/****************************************************************************** * * Copyright(c) 2007 - 2017 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * *****************************************************************************/ #define _RTW_EFUSE_C_ #include #include #include "../hal/efuse/efuse_mask.h" /*------------------------Define local variable------------------------------*/ u8 fakeEfuseBank = {0}; u32 fakeEfuseUsedBytes = {0}; u8 fakeEfuseContent[EFUSE_MAX_HW_SIZE] = {0}; u8 fakeEfuseInitMap[EFUSE_MAX_MAP_LEN] = {0}; u8 fakeEfuseModifiedMap[EFUSE_MAX_MAP_LEN] = {0}; u32 BTEfuseUsedBytes = {0}; u8 BTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE]; u8 BTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0}; u8 BTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0}; u32 fakeBTEfuseUsedBytes = {0}; u8 fakeBTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE]; u8 fakeBTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0}; u8 fakeBTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0}; u8 maskfileBuffer[64]; u8 btmaskfileBuffer[64]; /*------------------------Define local variable------------------------------*/ BOOLEAN rtw_file_efuse_IsMasked(PADAPTER pAdapter, u16 Offset, u8 *maskbuf) { int r = Offset / 16; int c = (Offset % 16) / 2; int result = 0; if (pAdapter->registrypriv.boffefusemask) return FALSE; if (c < 4) /* Upper double word */ result = (maskbuf[r] & (0x10 << c)); else result = (maskbuf[r] & (0x01 << (c - 4))); return (result > 0) ? 0 : 1; } BOOLEAN efuse_IsBT_Masked(PADAPTER pAdapter, u16 Offset) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); if (pAdapter->registrypriv.boffefusemask) return FALSE; #ifdef CONFIG_BT_EFUSE_MASK #ifdef CONFIG_RTL8822C #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8822C(pAdapter)) return (IS_BT_MASKED(8822C, _MUSB, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_PCI_HCI if (IS_HARDWARE_TYPE_8822C(pAdapter)) return (IS_BT_MASKED(8822C, _MPCIE, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_SDIO_HCI if (IS_HARDWARE_TYPE_8822C(pAdapter)) return (IS_BT_MASKED(8822C, _MSDIO, Offset)) ? TRUE : FALSE; #endif #endif /*#ifdef CONFIG_RTL8822C*/ #ifdef CONFIG_RTL8723F #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8723F(pAdapter)) return (IS_BT_MASKED(8723F, _MUSB, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_SDIO_HCI if (IS_HARDWARE_TYPE_8723F(pAdapter)) return (IS_BT_MASKED(8723F, _MSDIO, Offset)) ? TRUE : FALSE; #endif #endif /*#ifdef CONFIG_RTL8723F*/ #endif /* CONFIG_BT_EFUSE_MASK */ return FALSE; } void rtw_bt_efuse_mask_array(PADAPTER pAdapter, u8 *pArray) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); #ifdef CONFIG_BT_EFUSE_MASK #ifdef CONFIG_RTL8822C #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8822CU(pAdapter)) GET_BT_MASK_ARRAY(8822C, _MUSB, pArray); #endif #ifdef CONFIG_PCI_HCI if (IS_HARDWARE_TYPE_8822CE(pAdapter)) GET_BT_MASK_ARRAY(8822C, _MPCIE, pArray); #endif #ifdef CONFIG_SDIO_HCI if (IS_HARDWARE_TYPE_8822CS(pAdapter)) GET_BT_MASK_ARRAY(8822C, _MSDIO, pArray); #endif #endif /*#ifdef CONFIG_RTL8822C*/ #ifdef CONFIG_RTL8723F #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8723FU(pAdapter)) GET_BT_MASK_ARRAY(8723F, _MUSB, pArray); #endif #ifdef CONFIG_SDIO_HCI if (IS_HARDWARE_TYPE_8723FS(pAdapter)) GET_BT_MASK_ARRAY(8723F, _MSDIO, pArray); #endif #endif /*#ifdef CONFIG_RTL8723F*/ #endif /* CONFIG_BT_EFUSE_MASK */ } u16 rtw_get_bt_efuse_mask_arraylen(PADAPTER pAdapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); #ifdef CONFIG_BT_EFUSE_MASK #ifdef CONFIG_RTL8822C #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8822CU(pAdapter)) return GET_BT_MASK_ARRAY_LEN(8822C, _MUSB); #endif #ifdef CONFIG_PCI_HCI if (IS_HARDWARE_TYPE_8822CE(pAdapter)) return GET_BT_MASK_ARRAY_LEN(8822C, _MPCIE); #endif #ifdef CONFIG_SDIO_HCI if (IS_HARDWARE_TYPE_8822CS(pAdapter)) return GET_BT_MASK_ARRAY_LEN(8822C, _MSDIO); #endif #endif /*#ifdef CONFIG_RTL8822C*/ #ifdef CONFIG_RTL8723F #ifdef CONFIG_USB_HCI if (IS_HARDWARE_TYPE_8723FU(pAdapter)) return GET_BT_MASK_ARRAY_LEN(8723F, _MUSB); #endif #ifdef CONFIG_SDIO_HCI if (IS_HARDWARE_TYPE_8723FS(pAdapter)) return GET_BT_MASK_ARRAY_LEN(8723F, _MSDIO); #endif #endif /*CONFIG_RTL8723F*/ #endif /* CONFIG_BT_EFUSE_MASK */ return 0; } BOOLEAN efuse_IsMasked(PADAPTER pAdapter, u16 Offset) { if (pAdapter->registrypriv.boffefusemask) return FALSE; #ifdef CONFIG_USB_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) return (IS_MASKED(8188E, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8812A) if (IS_HARDWARE_TYPE_8812(pAdapter)) return (IS_MASKED(8812A, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8821A) #if 0 if (IS_HARDWARE_TYPE_8811AU(pAdapter)) return (IS_MASKED(8811A, _MUSB, Offset)) ? TRUE : FALSE; #endif if (IS_HARDWARE_TYPE_8821(pAdapter)) return (IS_MASKED(8821A, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192E(pAdapter)) return (IS_MASKED(8192E, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723B(pAdapter)) return (IS_MASKED(8723B, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8703B) if (IS_HARDWARE_TYPE_8703B(pAdapter)) return (IS_MASKED(8703B, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8814A) if (IS_HARDWARE_TYPE_8814A(pAdapter)) return (IS_MASKED(8814A, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8188F) if (IS_HARDWARE_TYPE_8188F(pAdapter)) return (IS_MASKED(8188F, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8188GTV) if (IS_HARDWARE_TYPE_8188GTV(pAdapter)) return (IS_MASKED(8188GTV, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) return (IS_MASKED(8822B, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8723D) if (IS_HARDWARE_TYPE_8723D(pAdapter)) return (IS_MASKED(8723D, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8710B) if (IS_HARDWARE_TYPE_8710B(pAdapter)) return (IS_MASKED(8710B, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CU(pAdapter)) return (IS_MASKED(8821C, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FU(pAdapter)) return (IS_MASKED(8192F, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) return (IS_MASKED(8822C, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8814B) if (IS_HARDWARE_TYPE_8814B(pAdapter)) return (IS_MASKED(8814B, _MUSB, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8723F) if (IS_HARDWARE_TYPE_8723F(pAdapter)) return (IS_MASKED(8723F, _MUSB, Offset)) ? TRUE : FALSE; #endif #endif /*CONFIG_USB_HCI*/ #ifdef CONFIG_PCI_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) return (IS_MASKED(8188E, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192E(pAdapter)) return (IS_MASKED(8192E, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8812A) if (IS_HARDWARE_TYPE_8812(pAdapter)) return (IS_MASKED(8812A, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821(pAdapter)) return (IS_MASKED(8821A, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723B(pAdapter)) return (IS_MASKED(8723B, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8814A) if (IS_HARDWARE_TYPE_8814A(pAdapter)) return (IS_MASKED(8814A, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) return (IS_MASKED(8822B, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CE(pAdapter)) return (IS_MASKED(8821C, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FE(pAdapter)) return (IS_MASKED(8192F, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) return (IS_MASKED(8822C, _MPCIE, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8814B) if (IS_HARDWARE_TYPE_8814B(pAdapter)) return (IS_MASKED(8814B, _MPCIE, Offset)) ? TRUE : FALSE; #endif #endif /*CONFIG_PCI_HCI*/ #ifdef CONFIG_SDIO_HCI #ifdef CONFIG_RTL8188E_SDIO if (IS_HARDWARE_TYPE_8188E(pAdapter)) return (IS_MASKED(8188E, _MSDIO, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_RTL8723B if (IS_HARDWARE_TYPE_8723BS(pAdapter)) return (IS_MASKED(8723B, _MSDIO, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_RTL8188F if (IS_HARDWARE_TYPE_8188F(pAdapter)) return (IS_MASKED(8188F, _MSDIO, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_RTL8188GTV if (IS_HARDWARE_TYPE_8188GTV(pAdapter)) return (IS_MASKED(8188GTV, _MSDIO, Offset)) ? TRUE : FALSE; #endif #ifdef CONFIG_RTL8192E if (IS_HARDWARE_TYPE_8192ES(pAdapter)) return (IS_MASKED(8192E, _MSDIO, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821S(pAdapter)) return (IS_MASKED(8821A, _MSDIO, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CS(pAdapter)) return (IS_MASKED(8821C, _MSDIO, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) return (IS_MASKED(8822B, _MSDIO, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FS(pAdapter)) return (IS_MASKED(8192F, _MSDIO, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) return (IS_MASKED(8822C, _MSDIO, Offset)) ? TRUE : FALSE; #endif #if defined(CONFIG_RTL8723F) if (IS_HARDWARE_TYPE_8723F(pAdapter)) return (IS_MASKED(8723F, _MSDIO, Offset)) ? TRUE : FALSE; #endif #endif /*CONFIG_SDIO_HCI*/ return FALSE; } void rtw_efuse_mask_array(PADAPTER pAdapter, u8 *pArray) { #ifdef CONFIG_USB_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) GET_MASK_ARRAY(8188E, _MUSB, pArray); #endif #if defined(CONFIG_RTL8812A) if (IS_HARDWARE_TYPE_8812(pAdapter)) GET_MASK_ARRAY(8812A, _MUSB, pArray); #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821(pAdapter)) GET_MASK_ARRAY(8821A, _MUSB, pArray); #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192E(pAdapter)) GET_MASK_ARRAY(8192E, _MUSB, pArray); #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723B(pAdapter)) GET_MASK_ARRAY(8723B, _MUSB, pArray); #endif #if defined(CONFIG_RTL8703B) if (IS_HARDWARE_TYPE_8703B(pAdapter)) GET_MASK_ARRAY(8703B, _MUSB, pArray); #endif #if defined(CONFIG_RTL8188F) if (IS_HARDWARE_TYPE_8188F(pAdapter)) GET_MASK_ARRAY(8188F, _MUSB, pArray); #endif #if defined(CONFIG_RTL8188GTV) if (IS_HARDWARE_TYPE_8188GTV(pAdapter)) GET_MASK_ARRAY(8188GTV, _MUSB, pArray); #endif #if defined(CONFIG_RTL8814A) if (IS_HARDWARE_TYPE_8814A(pAdapter)) GET_MASK_ARRAY(8814A, _MUSB, pArray); #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) GET_MASK_ARRAY(8822B, _MUSB, pArray); #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CU(pAdapter)) GET_MASK_ARRAY(8821C, _MUSB, pArray); #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FU(pAdapter)) GET_MASK_ARRAY(8192F, _MUSB, pArray); #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) GET_MASK_ARRAY(8822C, _MUSB, pArray); #endif #if defined(CONFIG_RTL8814B) if (IS_HARDWARE_TYPE_8814B(pAdapter)) GET_MASK_ARRAY(8814B, _MUSB, pArray); #endif #if defined(CONFIG_RTL8723F) if (IS_HARDWARE_TYPE_8723F(pAdapter)) GET_MASK_ARRAY(8723F, _MUSB, pArray); #endif #endif /*CONFIG_USB_HCI*/ #ifdef CONFIG_PCI_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) GET_MASK_ARRAY(8188E, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192E(pAdapter)) GET_MASK_ARRAY(8192E, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8812A) if (IS_HARDWARE_TYPE_8812(pAdapter)) GET_MASK_ARRAY(8812A, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821(pAdapter)) GET_MASK_ARRAY(8821A, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723B(pAdapter)) GET_MASK_ARRAY(8723B, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8814A) if (IS_HARDWARE_TYPE_8814A(pAdapter)) GET_MASK_ARRAY(8814A, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) GET_MASK_ARRAY(8822B, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CE(pAdapter)) GET_MASK_ARRAY(8821C, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FE(pAdapter)) GET_MASK_ARRAY(8192F, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) GET_MASK_ARRAY(8822C, _MPCIE, pArray); #endif #if defined(CONFIG_RTL8814B) if (IS_HARDWARE_TYPE_8814B(pAdapter)) GET_MASK_ARRAY(8814B, _MPCIE, pArray); #endif #endif /*CONFIG_PCI_HCI*/ #ifdef CONFIG_SDIO_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) GET_MASK_ARRAY(8188E, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723BS(pAdapter)) GET_MASK_ARRAY(8723B, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8188F) if (IS_HARDWARE_TYPE_8188F(pAdapter)) GET_MASK_ARRAY(8188F, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8188GTV) if (IS_HARDWARE_TYPE_8188GTV(pAdapter)) GET_MASK_ARRAY(8188GTV, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192ES(pAdapter)) GET_MASK_ARRAY(8192E, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821S(pAdapter)) GET_MASK_ARRAY(8821A, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CS(pAdapter)) GET_MASK_ARRAY(8821C , _MSDIO, pArray); #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) GET_MASK_ARRAY(8822B , _MSDIO, pArray); #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FS(pAdapter)) GET_MASK_ARRAY(8192F, _MSDIO, pArray); #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) GET_MASK_ARRAY(8822C , _MSDIO, pArray); #endif #if defined(CONFIG_RTL8723F) if (IS_HARDWARE_TYPE_8723F(pAdapter)) GET_MASK_ARRAY(8723F, _MSDIO, pArray); #endif #endif /*CONFIG_SDIO_HCI*/ } u16 rtw_get_efuse_mask_arraylen(PADAPTER pAdapter) { #ifdef CONFIG_USB_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) return GET_MASK_ARRAY_LEN(8188E, _MUSB); #endif #if defined(CONFIG_RTL8812A) if (IS_HARDWARE_TYPE_8812(pAdapter)) return GET_MASK_ARRAY_LEN(8812A, _MUSB); #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821(pAdapter)) return GET_MASK_ARRAY_LEN(8821A, _MUSB); #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192E(pAdapter)) return GET_MASK_ARRAY_LEN(8192E, _MUSB); #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723B(pAdapter)) return GET_MASK_ARRAY_LEN(8723B, _MUSB); #endif #if defined(CONFIG_RTL8703B) if (IS_HARDWARE_TYPE_8703B(pAdapter)) return GET_MASK_ARRAY_LEN(8703B, _MUSB); #endif #if defined(CONFIG_RTL8188F) if (IS_HARDWARE_TYPE_8188F(pAdapter)) return GET_MASK_ARRAY_LEN(8188F, _MUSB); #endif #if defined(CONFIG_RTL8188GTV) if (IS_HARDWARE_TYPE_8188GTV(pAdapter)) return GET_MASK_ARRAY_LEN(8188GTV, _MUSB); #endif #if defined(CONFIG_RTL8814A) if (IS_HARDWARE_TYPE_8814A(pAdapter)) return GET_MASK_ARRAY_LEN(8814A, _MUSB); #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) return GET_MASK_ARRAY_LEN(8822B, _MUSB); #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CU(pAdapter)) return GET_MASK_ARRAY_LEN(8821C, _MUSB); #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FU(pAdapter)) return GET_MASK_ARRAY_LEN(8192F, _MUSB); #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) return GET_MASK_ARRAY_LEN(8822C, _MUSB); #endif #if defined(CONFIG_RTL8814B) if (IS_HARDWARE_TYPE_8814B(pAdapter)) { return GET_MASK_ARRAY_LEN(8814B, _MUSB); } #endif #if defined(CONFIG_RTL8723F) if (IS_HARDWARE_TYPE_8723F(pAdapter)) return GET_MASK_ARRAY_LEN(8723F, _MUSB); #endif #endif /*CONFIG_USB_HCI*/ #ifdef CONFIG_PCI_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) return GET_MASK_ARRAY_LEN(8188E, _MPCIE); #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192E(pAdapter)) return GET_MASK_ARRAY_LEN(8192E, _MPCIE); #endif #if defined(CONFIG_RTL8812A) if (IS_HARDWARE_TYPE_8812(pAdapter)) return GET_MASK_ARRAY_LEN(8812A, _MPCIE); #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821(pAdapter)) return GET_MASK_ARRAY_LEN(8821A, _MPCIE); #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723B(pAdapter)) return GET_MASK_ARRAY_LEN(8723B, _MPCIE); #endif #if defined(CONFIG_RTL8814A) if (IS_HARDWARE_TYPE_8814A(pAdapter)) return GET_MASK_ARRAY_LEN(8814A, _MPCIE); #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) return GET_MASK_ARRAY_LEN(8822B, _MPCIE); #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CE(pAdapter)) return GET_MASK_ARRAY_LEN(8821C, _MPCIE); #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FE(pAdapter)) return GET_MASK_ARRAY_LEN(8192F, _MPCIE); #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) return GET_MASK_ARRAY_LEN(8822C, _MPCIE); #endif #if defined(CONFIG_RTL8814B) if (IS_HARDWARE_TYPE_8814B(pAdapter)) return GET_MASK_ARRAY_LEN(8814B, _MPCIE); #endif #endif /*CONFIG_PCI_HCI*/ #ifdef CONFIG_SDIO_HCI #if defined(CONFIG_RTL8188E) if (IS_HARDWARE_TYPE_8188E(pAdapter)) return GET_MASK_ARRAY_LEN(8188E, _MSDIO); #endif #if defined(CONFIG_RTL8723B) if (IS_HARDWARE_TYPE_8723BS(pAdapter)) return GET_MASK_ARRAY_LEN(8723B, _MSDIO); #endif #if defined(CONFIG_RTL8188F) if (IS_HARDWARE_TYPE_8188F(pAdapter)) return GET_MASK_ARRAY_LEN(8188F, _MSDIO); #endif #if defined(CONFIG_RTL8188GTV) if (IS_HARDWARE_TYPE_8188GTV(pAdapter)) return GET_MASK_ARRAY_LEN(8188GTV, _MSDIO); #endif #if defined(CONFIG_RTL8192E) if (IS_HARDWARE_TYPE_8192ES(pAdapter)) return GET_MASK_ARRAY_LEN(8192E, _MSDIO); #endif #if defined(CONFIG_RTL8821A) if (IS_HARDWARE_TYPE_8821S(pAdapter)) return GET_MASK_ARRAY_LEN(8821A, _MSDIO); #endif #if defined(CONFIG_RTL8821C) if (IS_HARDWARE_TYPE_8821CS(pAdapter)) return GET_MASK_ARRAY_LEN(8821C, _MSDIO); #endif #if defined(CONFIG_RTL8822B) if (IS_HARDWARE_TYPE_8822B(pAdapter)) return GET_MASK_ARRAY_LEN(8822B, _MSDIO); #endif #if defined(CONFIG_RTL8192F) if (IS_HARDWARE_TYPE_8192FS(pAdapter)) return GET_MASK_ARRAY_LEN(8192F, _MSDIO); #endif #if defined(CONFIG_RTL8822C) if (IS_HARDWARE_TYPE_8822C(pAdapter)) return GET_MASK_ARRAY_LEN(8822C, _MSDIO); #endif #if defined(CONFIG_RTL8723F) if (IS_HARDWARE_TYPE_8723F(pAdapter)) return GET_MASK_ARRAY_LEN(8723F, _MSDIO); #endif #endif/*CONFIG_SDIO_HCI*/ return 0; } static void rtw_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { u16 i = 0; if (padapter->registrypriv.boffefusemask == 0) { for (i = 0; i < cnts; i++) { if (padapter->registrypriv.bFileMaskEfuse == _TRUE) { if (rtw_file_efuse_IsMasked(padapter, addr + i, maskfileBuffer)) /*use file efuse mask.*/ data[i] = 0xff; else RTW_DBG("data[%x] = %x\n", i, data[i]); } else { if (efuse_IsMasked(padapter, addr + i)) data[i] = 0xff; else RTW_DBG("data[%x] = %x\n", i, data[i]); } } } } u8 rtw_efuse_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { u8 ret = _SUCCESS; u16 mapLen = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE); ret = rtw_efuse_map_read(padapter, addr, cnts , data); rtw_mask_map_read(padapter, addr, cnts , data); return ret; } /* *********************************************************** * Efuse related code * *********************************************************** */ static u8 hal_EfuseSwitchToBank( PADAPTER padapter, u8 bank, u8 bPseudoTest) { u8 bRet = _FALSE; u32 value32 = 0; #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif RTW_INFO("%s: Efuse switch bank to %d\n", __FUNCTION__, bank); if (bPseudoTest) { #ifdef HAL_EFUSE_MEMORY pEfuseHal->fakeEfuseBank = bank; #else fakeEfuseBank = bank; #endif bRet = _TRUE; } else { value32 = rtw_read32(padapter, 0x34); bRet = _TRUE; switch (bank) { case 0: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); break; case 1: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0); break; case 