == 0) { if (pBeamInfo->beamforming_entry[Idx].bSound) PageNum0 = 0xFE; else PageNum0 = 0xFF; /* stop sounding */ Period0 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period); } else if (Idx == 1) { if (pBeamInfo->beamforming_entry[Idx].bSound) PageNum1 = 0xFE; else PageNum1 = 0xFF; /* stop sounding */ Period1 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period); } } } u1TxBFParm[0] = PageNum0; u1TxBFParm[1] = PageNum1; u1TxBFParm[2] = (Period1 << 4) | Period0; fill_h2c_cmd_8812(Adapter, H2C_8812_TxBF, 3, u1TxBFParm); RTW_INFO("%s PageNum0 = %d Period0 = %d\n", __FUNCTION__, PageNum0, Period0); RTW_INFO("PageNum1 = %d Period1 %d\n", PageNum1, Period1); } VOID SetBeamformDownloadNDPA_8812( IN PADAPTER Adapter, IN u8 Idx ) { u8 u1bTmp = 0, tmpReg422 = 0, Head_Page; u8 BcnValidReg = 0, count = 0, DLBcnCount = 0; BOOLEAN bSendBeacon = _FALSE; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); u8 TxPageBndy = LAST_ENTRY_OF_TX_PKT_BUFFER_8812; /* default reseved 1 page for the IC type which is undefined. */ struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv)); struct beamforming_entry *pBeamEntry = pBeamInfo->beamforming_entry + Idx; /* pHalData->bFwDwRsvdPageInProgress = _TRUE; */ if (Idx == 0) Head_Page = 0xFE; else Head_Page = 0xFE; rtw_hal_get_def_var(Adapter, HAL_DEF_TX_PAGE_BOUNDARY, (u8 *)&TxPageBndy); /* Set REG_CR bit 8. DMA beacon by SW. */ u1bTmp = rtw_read8(Adapter, REG_CR + 1); rtw_write8(Adapter, REG_CR + 1, (u1bTmp | BIT0)); rtw_write8(Adapter, REG_CR + 1, rtw_read8(Adapter, REG_CR + 1) | BIT0); /* Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame. */ tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL + 2); rtw_write8(Adapter, REG_FWHW_TXQ_CTRL + 2, tmpReg422 & (~BIT6)); if (tmpReg422 & BIT6) { RTW_INFO("SetBeamformDownloadNDPA_8812(): There is an Adapter is sending beacon.\n"); bSendBeacon = _TRUE; } /* TDECTRL[15:8] 0x209[7:0] = 0xF6 Beacon Head for TXDMA */ rtw_write8(Adapter, REG_TDECTRL + 1, Head_Page); do { /* Clear beacon valid check bit. */ BcnValidReg = rtw_read8(Adapter, REG_TDECTRL + 2); rtw_write8(Adapter, REG_TDECTRL + 2, (BcnValidReg | BIT0)); /* download NDPA rsvd page. */ if (pBeamEntry->beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU) beamforming_send_vht_ndpa_packet(Adapter, pBeamEntry->mac_addr, pBeamEntry->aid, pBeamEntry->sound_bw, BCN_QUEUE_INX); else beamforming_send_ht_ndpa_packet(Adapter, pBeamEntry->mac_addr, pBeamEntry->sound_bw, BCN_QUEUE_INX); /* check rsvd page download OK. */ BcnValidReg = rtw_read8(Adapter, REG_TDECTRL + 2); count = 0; while (!(BcnValidReg & BIT0) && count < 20) { count++; rtw_udelay_os(10); BcnValidReg = rtw_read8(Adapter, REG_TDECTRL + 2); } DLBcnCount++; } while (!(BcnValidReg & BIT0) && DLBcnCount < 5); if (!(BcnValidReg & BIT0)) RTW_INFO("%s Download RSVD page failed!\n", __FUNCTION__); /* TDECTRL[15:8] 0x209[7:0] = 0xF6 Beacon Head for TXDMA */ rtw_write8(Adapter, REG_TDECTRL + 1, TxPageBndy); /* To make sure that if there exists an adapter which would like to send beacon. */ /* If exists, the origianl value of 0x422[6] will be 1, we should check this to */ /* prevent from setting 0x422[6] to 0 after download reserved page, or it will cause */ /* the beacon cannot be sent by HW. */ /* 2010.06.23. Added by tynli. */ if (bSendBeacon) rtw_write8(Adapter, REG_FWHW_TXQ_CTRL + 2, tmpReg422); /* Do not enable HW DMA BCN or it will cause Pcie interface hang by timing issue. 2011.11.24. by tynli. */ /* Clear CR[8] or beacon packet will not be send to TxBuf anymore. */ u1bTmp = rtw_read8(Adapter, REG_CR + 1); rtw_write8(Adapter, REG_CR + 1, (u1bTmp & (~BIT0))); pBeamEntry->beamforming_entry_state = BEAMFORMING_ENTRY_STATE_PROGRESSED; /* pHalData->bFwDwRsvdPageInProgress = _FALSE; */ } VOID SetBeamformFwTxBF_8812( IN PADAPTER Adapter, IN u8 Idx ) { struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv)); struct beamforming_entry *pBeamEntry = pBeamInfo->beamforming_entry + Idx; if (pBeamEntry->beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSING) SetBeamformDownloadNDPA_8812(Adapter, Idx); SetBeamformFwTxBFCmd_8812(Adapter); } VOID SetBeamformPatch_8812( IN PADAPTER Adapter, IN u8 Operation ) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct beamforming_info *pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv)); if (pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE) return; /*if(Operation == SCAN_OPT_BACKUP_BAND0) { rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8); } else if(Operation == SCAN_OPT_RESTORE) { rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB); }*/ } #endif /*#if (BEAMFORMING_SUPPORT == 0) - for drv beamforming*/ #endif /*#ifdef CONFIG_BEAMFORMING*/ static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val) { u32 rcr_bits; u16 value_rxfltmap2; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv); if (*((u8 *)val) == _HW_STATE_MONITOR_) { #ifdef CONFIG_CUSTOMER_ALIBABA_GENERAL rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_AMF | RCR_APP_PHYST_RXFF; #else /* Receive all type */ rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF; /* Append FCS */ rcr_bits |= RCR_APPFCS; #endif #if 0 /* CRC and ICV packet will drop in recvbuf2recvframe() We no turn on it. */ rcr_bits |= (RCR_ACRC32 | RCR_AICV); #endif rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits); /* Receive all data frames */ value_rxfltmap2 = 0xFFFF; rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2); #if 0 /* tx pause */ rtw_write8(padapter, REG_TXPAUSE, 0xFF); #endif } else { /* do nothing */ } } static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8 *val) { u8 val8; u8 mode = *((u8 *)val); static u8 isMonitor = _FALSE; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); if (isMonitor == _TRUE) { /* reset RCR from backup */ rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup); rtw_hal_rcr_set_chk_bssid(Adapter, MLME_ACTION_NONE); isMonitor = _FALSE; } if (mode == _HW_STATE_MONITOR_) { isMonitor = _TRUE; /* set net_type */ Set_MSR(Adapter, _HW_STATE_NOLINK_); hw_var_set_monitor(Adapter, variable, val); return; } rtw_hal_set_hwreg(Adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(Adapter)); /* set mac addr to mac register */ #ifdef CONFIG_CONCURRENT_MODE if (Adapter->hw_port == HW_PORT1) { /* disable Port1 TSF update */ rtw_iface_disable_tsf_update(Adapter); /* set net_type */ Set_MSR(Adapter, mode); RTW_INFO("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) { StopTxBeacon(Adapter); #ifdef CONFIG_PCI_HCI UpdateInterruptMask8812AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0); #else #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */ UpdateInterruptMask8812AU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8812); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8812AU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812)); #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif } rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_ATIM); /* disable atim wnd and disable beacon function */ /* rtw_write8(Adapter,REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION); */ } else if (mode == _HW_STATE_ADHOC_) { ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_PCI_HCI UpdateInterruptMask8812AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0); #else #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT UpdateInterruptMask8812AU(Adapter, _TRUE , IMR_BCNDMAINT0_8812, 0); #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8812AU(Adapter, _TRUE , (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812), 0); #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif rtw_write8(Adapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_BCNQ_SUB); #ifdef CONFIG_PCI_HCI /*Beacon is polled to TXBUF SWBCN*/ rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8)); RTW_INFO("CR:SWBCN %x\n", rtw_read32(Adapter, 0x100)); #endif /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ /* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); /* 10ms for port1 */ rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF2 */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)); /* enable BCN1 Function for if2 */ /* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB)); if (IS_HARDWARE_TYPE_8821(Adapter)) { /* select BCN on port 1 */ rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812) | BIT(5)); } if (!rtw_mi_buddy_check_mlmeinfo_state(Adapter, WIFI_FW_ASSOC_SUCCESS)) rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION); /* BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */ /* rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5)); */ /* rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3)); */ /* dis BCN0 ATIM WND if if1 is station */ rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL) | DIS_ATIM); #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (DEV_STA_LD_NUM(adapter_to_dvobj(Adapter))) { if (rtw_hal_reset_tsf(Adapter, HW_PORT1) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n", __FUNCTION__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ } } else /* else for port0 */ #endif /* CONFIG_CONCURRENT_MODE */ { #ifdef CONFIG_MI_WITH_MBSSID_CAM hw_var_set_opmode_mbid(Adapter, mode); #else /* disable Port0 TSF update */ rtw_iface_disable_tsf_update(Adapter); /* set net_type */ Set_MSR(Adapter, mode); RTW_INFO("%s()-%d mode = %d\n", __func__, __LINE__, mode); if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) { #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_get_ap_num(Adapter) && !rtw_mi_get_mesh_num(Adapter)) #endif /* CONFIG_CONCURRENT_MODE */ { StopTxBeacon(Adapter); #ifdef CONFIG_PCI_HCI UpdateInterruptMask8812AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0); #else #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT rtw_write8(Adapter, REG_DRVERLYINT, 0x05);/* restore early int time to 5ms */ UpdateInterruptMask8812AU(Adapter, _TRUE, 0, IMR_BCNDMAINT0_8812); #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8812AU(Adapter, _TRUE , 0, (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812)); #endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif } rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM); /* disable atim wnd */ /* rtw_write8(Adapter,REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION); */ } else if (mode == _HW_STATE_ADHOC_) { ResumeTxBeacon(Adapter); rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB); } else if (mode == _HW_STATE_AP_) { #ifdef CONFIG_PCI_HCI UpdateInterruptMask8812AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0); #else #ifdef CONFIG_INTERRUPT_BASED_TXBCN #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT UpdateInterruptMask8812AU(Adapter, _TRUE , IMR_BCNDMAINT0_8812, 0); #endif/* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */ #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR UpdateInterruptMask8812AU(Adapter, _TRUE , (IMR_TXBCN0ERR_8812 | IMR_TXBCN0OK_8812), 0); #endif/* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */ #endif /* CONFIG_INTERRUPT_BASED_TXBCN */ #endif rtw_write8(Adapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB); #ifdef CONFIG_PCI_HCI /*Beacon is polled to TXBUF SWBCN*/ rtw_write32(Adapter, REG_CR, rtw_read32(Adapter, REG_CR) | BIT(8)); RTW_INFO("CR:SWBCN %x\n", rtw_read32(Adapter, 0x100)); #endif /* enable to rx data frame */ rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF); /* Beacon Control related register for first time */ rtw_write8(Adapter, REG_BCNDMATIM, 0x02); /* 2ms */ /* rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF); */ rtw_write8(Adapter, REG_ATIMWND, 0x0c); /* 12ms */ rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */ /* reset TSF */ rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0)); /* enable BCN0 Function for if1 */ /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */ rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB)); if (IS_HARDWARE_TYPE_8821(Adapter)) { /* select BCN on port 0 */ rtw_write8(Adapter, REG_CCK_CHECK_8812, rtw_read8(Adapter, REG_CCK_CHECK_8812) & (~BIT(5))); } #ifdef CONFIG_CONCURRENT_MODE if (!rtw_mi_buddy_check_mlmeinfo_state(Adapter, WIFI_FW_ASSOC_SUCCESS)) rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION); #endif /* dis BCN1 ATIM WND if if2 is station */ rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1) | DIS_ATIM); #ifdef CONFIG_TSF_RESET_OFFLOAD /* Reset TSF for STA+AP concurrent mode */ if (DEV_STA_LD_NUM(adapter_to_dvobj(Adapter))) { if (rtw_hal_reset_tsf(Adapter, HW_PORT0) == _FAIL) RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n", __FUNCTION__, __LINE__); } #endif /* CONFIG_TSF_RESET_OFFLOAD */ } #endif /*#ifdef CONFIG_MI_WITH_MBSSID_CAM*/ } } static void hw_var_backup_IQK_val(PADAPTER padapter, struct hal_iqk_reg_backup *pRecPosForBkp) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); pRecPosForBkp->central_chnl = pHalData->current_channel; pRecPosForBkp->bw_mode = pHalData->current_channel_bw; if (1) RTW_INFO(FUNC_ADPT_FMT": central_chnl:%d, bw_mode:%d\n" , FUNC_ADPT_ARG(padapter) , pRecPosForBkp->central_chnl , pRecPosForBkp->bw_mode ); /* According to phydm code (phy_IQCalibrate_8821A) & (phy_IQCalibrate_8812A) */ if (IS_HARDWARE_TYPE_8821(padapter)) { /* for RF_PATH_A Tx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1); pRecPosForBkp->reg_backup[RF_PATH_A][0] = rtw_read32(padapter, 0xCCC); pRecPosForBkp->reg_backup[RF_PATH_A][1] = rtw_read32(padapter, 0xCD4); /* for RF_PATH_A Rx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0); pRecPosForBkp->reg_backup[RF_PATH_A][2] = rtw_read32(padapter, 0xC10); } else if (IS_HARDWARE_TYPE_8812(padapter)) { /* for RF_PATH_A Tx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1); pRecPosForBkp->reg_backup[RF_PATH_A][0] = rtw_read32(padapter, 0xCCC); pRecPosForBkp->reg_backup[RF_PATH_A][1] = rtw_read32(padapter, 0xCD4); /* for RF_PATH_A Rx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0); pRecPosForBkp->reg_backup[RF_PATH_A][2] = rtw_read32(padapter, 0xC10); /* for RF_PATH_B Tx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1); pRecPosForBkp->reg_backup[RF_PATH_B][0] = rtw_read32(padapter, 0xECC); pRecPosForBkp->reg_backup[RF_PATH_B][1] = rtw_read32(padapter, 0xED4); /* for RF_PATH_B Rx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0); pRecPosForBkp->reg_backup[RF_PATH_B][2] = rtw_read32(padapter, 0xE10); } } #ifdef CONFIG_TDLS #ifdef CONFIG_TDLS_CH_SW static void hw_var_restore_IQK_val_TDLS(PADAPTER padapter) { u8 i; u8 central_chnl_now = 0; u8 bw_mode_now = 0; struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u8 RecPosForRetore; u8 MatchedRec = _FALSE; central_chnl_now = rtw_get_center_ch(dvobj->oper_channel, dvobj->oper_bwmode, dvobj->oper_ch_offset); bw_mode_now = dvobj->oper_bwmode; /* To search for the matched record */ for (i = 0; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++) { if ((pHalData->iqk_reg_backup[i].central_chnl == central_chnl_now) && (pHalData->iqk_reg_backup[i].bw_mode == bw_mode_now)) { MatchedRec = _TRUE; RecPosForRetore = i; break; } } if (MatchedRec == _FALSE) return; if (IS_HARDWARE_TYPE_8821(padapter)) { /* for RF_PATH_A Tx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1); phy_set_bb_reg(padapter, 0xCCC, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][0]); phy_set_bb_reg(padapter, 0xCD4, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][1]); /* for RF_PATH_A Rx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0); phy_set_bb_reg(padapter, 0xC10, 0x03FF03FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2]); } else if (IS_HARDWARE_TYPE_8812(padapter)) { /* for RF_PATH_A Tx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1); phy_set_bb_reg(padapter, 0xCCC, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][0]); phy_set_bb_reg(padapter, 0xCD4, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][1]); /* for RF_PATH_A Rx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0); phy_set_bb_reg(padapter, 0xC10, 0x03FF03FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2]); /* for RF_PATH_B Tx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x1); phy_set_bb_reg(padapter, 0xECC, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[1][0]); phy_set_bb_reg(padapter, 0xED4, 0x000007FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[1][1]); /* for RF_PATH_B Rx */ phy_set_bb_reg(padapter, 0x82C, BIT(31), 0x0); phy_set_bb_reg(padapter, 0xE10, 0x03FF03FF, pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[1][2]); } } #endif #endif #ifdef CONFIG_MCC_MODE static void hw_var_restore_IQK_val_MCC(PADAPTER padapter) { struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mcc_adapter_priv *pmccadapriv = &padapter->mcc_adapterpriv; u8 i = 0; u8 central_chnl_now = 0, bw_mode_now = 0; u8 chidx = pmlmeext->cur_channel; u8 bw = pmlmeext->cur_bwmode; u8 bw_offset = pmlmeext->cur_ch_offset; u8 RecPosForRetore = 0; u8 MatchedRec = _FALSE; central_chnl_now = rtw_get_center_ch(chidx, bw, bw_offset); bw_mode_now = bw; /* To search for the matched record */ for (i = 0; i < MAX_IQK_INFO_BACKUP_CHNL_NUM; i++) { if ((pHalData->iqk_reg_backup[i].central_chnl == central_chnl_now) && (pHalData->iqk_reg_backup[i].bw_mode == bw_mode_now)) { MatchedRec = _TRUE; RecPosForRetore = i; break; } } if (MatchedRec == _FALSE) { rtw_warn_on(1); RTW_INFO("[MCC] "FUNC_ADPT_FMT" not found fit IQK value from IQK table(%d,%d)\n" , FUNC_ADPT_ARG(padapter), central_chnl_now, bw_mode_now); return; } /* According to phydm code(phy_IQCalibrate_8821A) & document */ if (IS_HARDWARE_TYPE_8821(padapter)) { /* 8821A only one RF PATH */ /* transform register value to TX_X & TX_Y */ pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_X = (u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[RF_PATH_A][1] & 0x000007ff); pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_Y = (u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[RF_PATH_A][0] & 0x000007ff); if (0) RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, TX_X = 0x%02x, TX_Y = 0x%02x\n" , FUNC_ADPT_ARG(padapter) , central_chnl_now , bw_mode_now , RF_PATH_A , pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_X , pmccadapriv->mcc_iqk_arr[RF_PATH_A].TX_Y ); /* transform register value to RX_X & RX_Y */ pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_X = (u16) ((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2] & 0x000003ff) << 1); pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_Y = (u16) (((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[0][2] & 0x03ff0000)>>16) << 1); if (0) RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, TX_X = 0x%02x, TX_Y = 