2: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1); break; case 3: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2); break; default: value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); bRet = _FALSE; break; } rtw_write32(padapter, 0x34, value32); } return bRet; } void rtw_efuse_analyze(PADAPTER padapter, u8 Type, u8 Fake) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &(pHalData->EfuseHal); u16 eFuse_Addr = 0; u8 offset, wden; u16 i, j; u8 efuseHeader = 0, efuseExtHdr = 0, efuseData[EFUSE_MAX_WORD_UNIT*2] = {0}, dataCnt = 0; u16 efuseHeader2Byte = 0; u8 *eFuseWord = NULL;// [EFUSE_MAX_SECTION_NUM][EFUSE_MAX_WORD_UNIT]; u8 offset_2_0 = 0; u8 pgSectionCnt = 0; u8 wd_cnt = 0; u8 max_section = 64; u16 mapLen = 0, maprawlen = 0; boolean bExtHeader = _FALSE; u8 efuseType = EFUSE_WIFI; boolean bPseudoTest = _FALSE; u8 bank = 0, startBank = 0, endBank = 1-1; boolean bCheckNextBank = FALSE; u8 protectBytesBank = 0; u16 efuse_max = 0; u8 ParseEfuseExtHdr, ParseEfuseHeader, ParseOffset, ParseWDEN, ParseOffset2_0; eFuseWord = rtw_zmalloc(EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2)); if (eFuseWord == NULL) { RTW_INFO("%s:rtw_zmalloc eFuseWord = NULL !!\n", __func__); return; } RTW_INFO("\n"); if (Type == 0) { if (Fake == 0) { RTW_INFO("\n\tEFUSE_Analyze Wifi Content\n"); efuseType = EFUSE_WIFI; bPseudoTest = FALSE; startBank = 0; endBank = 0; } else { RTW_INFO("\n\tEFUSE_Analyze Wifi Pseudo Content\n"); efuseType = EFUSE_WIFI; bPseudoTest = TRUE; startBank = 0; endBank = 0; } } else { if (Fake == 0) { RTW_INFO("\n\tEFUSE_Analyze BT Content\n"); efuseType = EFUSE_BT; bPseudoTest = FALSE; startBank = 1; endBank = EFUSE_MAX_BANK - 1; } else { RTW_INFO("\n\tEFUSE_Analyze BT Pseudo Content\n"); efuseType = EFUSE_BT; bPseudoTest = TRUE; startBank = 1; endBank = EFUSE_MAX_BANK - 1; if (IS_HARDWARE_TYPE_8821(padapter)) endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/ } } RTW_INFO("\n\r 1Byte header, [7:4]=offset, [3:0]=word enable\n"); RTW_INFO("\n\r 2Byte header, header[7:5]=offset[2:0], header[4:0]=0x0F\n"); RTW_INFO("\n\r 2Byte header, extHeader[7:4]=offset[6:3], extHeader[3:0]=word enable\n"); EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest); EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest); EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_PROTECT_BYTES_BANK, (void *)&protectBytesBank, bPseudoTest); EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, (void *)&efuse_max, bPseudoTest); EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&maprawlen, _FALSE); _rtw_memset(eFuseWord, 0xff, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2)); _rtw_memset(pEfuseHal->fakeEfuseInitMap, 0xff, EFUSE_MAX_MAP_LEN); if (IS_HARDWARE_TYPE_8821(padapter)) endBank = 3 - 1;/*EFUSE_MAX_BANK_8821A - 1;*/ for (bank = startBank; bank <= endBank; bank++) { if (!hal_EfuseSwitchToBank(padapter, bank, bPseudoTest)) { RTW_INFO("EFUSE_SwitchToBank() Fail!!\n"); goto out_free_buffer; } eFuse_Addr = bank * EFUSE_MAX_BANK_SIZE; efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); if (efuseHeader == 0xFF && bank == startBank && Fake != TRUE) { RTW_INFO("Non-PGed Efuse\n"); goto out_free_buffer; } RTW_INFO("EFUSE_REAL_CONTENT_LEN = %d\n", maprawlen); while ((efuseHeader != 0xFF) && ((efuseType == EFUSE_WIFI && (eFuse_Addr < maprawlen)) || (efuseType == EFUSE_BT && (eFuse_Addr < (endBank + 1) * EFUSE_MAX_BANK_SIZE)))) { RTW_INFO("Analyzing: Offset: 0x%X\n", eFuse_Addr); /* Check PG header for section num.*/ if (EXT_HEADER(efuseHeader)) { bExtHeader = TRUE; offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader); efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); if (efuseExtHdr != 0xff) { if (ALL_WORDS_DISABLED(efuseExtHdr)) { /* Read next pg header*/ efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); continue; } else { offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0; wden = (efuseExtHdr & 0x0F); efuseHeader2Byte = (efuseExtHdr<<8)|efuseHeader; RTW_INFO("Find efuseHeader2Byte = 0x%04X, offset=%d, wden=0x%x\n", efuseHeader2Byte, offset, wden); } } else { RTW_INFO("Error, efuse[%d]=0xff, efuseExtHdr=0xff\n", eFuse_Addr-1); break; } } else { offset = ((efuseHeader >> 4) & 0x0f); wden = (efuseHeader & 0x0f); } _rtw_memset(efuseData, '\0', EFUSE_MAX_WORD_UNIT * 2); dataCnt = 0; if (offset < max_section) { for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wden & (0x01<> 8; ParseEfuseHeader = (efuseHeader2Byte & 0xff); ParseOffset2_0 = GET_HDR_OFFSET_2_0(ParseEfuseHeader); ParseOffset = ((ParseEfuseExtHdr & 0xF0) >> 1) | ParseOffset2_0; ParseWDEN = (ParseEfuseExtHdr & 0x0F); RTW_INFO("Header=0x%x, ExtHeader=0x%x, ", ParseEfuseHeader, ParseEfuseExtHdr); } else { ParseEfuseHeader = efuseHeader; ParseOffset = ((ParseEfuseHeader >> 4) & 0x0f); ParseWDEN = (ParseEfuseHeader & 0x0f); RTW_INFO("Header=0x%x, ", ParseEfuseHeader); } RTW_INFO("offset=0x%x(%d), word enable=0x%x\n", ParseOffset, ParseOffset, ParseWDEN); wd_cnt = 0; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { if (!(wden & (0x01 << i))) { RTW_INFO("Map[ %02X ] = %02X %02X\n", ((offset * EFUSE_MAX_WORD_UNIT * 2) + (i * 2)), efuseData[wd_cnt * 2 + 0], efuseData[wd_cnt * 2 + 1]); wd_cnt++; } } pgSectionCnt++; bExtHeader = FALSE; efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); if (efuseHeader == 0xFF) { if ((eFuse_Addr + protectBytesBank) >= efuse_max) bCheckNextBank = TRUE; else bCheckNextBank = FALSE; } } if (!bCheckNextBank) { RTW_INFO("Not need to check next bank, eFuse_Addr=%d, protectBytesBank=%d, efuse_max=%d\n", eFuse_Addr, protectBytesBank, efuse_max); break; } } /* switch bank back to 0 for BT/wifi later use*/ hal_EfuseSwitchToBank(padapter, 0, bPseudoTest); /* 3. Collect 16 sections and 4 word unit into Efuse map.*/ for (i = 0; i < max_section; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { pEfuseHal->fakeEfuseInitMap[(i*8)+(j*2)] = (eFuseWord[(i*8)+(j*2)]); pEfuseHal->fakeEfuseInitMap[(i*8)+((j*2)+1)] = (eFuseWord[(i*8)+((j*2)+1)]); } } RTW_INFO("\n\tEFUSE Analyze Map\n"); i = 0; j = 0; for (i = 0; i < mapLen; i++) { if (i % 16 == 0) { RTW_PRINT_SEL(RTW_DBGDUMP, "0x%03x: ", i); _RTW_PRINT_SEL(RTW_DBGDUMP, "%02X%s" , pEfuseHal->fakeEfuseInitMap[i] , ((i + 1) % 16 == 0) ? "\n" : (((i + 1) % 8 == 0) ? " " : " ") ); } } _RTW_PRINT_SEL(RTW_DBGDUMP, "\n"); out_free_buffer: if (eFuseWord) rtw_mfree((u8 *)eFuseWord, EFUSE_MAX_SECTION_NUM * (EFUSE_MAX_WORD_UNIT * 2)); } void efuse_PreUpdateAction( PADAPTER pAdapter, u32 *BackupRegs) { if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) { /* <20131115, Kordan> Turn off Rx to prevent from being busy when writing the EFUSE. (Asked by Chunchu.)*/ BackupRegs[0] = phy_query_mac_reg(pAdapter, REG_RCR, bMaskDWord); BackupRegs[1] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord); BackupRegs[2] = phy_query_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord); #ifdef CONFIG_RTL8812A BackupRegs[3] = phy_query_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord); #endif PlatformEFIOWrite4Byte(pAdapter, REG_RCR, 0x1); PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0, 0); PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+1, 0); PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+2, 0); PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+3, 0); PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+4, 0); PlatformEFIOWrite1Byte(pAdapter, REG_RXFLTMAP0+5, 0); #ifdef CONFIG_RTL8812A /* <20140410, Kordan> 0x11 = 0x4E, lower down LX_SPS0 voltage. (Asked by Chunchu)*/ phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskByte1, 0x4E); #endif RTW_INFO(" %s , done\n", __func__); } } void efuse_PostUpdateAction( PADAPTER pAdapter, u32 *BackupRegs) { if (IS_HARDWARE_TYPE_8812AU(pAdapter) || IS_HARDWARE_TYPE_8822BU(pAdapter)) { /* <20131115, Kordan> Turn on Rx and restore the registers. (Asked by Chunchu.)*/ phy_set_mac_reg(pAdapter, REG_RCR, bMaskDWord, BackupRegs[0]); phy_set_mac_reg(pAdapter, REG_RXFLTMAP0, bMaskDWord, BackupRegs[1]); phy_set_mac_reg(pAdapter, REG_RXFLTMAP0+4, bMaskDWord, BackupRegs[2]); #ifdef CONFIG_RTL8812A phy_set_mac_reg(pAdapter, REG_AFE_MISC, bMaskDWord, BackupRegs[3]); #endif RTW_INFO(" %s , done\n", __func__); } } #ifdef RTW_HALMAC #include "../../hal/hal_halmac.h" void Efuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate) { } void BTEfuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate) { } u8 efuse_GetCurrentSize(PADAPTER adapter, u16 *size) { *size = 0; return _FAIL; } u16 efuse_GetMaxSize(PADAPTER adapter) { struct dvobj_priv *d; u32 size = 0; int err; d = adapter_to_dvobj(adapter); err = rtw_halmac_get_physical_efuse_size(d, &size); if (err) return 0; return size; } u16 efuse_GetavailableSize(PADAPTER adapter) { struct dvobj_priv *d; u32 size = 0; int err; d = adapter_to_dvobj(adapter); err = rtw_halmac_get_available_efuse_size(d, &size); if (err) return 0; return size; } u8 efuse_bt_GetCurrentSize(PADAPTER adapter, u16 *usesize) { u8 *efuse_map; *usesize = 0; efuse_map = rtw_malloc(EFUSE_BT_MAP_LEN); if (efuse_map == NULL) { RTW_DBG("%s: malloc FAIL\n", __FUNCTION__); return _FAIL; } /* for get bt phy efuse last use byte */ hal_ReadEFuse_BT_logic_map(adapter, 0x00, EFUSE_BT_MAP_LEN, efuse_map); *usesize = fakeBTEfuseUsedBytes; if (efuse_map) rtw_mfree(efuse_map, EFUSE_BT_MAP_LEN); return _SUCCESS; } u16 efuse_bt_GetMaxSize(PADAPTER adapter) { return EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK; } void EFUSE_GetEfuseDefinition(PADAPTER adapter, u8 efusetype, u8 type, void *out, BOOLEAN test) { struct dvobj_priv *d; u32 v32 = 0; d = adapter_to_dvobj(adapter); if (adapter->hal_func.EFUSEGetEfuseDefinition) { adapter->hal_func.EFUSEGetEfuseDefinition(adapter, efusetype, type, out, test); return; } if (EFUSE_WIFI == efusetype) { switch (type) { case TYPE_EFUSE_MAP_LEN: rtw_halmac_get_logical_efuse_size(d, &v32); *(u16 *)out = (u16)v32; return; case TYPE_EFUSE_REAL_CONTENT_LEN: rtw_halmac_get_physical_efuse_size(d, &v32); *(u16 *)out = (u16)v32; return; } } else if (EFUSE_BT == efusetype) { switch (type) { case TYPE_EFUSE_MAP_LEN: *(u16 *)out = EFUSE_BT_MAP_LEN; return; case TYPE_EFUSE_REAL_CONTENT_LEN: *(u16 *)out = EFUSE_BT_REAL_CONTENT_LEN; return; } } } /* * read/write raw efuse data */ u8 rtw_efuse_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data) { struct dvobj_priv *d; u8 *efuse = NULL; u32 size; int err; d = adapter_to_dvobj(adapter); err = rtw_halmac_get_physical_efuse_size(d, &size); if (err){ size = EFUSE_MAX_SIZE; RTW_INFO(" physical_efuse_size err size %d\n", size); } if ((addr + cnts) > size) return _FAIL; if (_TRUE == write) { err = rtw_halmac_write_physical_efuse(d, addr, cnts, data); if (err) return _FAIL; } else { if (cnts > 16) efuse = rtw_zmalloc(size); if (efuse) { err = rtw_halmac_read_physical_efuse_map(d, efuse, size); if (err) { rtw_mfree(efuse, size); return _FAIL; } _rtw_memcpy(data, efuse + addr, cnts); rtw_mfree(efuse, size); } else { err = rtw_halmac_read_physical_efuse(d, addr, cnts, data); if (err) return _FAIL; } } return _SUCCESS; } static inline void dump_buf(u8 *buf, u32 len) { u32 i; RTW_INFO("-----------------Len %d----------------\n", len); for (i = 0; i < len; i++) printk("%2.2x-", *(buf + i)); printk("\n"); } /* * read/write raw efuse data */ u8 rtw_efuse_bt_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data) { struct dvobj_priv *d; u8 *efuse = NULL; u32 size; int err = _FAIL; d = adapter_to_dvobj(adapter); size = EFUSE_BT_REAL_CONTENT_LEN; if ((addr + cnts) > size) return _FAIL; if (_TRUE == write) { err = rtw_halmac_write_bt_physical_efuse(d, addr, cnts, data); if (err == -1) { RTW_ERR("%s: rtw_halmac_write_bt_physical_efuse fail!\n", __FUNCTION__); return _FAIL; } RTW_INFO("%s: rtw_halmac_write_bt_physical_efuse OK! data 0x%x\n", __FUNCTION__, *data); } else { efuse = rtw_zmalloc(size); if (efuse) { err = rtw_halmac_read_bt_physical_efuse_map(d, efuse, size); if (err == -1) { RTW_ERR("%s: rtw_halmac_read_bt_physical_efuse_map fail!