0x%02x\n" , FUNC_ADPT_ARG(padapter) , central_chnl_now , bw_mode_now , RF_PATH_A , pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_X , pmccadapriv->mcc_iqk_arr[RF_PATH_A].RX_Y ); }else if (IS_HARDWARE_TYPE_8812(padapter)) { /* 8812A has two RF PATH at most */ u8 total_rf_path = pHalData->NumTotalRFPath; u8 rf_path = 0; for (rf_path = 0; rf_path < total_rf_path; rf_path++) { /* transform register value to TX_X & TX_Y */ pmccadapriv->mcc_iqk_arr[rf_path].TX_X = (u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][1] & 0x000007ff); pmccadapriv->mcc_iqk_arr[rf_path].TX_Y = (u16)(pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][0] & 0x000007ff); if (1) RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, TX_X = 0x%02x, TX_Y = 0x%02x\n" , FUNC_ADPT_ARG(padapter) , central_chnl_now , bw_mode_now , rf_path , pmccadapriv->mcc_iqk_arr[rf_path].TX_X , pmccadapriv->mcc_iqk_arr[rf_path].TX_Y ); /* transform register value to RX_X & RX_Y */ pmccadapriv->mcc_iqk_arr[rf_path].RX_X = (u16) ((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][2] & 0x000003ff) << 1); pmccadapriv->mcc_iqk_arr[rf_path].RX_Y = (u16) (((pHalData->iqk_reg_backup[RecPosForRetore].reg_backup[rf_path][2] & 0x03ff0000)>>16) << 1); if (1) RTW_INFO(FUNC_ADPT_FMT": central_chnl = %d, bw_mode = %d, rf_path = %d, RX_X = 0x%02x, RX_Y = 0x%02x\n" , FUNC_ADPT_ARG(padapter) , central_chnl_now , bw_mode_now , rf_path , pmccadapriv->mcc_iqk_arr[rf_path].RX_X , pmccadapriv->mcc_iqk_arr[rf_path].RX_Y ); } } } #endif /* CONFIG_MCC_MODE */ u8 SetHwReg8812A(PADAPTER padapter, u8 variable, u8 *pval) { PHAL_DATA_TYPE pHalData; u8 ret = _SUCCESS; u8 val8; u16 val16; u32 val32; pHalData = GET_HAL_DATA(padapter); switch (variable) { case HW_VAR_SET_OPMODE: hw_var_set_opmode(padapter, variable, pval); break; case HW_VAR_BASIC_RATE: { struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info; u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0; u16 rrsr_2g_force_mask = RRSR_CCK_RATES; u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES); u16 rrsr_5g_force_mask = (RRSR_6M); u16 rrsr_5g_allow_mask = (RRSR_OFDM_RATES); HalSetBrateCfg(padapter, pval, &BrateCfg); input_b = BrateCfg; /* apply force and allow mask */ if (pHalData->current_band_type == BAND_ON_2_4G) { BrateCfg |= rrsr_2g_force_mask; BrateCfg &= rrsr_2g_allow_mask; } else { /* 5G */ BrateCfg |= rrsr_5g_force_mask; BrateCfg &= rrsr_5g_allow_mask; } masked = BrateCfg; /* IOT consideration */ if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) { /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */ if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0) BrateCfg |= RRSR_6M; } ioted = BrateCfg; pHalData->BasicRateSet = BrateCfg; RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted); /* Set RRSR rate table. */ rtw_write16(padapter, REG_RRSR, BrateCfg); rtw_write8(padapter, REG_RRSR + 2, rtw_read8(padapter, REG_RRSR + 2) & 0xf0); } break; case HW_VAR_TXPAUSE: rtw_write8(padapter, REG_TXPAUSE, *pval); break; case HW_VAR_SLOT_TIME: rtw_write8(padapter, REG_SLOT, *pval); break; case HW_VAR_RESP_SIFS: /* SIFS_Timer = 0x0a0a0808; */ /* RESP_SIFS for CCK */ rtw_write8(padapter, REG_RESP_SIFS_CCK, pval[0]); /* SIFS_T2T_CCK (0x08) */ rtw_write8(padapter, REG_RESP_SIFS_CCK + 1, pval[1]); /* SIFS_R2T_CCK(0x08) */ /* RESP_SIFS for OFDM */ rtw_write8(padapter, REG_RESP_SIFS_OFDM, pval[2]); /* SIFS_T2T_OFDM (0x0a) */ rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, pval[3]); /* SIFS_R2T_OFDM(0x0a) */ break; case HW_VAR_ACK_PREAMBLE: { u8 bShortPreamble = *pval; /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */ val8 = (pHalData->nCur40MhzPrimeSC) << 5; if (bShortPreamble) val8 |= 0x80; rtw_write8(padapter, REG_RRSR + 2, val8); } break; case HW_VAR_CAM_EMPTY_ENTRY: { u8 ucIndex = *pval; u8 i; u32 ulCommand = 0; u32 ulContent = 0; u32 ulEncAlgo = CAM_AES; for (i = 0; i < CAM_CONTENT_COUNT; i++) { /* filled id in CAM config 2 byte */ if (i == 0) { ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2); /* ulContent |= CAM_VALID; */ } else ulContent = 0; /* polling bit, and No Write enable, and address */ ulCommand = CAM_CONTENT_COUNT * ucIndex + i; ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE; /* write content 0 is equall to mark invalid */ rtw_write32(padapter, WCAMI, ulContent); /* delay_ms(40); */ rtw_write32(padapter, RWCAM, ulCommand); /* delay_ms(40); */ } } break; case HW_VAR_CAM_INVALID_ALL: val32 = BIT(31) | BIT(30); rtw_write32(padapter, RWCAM, val32); break; case HW_VAR_AC_PARAM_VO: rtw_write32(padapter, REG_EDCA_VO_PARAM, *(u32 *)pval); break; case HW_VAR_AC_PARAM_VI: rtw_write32(padapter, REG_EDCA_VI_PARAM, *(u32 *)pval); break; case HW_VAR_AC_PARAM_BE: pHalData->ac_param_be = *(u32 *)pval; rtw_write32(padapter, REG_EDCA_BE_PARAM, *(u32 *)pval); break; case HW_VAR_AC_PARAM_BK: rtw_write32(padapter, REG_EDCA_BK_PARAM, *(u32 *)pval); break; case HW_VAR_ACM_CTRL: { u8 acm_ctrl; u8 AcmCtrl; acm_ctrl = *(u8 *)pval; AcmCtrl = rtw_read8(padapter, REG_ACMHWCTRL); if (acm_ctrl > 1) AcmCtrl = AcmCtrl | 0x1; if (acm_ctrl & BIT(1)) AcmCtrl |= AcmHw_VoqEn; else AcmCtrl &= (~AcmHw_VoqEn); if (acm_ctrl & BIT(2)) AcmCtrl |= AcmHw_ViqEn; else AcmCtrl &= (~AcmHw_ViqEn); if (acm_ctrl & BIT(3)) AcmCtrl |= AcmHw_BeqEn; else AcmCtrl &= (~AcmHw_BeqEn); RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl); rtw_write8(padapter, REG_ACMHWCTRL, AcmCtrl); } break; #ifdef CONFIG_80211N_HT case HW_VAR_AMPDU_FACTOR: { u32 AMPDULen = *(u8 *)pval; if (IS_HARDWARE_TYPE_8812(padapter)) { if (AMPDULen < VHT_AGG_SIZE_128K) AMPDULen = (0x2000 << *(u8 *)pval) - 1; else AMPDULen = 0x1ffff; } else if (IS_HARDWARE_TYPE_8821(padapter)) { if (AMPDULen < HT_AGG_SIZE_64K) AMPDULen = (0x2000 << *(u8 *)pval) - 1; else AMPDULen = 0xffff; } AMPDULen |= BIT(31); rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8812, AMPDULen); } break; #endif /* CONFIG_80211N_HT */ #if 0 case HW_VAR_RXDMA_AGG_PG_TH: rtw_write8(padapter, REG_RXDMA_AGG_PG_TH, *pval); break; #endif case HW_VAR_H2C_FW_PWRMODE: { u8 psmode = *pval; rtl8812_set_FwPwrMode_cmd(padapter, psmode); } break; case HW_VAR_H2C_FW_JOINBSSRPT: rtl8812_set_FwJoinBssReport_cmd(padapter, *pval); break; case HW_VAR_DL_RSVD_PAGE: #ifdef CONFIG_BT_COEXIST if (pHalData->EEPROMBluetoothCoexist == 1) { if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE) rtl8812a_download_BTCoex_AP_mode_rsvd_page(padapter); } #endif /* CONFIG_BT_COEXIST */ break; #ifdef CONFIG_P2P_PS case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: rtl8812_set_p2p_ps_offload_cmd(padapter, *pval); break; #endif /* CONFIG_P2P_PS */ case HW_VAR_EFUSE_USAGE: pHalData->EfuseUsedPercentage = *pval; break; case HW_VAR_EFUSE_BYTES: pHalData->EfuseUsedBytes = *(u16 *)pval; break; case HW_VAR_EFUSE_BT_USAGE: #ifdef HAL_EFUSE_MEMORY pHalData->EfuseHal.BTEfuseUsedPercentage = *pval; #endif break; case HW_VAR_EFUSE_BT_BYTES: #ifdef HAL_EFUSE_MEMORY pHalData->EfuseHal.BTEfuseUsedBytes = *(u16 *)pval; #else BTEfuseUsedBytes = *(u16 *)pval; #endif break; case HW_VAR_FIFO_CLEARN_UP: { struct pwrctrl_priv *pwrpriv; u8 trycnt = 100; pwrpriv = adapter_to_pwrctl(padapter); /* pause tx */ rtw_write8(padapter, REG_TXPAUSE, 0xff); /* keep sn */ padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ); if (pwrpriv->bkeepfwalive != _TRUE) { /* RX DMA stop */ val32 = rtw_read32(padapter, REG_RXPKT_NUM); val32 |= RW_RELEASE_EN; rtw_write32(padapter, REG_RXPKT_NUM, val32); do { val32 = rtw_read32(padapter, REG_RXPKT_NUM); val32 &= RXDMA_IDLE; if (val32) break; } while (--trycnt); if (trycnt == 0) RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n"); /* RQPN Load 0 */ rtw_write16(padapter, REG_RQPN_NPQ, 0x0); rtw_write32(padapter, REG_RQPN, 0x80000000); rtw_mdelay_os(10); } } break; case HW_VAR_RESTORE_HW_SEQ: /* restore Sequence No. */ rtw_write8(padapter, 0x4dc, padapter->xmitpriv.nqos_ssn); break; case HW_VAR_CHECK_TXBUF: { u8 retry_limit; u32 reg_200 = 0, reg_204 = 0; u32 init_reg_200 = 0, init_reg_204 = 0; systime start = rtw_get_current_time(); u32 pass_ms; int i = 0; retry_limit = 0x01; val16 = BIT_SRL(retry_limit) | BIT_LRL(retry_limit); rtw_write16(padapter, REG_RETRY_LIMIT, val16); while (rtw_get_passing_time_ms(start) < 2000 && !RTW_CANNOT_RUN(padapter) ) { reg_200 = rtw_read32(padapter, 0x200); reg_204 = rtw_read32(padapter, 0x204); if (i == 0) { init_reg_200 = reg_200; init_reg_204 = reg_204; } i++; if ((reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) { /* RTW_INFO("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x204=0x%x, 0x200=0x%x (%d)\n", __FUNCTION__, reg_204, reg_200, i); */ rtw_msleep_os(10); } else break; } pass_ms = rtw_get_passing_time_ms(start); if (RTW_CANNOT_RUN(padapter)) ; else if (pass_ms >= 2000 || (reg_200 & 0x00ffffff) != (reg_204 & 0x00ffffff)) { RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms); RTW_PRINT("%s:(HW_VAR_CHECK_TXBUF)0x200=0x%08x, 0x204=0x%08x (0x%08x, 0x%08x)\n", __FUNCTION__, reg_200, reg_204, init_reg_200, init_reg_204); /* rtw_warn_on(1); */ } else RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms); retry_limit = RL_VAL_STA; val16 = BIT_SRL(retry_limit) | BIT_LRL(retry_limit); rtw_write16(padapter, REG_RETRY_LIMIT, val16); } break; case HW_VAR_NAV_UPPER: { u32 usNavUpper = *((u32 *)pval); if (usNavUpper > HAL_NAV_UPPER_UNIT * 0xFF) { RTW_INFO("%s: [HW_VAR_NAV_UPPER] set value(0x%08X us) is larger than (%d * 0xFF)!\n", __FUNCTION__, usNavUpper, HAL_NAV_UPPER_UNIT); break; } /* The value of ((usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT) */ /* is getting the upper integer. */ usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT; rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper); } break; case HW_VAR_BCN_VALID: #ifdef CONFIG_CONCURRENT_MODE if (IS_HARDWARE_TYPE_8821(padapter) && padapter->hw_port == HW_PORT1) { val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2); val8 |= BIT(0); rtw_write8(padapter, REG_DWBCN1_CTRL_8812 + 2, val8); } else #endif { /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */ val8 = rtw_read8(padapter, REG_TDECTRL + 2); val8 |= BIT(0); rtw_write8(padapter, REG_TDECTRL + 2, val8); } break; case HW_VAR_DL_BCN_SEL: #ifdef CONFIG_CONCURRENT_MODE if (IS_HARDWARE_TYPE_8821(padapter) && padapter->hw_port == HW_PORT1) { /* SW_BCN_SEL - Port1 */ val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2); val8 |= BIT(4); rtw_write8(padapter, REG_DWBCN1_CTRL_8812 + 2, val8); } else #endif { /* SW_BCN_SEL - Port0 */ val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2); val8 &= ~BIT(4); rtw_write8(padapter, REG_DWBCN1_CTRL_8812 + 2, val8); } break; case HW_VAR_WIRELESS_MODE: { struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; u8 R2T_SIFS = 0, SIFS_Timer = 0; u8 wireless_mode = *pval; if ((wireless_mode == WIRELESS_11BG) || (wireless_mode == WIRELESS_11G)) SIFS_Timer = 0xa; else SIFS_Timer = 0xe; /* SIFS for OFDM Data ACK */ rtw_write8(padapter, REG_SIFS_CTX + 1, SIFS_Timer); /* SIFS for OFDM consecutive tx like CTS data! */ rtw_write8(padapter, REG_SIFS_TRX + 1, SIFS_Timer); rtw_write8(padapter, REG_SPEC_SIFS + 1, SIFS_Timer); rtw_write8(padapter, REG_MAC_SPEC_SIFS + 1, SIFS_Timer); /* 20100719 Joseph: Revise SIFS setting due to Hardware register definition change. */ rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, SIFS_Timer); rtw_write8(padapter, REG_RESP_SIFS_OFDM, SIFS_Timer); /* */ /* Adjust R2T SIFS for IOT issue. Add by hpfan 2013.01.25 */ /* Set R2T SIFS to 0x0a for Atheros IOT. Add by hpfan 2013.02.22 */ /* */ /* Mac has 10 us delay so use 0xa value is enough. */ R2T_SIFS = 0xa; #ifdef CONFIG_80211AC_VHT if (wireless_mode & WIRELESS_11_5AC && /* MgntLinkStatusQuery(Adapter) && */ TEST_FLAG(pmlmepriv->vhtpriv.ldpc_cap, LDPC_VHT_ENABLE_RX) && TEST_FLAG(pmlmepriv->vhtpriv.stbc_cap, STBC_VHT_ENABLE_RX)) { if (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_ATHEROS) R2T_SIFS = 0x8; else R2T_SIFS = 0xa; } #endif /* CONFIG_80211AC_VHT */ rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, R2T_SIFS); } break; #ifdef CONFIG_BEAMFORMING #if (BEAMFORMING_SUPPORT == 1) /*add by YuChen for PHYDM -TxBF AutoTest HW Timer 8812A*/ case HW_VAR_HW_REG_TIMER_INIT: { HAL_HW_TIMER_TYPE TimerType = (*(PHAL_HW_TIMER_TYPE)pval) >> 16; rtw_write8(padapter, 0x164, 1); if (TimerType == HAL_TIMER_TXBF) rtw_write16(padapter, 0x15C, (*(pu2Byte)pval)); else if (TimerType == HAL_TIMER_EARLYMODE) rtw_write32(padapter, 0x160, 