\n", __FUNCTION__); rtw_mfree(efuse, size); return _FAIL; } dump_buf(efuse + addr, cnts); _rtw_memcpy(data, efuse + addr, cnts); RTW_INFO("%s: rtw_halmac_read_bt_physical_efuse_map ok! data 0x%x\n", __FUNCTION__, *data); rtw_mfree(efuse, size); } } return _SUCCESS; } u8 rtw_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data) { struct dvobj_priv *d; u8 *efuse = NULL; u32 size, i; int err; u32 backupRegs[4] = {0}; u8 status = _SUCCESS; efuse_PreUpdateAction(adapter, backupRegs); d = adapter_to_dvobj(adapter); err = rtw_halmac_get_logical_efuse_size(d, &size); if (err) { status = _FAIL; RTW_DBG("halmac_get_logical_efuse_size fail\n"); goto exit; } /* size error handle */ if ((addr + cnts) > size) { if (addr < size) cnts = size - addr; else { status = _FAIL; RTW_DBG(" %s() ,addr + cnts) > size fail\n", __func__); goto exit; } } if (cnts > 16) efuse = rtw_zmalloc(size); if (efuse) { err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0); if (err) { rtw_mfree(efuse, size); status = _FAIL; RTW_DBG(" %s() ,halmac_read_logical_efus map fail\n", __func__); goto exit; } _rtw_memcpy(data, efuse + addr, cnts); rtw_mfree(efuse, size); } else { err = rtw_halmac_read_logical_efuse(d, addr, cnts, data); if (err) { status = _FAIL; RTW_DBG(" %s() ,halmac_read_logical_efus data fail\n", __func__); goto exit; } } status = _SUCCESS; exit: efuse_PostUpdateAction(adapter, backupRegs); return status; } u8 rtw_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data) { struct dvobj_priv *d; u8 *efuse = NULL; u32 size; int err; u8 mask_buf[64] = ""; u16 mask_len = sizeof(u8) * rtw_get_efuse_mask_arraylen(adapter); u32 backupRegs[4] = {0}; u8 status = _SUCCESS;; efuse_PreUpdateAction(adapter, backupRegs); d = adapter_to_dvobj(adapter); err = rtw_halmac_get_logical_efuse_size(d, &size); if (err) { status = _FAIL; goto exit; } if ((addr + cnts) > size) { status = _FAIL; goto exit; } efuse = rtw_zmalloc(size); if (!efuse) { status = _FAIL; goto exit; } err = rtw_halmac_read_logical_efuse_map(d, efuse, size, NULL, 0); if (err) { rtw_mfree(efuse, size); status = _FAIL; goto exit; } _rtw_memcpy(efuse + addr, data, cnts); if (adapter->registrypriv.boffefusemask == 0) { RTW_INFO("Use mask Array Len: %d\n", mask_len); if (mask_len != 0) { if (adapter->registrypriv.bFileMaskEfuse == _TRUE) _rtw_memcpy(mask_buf, maskfileBuffer, mask_len); else rtw_efuse_mask_array(adapter, mask_buf); err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, mask_len); } else err = rtw_halmac_write_logical_efuse_map(d, efuse, size, NULL, 0); } else { _rtw_memset(mask_buf, 0xFF, sizeof(mask_buf)); RTW_INFO("Efuse mask off\n"); err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, size/16); } if (err) { rtw_mfree(efuse, size); status = _FAIL; goto exit; } rtw_mfree(efuse, size); status = _SUCCESS; exit : efuse_PostUpdateAction(adapter, backupRegs); return status; } int Efuse_PgPacketRead(PADAPTER adapter, u8 offset, u8 *data, BOOLEAN test) { return _FALSE; } int Efuse_PgPacketWrite(PADAPTER adapter, u8 offset, u8 word_en, u8 *data, BOOLEAN test) { return _FALSE; } static void rtw_bt_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { u16 i = 0; #ifdef CONFIG_BT_EFUSE_MASK if (padapter->registrypriv.boffefusemask == 0) { for (i = 0; i < cnts; i++) { if (padapter->registrypriv.bBTFileMaskEfuse == _TRUE) { if (rtw_file_efuse_IsMasked(padapter, addr + i, btmaskfileBuffer)) /*use BT file efuse mask.*/ data[i] = 0xff; else RTW_INFO("data[%x] = %x\n", i, data[i]); } else { if (efuse_IsBT_Masked(padapter, addr + i)) /*use drv internal efuse mask.*/ data[i] = 0xff; else RTW_INFO("data[%x] = %x\n", i, data[i]); } } } #endif /*CONFIG_BT_EFUSE_MASK*/ } u8 rtw_BT_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data) { hal_ReadEFuse_BT_logic_map(adapter, addr, cnts, data); rtw_bt_mask_map_read(adapter, addr, cnts, data); return _SUCCESS; } static u16 hal_EfuseGetCurrentSize_BT( PADAPTER padapter, u8 bPseudoTest) { #ifdef HAL_EFUSE_MEMORY PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; #endif u16 btusedbytes; u16 efuse_addr; u8 bank, startBank; u8 hoffset = 0, hworden = 0; u8 efuse_data, word_cnts = 0; u16 retU2 = 0; btusedbytes = fakeBTEfuseUsedBytes; efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN)); startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN)); RTW_INFO("%s: start from bank=%d addr=0x%X\n", __FUNCTION__, startBank, efuse_addr); retU2 = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK; for (bank = startBank; bank < 3; bank++) { if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) { RTW_ERR("%s: switch bank(%d) Fail!!\n", __FUNCTION__, bank); /* bank = EFUSE_MAX_BANK; */ break; } /* only when bank is switched we have to reset the efuse_addr. */ if (bank != startBank) efuse_addr = 0; while (AVAILABLE_EFUSE_ADDR(efuse_addr)) { if (rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data) == _FALSE) { RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __FUNCTION__, efuse_addr); /* bank = EFUSE_MAX_BANK; */ break; } RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank); if (efuse_data == 0xFF) break; if (EXT_HEADER(efuse_data)) { hoffset = GET_HDR_OFFSET_2_0(efuse_data); efuse_addr++; rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &efuse_data); RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __FUNCTION__, efuse_addr, efuse_data, bank); if (ALL_WORDS_DISABLED(efuse_data)) { efuse_addr++; continue; } /* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */ hoffset |= ((efuse_data & 0xF0) >> 1); hworden = efuse_data & 0x0F; } else { hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; } RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n", FUNC_ADPT_ARG(padapter), hoffset, hworden); word_cnts = Efuse_CalculateWordCnts(hworden); /* read next header */ efuse_addr += (word_cnts * 2) + 1; } /* Check if we need to check next bank efuse */ if (efuse_addr < retU2) break;/* don't need to check next bank. */ } retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr; fakeBTEfuseUsedBytes = retU2; RTW_INFO("%s: CurrentSize=%d\n", __FUNCTION__, retU2); return retU2; } #ifdef CONFIG_RTL8822C void rtw_pre_bt_efuse(PADAPTER padapter) { char pgdata[4] = {0x72, 0x80, 0x14, 0x90}; /*BT 5M PLL*/ u8 status = 1; u8 bkmask; BOOLEAN bt_en; bkmask = padapter->registrypriv.boffefusemask; padapter->registrypriv.boffefusemask = 1; bt_en = rtw_read8(padapter, 0x6A) & BIT2 ? _TRUE : _FALSE; if (IS_HARDWARE_TYPE_8822C(padapter) && bt_en == _TRUE) { status = rtw_BT_efuse_map_write(padapter, 0x1f8, 4, pgdata); RTW_INFO("%s done!!!\n", __FUNCTION__); } if (status == _FAIL) RTW_INFO("%s: fail\n", __FUNCTION__); padapter->registrypriv.boffefusemask = bkmask; } #endif u8 rtw_BT_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data) { #define RT_ASSERT_RET(expr) \ if (!