0x05000190); break; } case HW_VAR_HW_REG_TIMER_START: { HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval; if (TimerType == HAL_TIMER_TXBF) rtw_write8(padapter, 0x15F, 0x5); else if (TimerType == HAL_TIMER_EARLYMODE) rtw_write8(padapter, 0x163, 0x5); break; } case HW_VAR_HW_REG_TIMER_RESTART: { HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval & 0xffff; if (TimerType == HAL_TIMER_TXBF) { u4Byte Reg15C = (*(pu4Byte)pval) >> 16 | BIT24 | BIT26; rtw_write8(padapter, 0x15F, 0x0); rtw_write32(padapter, 0x15F, Reg15C); } else if (TimerType == HAL_TIMER_EARLYMODE) { rtw_write8(padapter, 0x163, 0x0); rtw_write8(padapter, 0x163, 0x5); } break; } case HW_VAR_HW_REG_TIMER_STOP: { HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval; if (TimerType == HAL_TIMER_TXBF) rtw_write8(padapter, 0x15F, 0); else if (TimerType == HAL_TIMER_EARLYMODE) rtw_write8(padapter, 0x163, 0x0); break; } #else /*(BEAMFORMING_SUPPORT == 0) - for drv beamforming*/ case HW_VAR_SOUNDING_ENTER: SetBeamformEnter_8812(padapter, *pval); break; case HW_VAR_SOUNDING_LEAVE: SetBeamformLeave_8812(padapter, *pval); break; case HW_VAR_SOUNDING_RATE: rtw_write8(padapter, REG_NDPA_OPT_CTRL_8812A, (MRateToHwRate(pval[1]) << 2 | pval[0])); break; case HW_VAR_SOUNDING_STATUS: SetBeamformStatus_8812(padapter, *pval); break; case HW_VAR_SOUNDING_FW_NDPA: SetBeamformFwTxBF_8812(padapter, *pval); break; case HW_VAR_SOUNDING_CLK: SetBeamformingCLK_8812(padapter); break; #endif #endif/*#ifdef CONFIG_BEAMFORMING*/ #ifdef CONFIG_GPIO_WAKEUP case HW_SET_GPIO_WL_CTRL: { u8 enable = *pval; u8 value = rtw_read8(padapter, 0x4e); if (enable && (value & BIT(6))) { value &= ~BIT(6); rtw_write8(padapter, 0x4e, value); } else if (enable == _FALSE) { value |= BIT(6); rtw_write8(padapter, 0x4e, value); } RTW_INFO("%s: set WL control, 0x4E=0x%02X\n", __func__, rtw_read8(padapter, 0x4e)); } break; #endif case HW_VAR_CH_SW_IQK_INFO_BACKUP: hw_var_backup_IQK_val(padapter, (struct hal_iqk_reg_backup *)pval); break; case HW_VAR_CH_SW_IQK_INFO_RESTORE: switch (*pval) { case CH_SW_USE_CASE_TDLS: #ifdef CONFIG_TDLS #ifdef CONFIG_TDLS_CH_SW hw_var_restore_IQK_val_TDLS(padapter); #endif #endif break; case CH_SW_USE_CASE_MCC: #ifdef CONFIG_MCC_MODE hw_var_restore_IQK_val_MCC(padapter); #endif /* CONFIG_MCC_MODE */ break; } break; #if defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW) case HW_VAR_TDLS_BCN_EARLY_C2H_RPT: rtl8812_set_BcnEarly_C2H_Rpt_cmd(padapter, *pval); break; #endif default: ret = SetHwReg(padapter, variable, pval); break; } return ret; } struct qinfo_8812a { u32 head:8; u32 pkt_num:7; u32 tail:8; u32 ac:2; u32 macid:7; }; struct bcn_qinfo_8812a { u16 head:8; u16 pkt_num:8; }; void dump_qinfo_8812a(void *sel, struct qinfo_8812a *info, const char *tag) { /* if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n" , tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac ); } void dump_bcn_qinfo_8812a(void *sel, struct bcn_qinfo_8812a *info, const char *tag) { /* if (info->pkt_num) */ RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n" , tag ? tag : "", info->head, info->pkt_num ); } void dump_mac_qinfo_8812a(void *sel, _adapter *adapter) { u32 q0_info; u32 q1_info; u32 q2_info; u32 q3_info; u32 q4_info; u32 q5_info; u32 q6_info; u32 q7_info; u32 mg_q_info; u32 hi_q_info; u16 bcn_q_info; q0_info = rtw_read32(adapter, REG_Q0_INFO); q1_info = rtw_read32(adapter, REG_Q1_INFO); q2_info = rtw_read32(adapter, REG_Q2_INFO); q3_info = rtw_read32(adapter, REG_Q3_INFO); q4_info = rtw_read32(adapter, REG_Q4_INFO); q5_info = rtw_read32(adapter, REG_Q5_INFO); q6_info = rtw_read32(adapter, REG_Q6_INFO); q7_info = rtw_read32(adapter, REG_Q7_INFO); mg_q_info = rtw_read32(adapter, REG_MGQ_INFO); hi_q_info = rtw_read32(adapter, REG_HGQ_INFO); bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q0_info, "Q0 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q1_info, "Q1 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q2_info, "Q2 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q3_info, "Q3 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q4_info, "Q4 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q5_info, "Q5 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q6_info, "Q6 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&q7_info, "Q7 "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&mg_q_info, "MG "); dump_qinfo_8812a(sel, (struct qinfo_8812a *)&hi_q_info, "HI "); dump_bcn_qinfo_8812a(sel, (struct bcn_qinfo_8812a *)&bcn_q_info, "BCN "); } static void dump_mac_txfifo_8812a(void *sel, _adapter *adapter) { u32 rqpn, rqpn_npq; u32 hpq, lpq, npq, epq, pubq; rqpn = rtw_read32(adapter, REG_FIFOPAGE); rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ); hpq = (rqpn & 0xFF); lpq = ((rqpn & 0xFF00)>>8); pubq = ((rqpn & 0xFF0000)>>16); npq = ((rqpn_npq & 0xFF00)>>8); epq = ((rqpn_npq & 0xFF000000)>>24); RTW_PRINT_SEL(sel, "Tx: available page num: "); if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq)) RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n"); else { /* 8821A have EPQ, 8812A have no EPQ. */ if (IS_HARDWARE_TYPE_8821(adapter)) RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n" , hpq, lpq, npq, epq, pubq); else RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, PUBQ: %d\n" , hpq, lpq, npq, pubq); } } void rtl8812a_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params) { u8 vo_reg_params[4]; u8 vi_reg_params[4]; u8 be_reg_params[4]; u8 bk_reg_params[4]; GetHwReg8812A(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params); GetHwReg8812A(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params); GetHwReg8812A(adapter, HW_VAR_AC_PARAM_BE, be_reg_params); GetHwReg8812A(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params); vo_params[0] = vo_reg_params[0]; vo_params[1] = vo_reg_params[1] & 0x0F; vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4; vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32; vi_params[0] = vi_reg_params[0]; vi_params[1] = vi_reg_params[1] & 0x0F; vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4; vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32; be_params[0] = be_reg_params[0]; be_params[1] = be_reg_params[1] & 0x0F; be_params[2] = (be_reg_params[1] & 0xF0) >> 4; be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32; bk_params[0] = bk_reg_params[0]; bk_params[1] = bk_reg_params[1] & 0x0F; bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4; bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32; vo_params[1] = (1 << vo_params[1]) - 1; vo_params[2] = (1 << vo_params[2]) - 1; vi_params[1] = (1 << vi_params[1]) - 1; vi_params[2] = (1 << vi_params[2]) - 1; be_params[1] = (1 << be_params[1]) - 1; be_params[2] = (1 << be_params[2]) - 1; bk_params[1] = (1 << bk_params[1]) - 1; bk_params[2] = (1 << bk_params[2]) - 1; } void GetHwReg8812A(PADAPTER padapter, u8 variable, u8 *pval) { PHAL_DATA_TYPE pHalData; u8 val8; u16 val16; u32 val32; pHalData = GET_HAL_DATA(padapter); switch (variable) { case HW_VAR_TXPAUSE: *pval = rtw_read8(padapter, REG_TXPAUSE); break; case HW_VAR_BCN_VALID: #ifdef CONFIG_CONCURRENT_MODE if (IS_HARDWARE_TYPE_8821(padapter) && padapter->hw_port == HW_PORT1) { val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8812 + 2); *pval = (BIT(0) & val8) ? _TRUE : _FALSE; } else #endif { /* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */ val8 = rtw_read8(padapter, REG_TDECTRL + 2); *pval = (BIT(0) & val8) ? _TRUE : _FALSE; } break; case HW_VAR_AC_PARAM_VO: val32 = rtw_read32(padapter, REG_EDCA_VO_PARAM); pval[0] = val32 & 0xFF; pval[1] = (val32 >> 8) & 0xFF; pval[2] = (val32 >> 16) & 0xFF; pval[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_VI: val32 = rtw_read32(padapter, REG_EDCA_VI_PARAM); pval[0] = val32 & 0xFF; pval[1] = (val32 >> 8) & 0xFF; pval[2] = (val32 >> 16) & 0xFF; pval[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BE: val32 = rtw_read32(padapter, REG_EDCA_BE_PARAM); pval[0] = val32 & 0xFF; pval[1] = (val32 >> 8) & 0xFF; pval[2] = (val32 >> 16) & 0xFF; pval[3] = (val32 >> 24) & 0x07; break; case HW_VAR_AC_PARAM_BK: val32 = rtw_read32(padapter, REG_EDCA_BK_PARAM); pval[0] = val32 & 0xFF; pval[1] = (val32 >> 8) & 0xFF; pval[2] = (val32 >> 16) & 0xFF; pval[3] = (val32 >> 24) & 0x07; break; case HW_VAR_EFUSE_BYTES: /* To get EFUE total used bytes, added by Roger, 2008.12.22. */ *(u16 *)pval = pHalData->EfuseUsedBytes; break; case HW_VAR_EFUSE_BT_USAGE: #ifdef HAL_EFUSE_MEMORY *pval = pHalData->EfuseHal.BTEfuseUsedPercentage; #endif break; case HW_VAR_EFUSE_BT_BYTES: #ifdef HAL_EFUSE_MEMORY *((u16 *)pval) = pHalData->EfuseHal.BTEfuseUsedBytes; #else *((u16 *)pval) = BTEfuseUsedBytes; #endif break; case HW_VAR_CHK_HI_QUEUE_EMPTY: val16 = rtw_read16(padapter, REG_TXPKT_EMPTY); *pval = (val16 & BIT(10)) ? _TRUE : _FALSE; break; case HW_VAR_CHK_MGQ_CPU_EMPTY: val16 = rtw_read16(padapter, REG_TXPKT_EMPTY); *pval = (val16 & BIT(8)) ? _TRUE : _FALSE; break; #ifdef CONFIG_WOWLAN case HW_VAR_SYS_CLKR: *pval = rtw_read8(padapter, REG_SYS_CLKR); break; #endif case HW_VAR_DUMP_MAC_QUEUE_INFO: dump_mac_qinfo_8812a(pval, padapter); break; case HW_VAR_DUMP_MAC_TXFIFO: dump_mac_txfifo_8812a(pval, padapter); break; default: GetHwReg(padapter, variable, pval); break; } } /* * Description: * Change default setting of specified variable. */ u8 SetHalDefVar8812A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval) { PHAL_DATA_TYPE pHalData; u8 bResult; pHalData = GET_HAL_DATA(padapter); bResult = _SUCCESS; switch (variable) { default: bResult = SetHalDefVar(padapter, variable, pval); break; } return bResult; } void hal_ra_info_dump(_adapter *padapter , void *sel) { int i; u8 mac_id; u32 cmd; u32 ra_info1, ra_info2, bw_set; u32 rate_mask1, rate_mask2; u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate; struct dvobj_priv *dvobj = adapter_to_dvobj(padapter); struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj); HAL_DATA_TYPE *HalData = GET_HAL_DATA(padapter); for (i = 0; i < macid_ctl->num; i++) { if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) { mac_id = (u8) i; _RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id); cmd = 0x40000100 | mac_id; rtw_write32(padapter, REG_HMEBOX_E2_E3_8812, cmd); rtw_msleep_os(10); ra_info1 = rtw_read32(padapter, REG_RSVD5_8812); curr_tx_sgi = rtw_get_current_tx_sgi(padapter, macid_ctl->sta[mac_id]); curr_tx_rate = rtw_get_current_tx_rate(padapter, macid_ctl->sta[mac_id]); _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d\n", ra_info1, HDATA_RATE(curr_tx_rate), curr_tx_sgi); _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07); cmd = 0x40000400 | mac_id; rtw_write32(padapter, REG_HMEBOX_E2_E3_8812, cmd); rtw_msleep_os(10); ra_info1 = rtw_read32(padapter, REG_RSVD5_8812); ra_info2 = rtw_read32(padapter, REG_RSVD6_8812); rate_mask1 = rtw_read32(padapter, REG_RSVD7_8812); rate_mask2 = rtw_read32(padapter, REG_RSVD8_8812); hight_rate = ra_info2 & 0xFF; lowest_rate = (ra_info2 >> 8) & 0xFF; bw_set = (ra_info1 >> 8) & 0xFF; _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF); switch (bw_set) { case CHANNEL_WIDTH_20: _RTW_PRINT_SEL(sel , "BW_setting=20M\n"); break; case CHANNEL_WIDTH_40: _RTW_PRINT_SEL(sel , "BW_setting=40M\n"); break; case CHANNEL_WIDTH_80: _RTW_PRINT_SEL(sel , "BW_setting=80M\n"); break; case CHANNEL_WIDTH_160: _RTW_PRINT_SEL(sel , "BW_setting=160M\n"); break; default: _RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set); break; } _RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI=%d, DISRA=0x%02x\n", ra_info1, ra_info1 & 0xFF, (ra_info1 >> 16) & 0xFF); _RTW_PRINT_SEL(sel , "[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n", ra_info2, HDATA_RATE(hight_rate), HDATA_RATE(lowest_rate), (ra_info2 >> 16) & 0xFF, (ra_info2 >> 24) & 0xFF); _RTW_PRINT_SEL(sel , "rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1); } } } /* * Description: * Query setting of specified variable. */ u8 GetHalDefVar8812A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval) { PHAL_DATA_TYPE pHalData; u8 bResult; pHalData = GET_HAL_DATA(padapter); bResult = _SUCCESS; switch (variable) { #ifdef CONFIG_ANTENNA_DIVERSITY case HAL_DEF_IS_SUPPORT_ANT_DIV: *((u8 *)pval) = (pHalData->AntDivCfg == 0) ? _FALSE : _TRUE; break; #endif case HAL_DEF_DRVINFO_SZ: *((u32 *)pval) = DRVINFO_SZ; break; case HAL_DEF_MAX_RECVBUF_SZ: *((u32 *)pval) = MAX_RECVBUF_SZ; break; case HAL_DEF_RX_PACKET_OFFSET: *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ * 8; break; case HW_VAR_MAX_RX_AMPDU_FACTOR: *((u32 *)pval) = MAX_AMPDU_FACTOR_64K; break; case HW_VAR_BEST_AMPDU_DENSITY: *((u32 *)pval) = AMPDU_DENSITY_VALUE_7; break; case HAL_DEF_TX_LDPC: if (IS_VENDOR_8812A_C_CUT(padapter)) /* IOT issue, default disable */ *(u8 *)pval = _FALSE; else if (IS_HARDWARE_TYPE_8821(padapter)) *(u8 *)pval = _TRUE; else *(u8 *)pval = _FALSE; break; case HAL_DEF_RX_LDPC: if (IS_VENDOR_8812A_C_CUT(padapter)) /* IOT issue, default disable */ *(u8 *)pval = _FALSE; else if (IS_HARDWARE_TYPE_8821(padapter)) *(u8 *)pval = _FALSE; else *(u8 *)pval = _FALSE; break; case HAL_DEF_TX_STBC: if (pHalData->rf_type == RF_1T2R || pHalData->rf_type == RF_1T1R) *(u8 *)pval = 0; else *(u8 *)pval = 1; break; case HAL_DEF_RX_STBC: *(u8 *)pval = 2; break; case HAL_DEF_EXPLICIT_BEAMFORMER: if (pHalData->rf_type == RF_2T2R) *((PBOOLEAN)pval) = _TRUE; else *((PBOOLEAN)pval) = _FALSE; break; case HAL_DEF_EXPLICIT_BEAMFORMEE: *((PBOOLEAN)pval) = _TRUE; break; case HW_DEF_RA_INFO_DUMP: hal_ra_info_dump(padapter, pval); break; case HAL_DEF_TX_PAGE_SIZE: if (IS_HARDWARE_TYPE_8812(padapter)) *(u32 *)pval = PAGE_SIZE_512; else *(u32 *)pval = PAGE_SIZE_256; break; case HAL_DEF_TX_PAGE_BOUNDARY: if (!padapter->registrypriv.wifi_spec) { if (IS_HARDWARE_TYPE_8812(padapter)) *(u8 *)pval = TX_PAGE_BOUNDARY_8812; else *(u8 *)pval = TX_PAGE_BOUNDARY_8821; } else { if (IS_HARDWARE_TYPE_8812(padapter)) *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8812; else *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8821; } break; case HAL_DEF_TX_PAGE_BOUNDARY_WOWLAN: *(u8 *)pval = TX_PAGE_BOUNDARY_WOWLAN_8812; break; case HAL_DEF_RX_DMA_SZ_WOW: if (IS_HARDWARE_TYPE_8821(padapter)) *(u32 *)pval = MAX_RX_DMA_BUFFER_SIZE_8821 - RESV_FMWF; else *(u32 *)pval = MAX_RX_DMA_BUFFER_SIZE_8812 - RESV_FMWF; break; case HAL_DEF_RX_DMA_SZ: if (IS_HARDWARE_TYPE_8821(padapter)) *(u32 *)pval = RX_DMA_BOUNDARY_8821 + 1; else *(u32 *)pval = RX_DMA_BOUNDARY_8812 + 1; break; case HAL_DEF_RX_PAGE_SIZE: *((u32 *)pval) = 8; break; default: bResult = GetHalDefVar(padapter, variable, pval); break; } return bResult; } #ifdef CONFIG_BT_COEXIST void rtl8812a_combo_card_WifiOnlyHwInit(PADAPTER pdapter) { u8 u1Tmp; RTW_INFO("%s !\n", __FUNCTION__); if (IS_HARDWARE_TYPE_8812(pdapter)) { /* 0x790[5:0]=0x5 */ u1Tmp = rtw_read8(pdapter, 0x790); u1Tmp = (u1Tmp & 0xb0) | 0x05 ; rtw_write8(pdapter, 0x790, u1Tmp); /* PTA parameter */ /* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x6cc, 0x0); */ /* pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c8, 0xffffff); */ /* pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c4, 0x55555555); */ /* pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c0, 0x55555555); */ rtw_write8(pdapter, 0x6cc, 0x0); rtw_write32(pdapter, 0x6c8, 0xffffff); rtw_write32(pdapter, 0x6c4, 0x55555555); rtw_write32(pdapter, 0x6c0, 0x55555555); /* coex parameters */ /* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x778, 0x3); */ rtw_write8(pdapter, 0x778, 0x3); /* enable counter statistics */ /* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x76e, 0xc); */ rtw_write8(pdapter, 0x76e, 0xc); /* enable PTA */ /* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x40, 0x20); */ rtw_write8(pdapter, 0x40, 0x20); /* bt clock related */ /* u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x4); */ /* u1Tmp |= BIT7; */ /* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x4, u1Tmp); */ u1Tmp = rtw_read8(pdapter, 0x4); u1Tmp |= BIT7; rtw_write8(pdapter, 0x4, u1Tmp); /* bt clock related */ /* u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x7); */ /* u1Tmp |= BIT1; */ /* pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x7, u1Tmp); */ u1Tmp = rtw_read8(pdapter, 0x7); u1Tmp |= BIT1; rtw_write8(pdapter, 0x7, u1Tmp); } } #endif /* CONFIG_BT_COEXIST */ void rtl8812_set_hal_ops(struct hal_ops *pHalFunc) { pHalFunc->dm_init = &rtl8812_init_dm_priv; pHalFunc->dm_deinit = &rtl8812_deinit_dm_priv; pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8812A; pHalFunc->read_chip_version = read_chip_version_8812a; pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8812; pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8812; pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8812; pHalFunc->set_tx_power_index_handler = PHY_SetTxPowerIndex_8812A; pHalFunc->get_tx_power_index_handler = PHY_GetTxPowerIndex_8812A; pHalFunc->hal_dm_watchdog = &rtl8812_HalDmWatchDog; pHalFunc->run_thread = &rtl8812_start_thread; pHalFunc->cancel_thread = &rtl8812_stop_thread; pHalFunc->read_bbreg = &PHY_QueryBBReg8812; pHalFunc->write_bbreg = &PHY_SetBBReg8812; pHalFunc->read_rfreg = &PHY_QueryRFReg8812; pHalFunc->write_rfreg = &PHY_SetRFReg8812; pHalFunc->read_wmmedca_reg = &rtl8812a_read_wmmedca_reg; /* Efuse related function */ pHalFunc->EfusePowerSwitch = &rtl8812_EfusePowerSwitch; pHalFunc->ReadEFuse = &rtl8812_ReadEFuse; pHalFunc->EFUSEGetEfuseDefinition = &rtl8812_EFUSE_GetEfuseDefinition; pHalFunc->EfuseGetCurrentSize = &rtl8812_EfuseGetCurrentSize; pHalFunc->Efuse_PgPacketRead = &rtl8812_Efuse_PgPacketRead; pHalFunc->Efuse_PgPacketWrite = &rtl8812_Efuse_PgPacketWrite; pHalFunc->Efuse_WordEnableDataWrite = &rtl8812_Efuse_WordEnableDataWrite; pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT; #ifdef DBG_CONFIG_ERROR_DETECT pHalFunc->sreset_init_value = &sreset_init_value; pHalFunc->sreset_reset_value = &sreset_reset_value; pHalFunc->silentreset = &sreset_reset; pHalFunc->sreset_xmit_status_check = &rtl8812_sreset_xmit_status_check; pHalFunc->sreset_linked_status_check = &rtl8812_sreset_linked_status_check; pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status; pHalFunc->sreset_inprogress = &sreset_inprogress; #endif /* DBG_CONFIG_ERROR_DETECT */ pHalFunc->GetHalODMVarHandler = GetHalODMVar; pHalFunc->SetHalODMVarHandler = SetHalODMVar; pHalFunc->hal_notch_filter = &hal_notch_filter_8812; pHalFunc->c2h_handler = c2h_handler_8812a; pHalFunc->fill_h2c_cmd = &fill_h2c_cmd_8812; pHalFunc->fill_fake_txdesc = &rtl8812a_fill_fake_txdesc; pHalFunc->fw_dl = &FirmwareDownload8812; pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8812; }