(expr)) { \ printk("Assertion failed! %s at ......\n", #expr); \ printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \ return _FAIL; \ } u8 offset, word_en; u8 *efuse = NULL; u8 *map; u8 newdata[PGPKT_DATA_SIZE]; s32 i = 0, j = 0, idx = 0, chk_total_byte = 0; u8 ret = _SUCCESS; u16 mapLen = 1024; u16 startAddr = 0; if ((addr + cnts) > mapLen) return _FAIL; RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */ RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */ efuse = rtw_zmalloc(mapLen); if (!efuse) return _FAIL; map = rtw_zmalloc(mapLen); if (map == NULL) { rtw_mfree(efuse, mapLen); return _FAIL; } _rtw_memset(map, 0xFF, mapLen); ret = rtw_BT_efuse_map_read(adapter, 0, mapLen, map); if (ret == _FAIL) goto exit; _rtw_memcpy(efuse , map, mapLen); _rtw_memcpy(efuse + addr, data, cnts); #ifdef CONFIG_BT_EFUSE_MASK if (adapter->registrypriv.boffefusemask == 0) { for (i = 0; i < cnts; i++) { if (adapter->registrypriv.bBTFileMaskEfuse == _TRUE) { if (rtw_file_efuse_IsMasked(adapter, addr + i, btmaskfileBuffer)) /*use file efuse mask. */ efuse[addr + i] = map[addr + i]; } else { if (efuse_IsBT_Masked(adapter, addr + i)) efuse[addr + i] = map[addr + i]; } RTW_INFO("%s , efuse[%x] = %x, map = %x\n", __func__, addr + i, efuse[ addr + i], map[addr + i]); } } #endif /*CONFIG_BT_EFUSE_MASK*/ /* precheck pg efuse data byte*/ chk_total_byte = 0; idx = 0; offset = (addr >> 3); while (idx < cnts) { word_en = 0xF; j = (addr + idx) & 0x7; for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) { if (efuse[addr + idx] != map[addr + idx]) word_en &= ~BIT(i >> 1); } if (word_en != 0xF) { chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2; if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */ chk_total_byte += 2; else chk_total_byte += 1; } offset++; } RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte); startAddr = hal_EfuseGetCurrentSize_BT(adapter, _FALSE); RTW_INFO("%s: startAddr=%#X\n", __func__, startAddr); if (!AVAILABLE_EFUSE_ADDR(startAddr + chk_total_byte)) { RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse BT available offset (0x%X)\n", __func__, startAddr, chk_total_byte, EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK); ret = _FAIL; goto exit; } idx = 0; offset = (addr >> 3); while (idx < cnts) { word_en = 0xF; j = (addr + idx) & 0x7; _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE); for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) { if (efuse[addr + idx] != map[addr + idx]) { word_en &= ~BIT(i >> 1); newdata[i] = efuse[addr + idx]; } } if (word_en != 0xF) { ret = EfusePgPacketWrite_BT(adapter, offset, word_en, newdata, _FALSE); RTW_INFO("offset=%x\n", offset); RTW_INFO("word_en=%x\n", word_en); RTW_INFO("%s: data=", __FUNCTION__); for (i = 0; i < PGPKT_DATA_SIZE; i++) RTW_INFO("0x%02X ", newdata[i]); RTW_INFO("\n"); if (ret == _FAIL) break; } offset++; } exit: if (efuse) rtw_mfree(efuse, mapLen); if (map) rtw_mfree(map, mapLen); return ret; } void hal_ReadEFuse_BT_logic_map( PADAPTER padapter, u16 _offset, u16 _size_byte, u8 *pbuf ) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u8 *efuseTbl, *phyefuse; u8 bank; u16 eFuse_Addr = 0; u8 efuseHeader, efuseExtHdr, efuseData; u8 offset, wden; u16 i, total, used; u8 efuse_usage; /* */ /* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */ /* */ if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) { RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte); return; } efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN); phyefuse = rtw_malloc(EFUSE_BT_REAL_CONTENT_LEN); if (efuseTbl == NULL || phyefuse == NULL) { RTW_INFO("%s: efuseTbl or phyefuse malloc fail!\n", __FUNCTION__); goto exit; } /* 0xff will be efuse default value instead of 0x00. */ _rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN); _rtw_memset(phyefuse, 0xFF, EFUSE_BT_REAL_CONTENT_LEN); if (rtw_efuse_bt_access(padapter, _FALSE, 0, EFUSE_BT_REAL_CONTENT_LEN, phyefuse)) dump_buf(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN); total = BANK_NUM; for (bank = 1; bank <= total; bank++) { /* 8723d Max bake 0~2 */ eFuse_Addr = 0; while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) { /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */ efuseHeader = phyefuse[eFuse_Addr++]; if (efuseHeader == 0xFF) break; RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader); /* Check PG header for section num. */ if (EXT_HEADER(efuseHeader)) { /* extended header */ offset = GET_HDR_OFFSET_2_0(efuseHeader); RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset); /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */ efuseExtHdr = phyefuse[eFuse_Addr++]; RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr); if (ALL_WORDS_DISABLED(efuseExtHdr)) continue; offset |= ((efuseExtHdr & 0xF0) >> 1); wden = (efuseExtHdr & 0x0F); } else { offset = ((efuseHeader >> 4) & 0x0f); wden = (efuseHeader & 0x0f); } if (offset < EFUSE_BT_MAX_SECTION) { u16 addr; /* Get word enable value from PG header */ RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden); addr = offset * PGPKT_DATA_SIZE; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { /* Check word enable condition in the section */ if (!(wden & (0x01 << i))) { efuseData = 0; /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuseData = phyefuse[eFuse_Addr++]; RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData); efuseTbl[addr] = efuseData; efuseData = 0; /* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */ efuseData = phyefuse[eFuse_Addr++]; RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData); efuseTbl[addr + 1] = efuseData; } addr += 2; } } else { RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset); eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2; } } if ((eFuse_Addr - 1) < total) { RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1); break; } } /* switch bank back to bank 0 for later BT and wifi use. */ //hal_EfuseSwitchToBank(padapter, 0, bPseudoTest); /* Copy from Efuse map to output pointer memory!!! */ for (i = 0; i < _size_byte; i++) pbuf[i] = efuseTbl[_offset + i]; /* Calculate Efuse utilization */ total = EFUSE_BT_REAL_BANK_CONTENT_LEN; used = eFuse_Addr - 1; if (total) efuse_usage = (u8)((used * 100) / total); else efuse_usage = 100; fakeBTEfuseUsedBytes = used; RTW_INFO("%s: BTEfuseUsed last Bytes = %#x\n", __FUNCTION__, fakeBTEfuseUsedBytes); exit: if (efuseTbl) rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN); if (phyefuse) rtw_mfree(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN); } static u8 hal_EfusePartialWriteCheck( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; u16 startAddr = 0, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN, efuse_max = EFUSE_BT_REAL_BANK_CONTENT_LEN; u8 efuse_data = 0; startAddr = (u16)fakeBTEfuseUsedBytes; startAddr %= efuse_max; RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr); while (1) { if (startAddr >= efuse_max_available_len) { bRet = _FALSE; RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __FUNCTION__, startAddr, efuse_max_available_len); break; } if (rtw_efuse_bt_access(padapter, _FALSE, startAddr, 1, &efuse_data)&& (efuse_data != 0xFF)) { bRet = _FALSE; RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n", __FUNCTION__, startAddr, efuse_data); break; } else { /* not used header, 0xff */ *pAddr = startAddr; /* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */ bRet = _TRUE; break; } } return bRet; } static u8 hal_EfusePgPacketWrite2ByteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN; u8 pg_header = 0, tmp_header = 0; u8 repeatcnt = 0; /* RTW_INFO("%s\n", __FUNCTION__); */ efuse_addr = *pAddr; if (efuse_addr >= efuse_max_available_len) { RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len); return _FALSE; } pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F; /* RTW_INFO("%s: pg_header=0x%x\n", __FUNCTION__, pg_header); */ do { rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header); rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header); if (tmp_header != 0xFF) break; if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__); return _FALSE; } } while (1); if (tmp_header != pg_header) { RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header); return _FALSE; } /* to write ext_header */ efuse_addr++; pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en; do { rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header); rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header); if (tmp_header != 0xFF) break; if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s: Repeat over limit for ext_header!!\n", __FUNCTION__); return _FALSE; } } while (1); if (tmp_header != pg_header) { /* offset PG fail */ RTW_ERR("%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header); return _FALSE; } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWrite1ByteHeader( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 pg_header = 0, tmp_header = 0; u16 efuse_addr = *pAddr; u8 repeatcnt = 0; /* RTW_INFO("%s\n", __FUNCTION__); */ pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en; do { rtw_efuse_bt_access(pAdapter, _TRUE, efuse_addr, 1, &pg_header); rtw_efuse_bt_access(pAdapter, _FALSE, efuse_addr, 1, &tmp_header); if (tmp_header != 0xFF) break; if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) { RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__); return _FALSE; } } while (1); if (tmp_header != pg_header) { RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header); return _FALSE; } *pAddr = efuse_addr; return _TRUE; } static u8 hal_EfusePgPacketWriteHeader( PADAPTER padapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u8 bRet = _FALSE; if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE) bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest); else bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest); return bRet; } static u8 Hal_EfuseWordEnableDataWrite( PADAPTER padapter, u16 efuse_addr, u8 word_en, u8 *data, u8 bPseudoTest) { u16 tmpaddr = 0; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[PGPKT_DATA_SIZE]; /* RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en); */ _rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE); if (!(word_en & BIT(0))) { tmpaddr = start_addr; rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[0]); rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[1]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[0]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[1]); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT(0)); } if (!(word_en & BIT(1))) { tmpaddr = start_addr; rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[2]); rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[3]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[2]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[3]); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT(1)); } if (!(word_en & BIT(2))) { tmpaddr = start_addr; rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[4]); rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[5]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[4]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[5]); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT(2)); } if (!(word_en & BIT(3))) { tmpaddr = start_addr; rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[6]); rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[7]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[6]); rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[7]); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT(3)); } return badworden; } static void hal_EfuseConstructPGPkt( u8 offset, u8 word_en, u8 *pData, PPGPKT_STRUCT pTargetPkt) { _rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE); pTargetPkt->offset = offset; pTargetPkt->word_en = word_en; efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data); pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en); } static u8 hal_EfusePgPacketWriteData( PADAPTER pAdapter, u8 efuseType, u16 *pAddr, PPGPKT_STRUCT pTargetPkt, u8 bPseudoTest) { u16 efuse_addr; u8 badworden; efuse_addr = *pAddr; badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest); if (badworden != 0x0F) { RTW_INFO("%s: Fail!!\n", __FUNCTION__); return _FALSE; } else RTW_INFO("%s: OK!!\n", __FUNCTION__); return _TRUE; } u8 efuse_OneByteRead(struct _ADAPTER *a, u16 addr, u8 *data, u8 bPseudoTest) { struct dvobj_priv *d; int err; u8 ret = _TRUE; d = adapter_to_dvobj(a); err = rtw_halmac_read_physical_efuse(d, addr, 1, data); if (err) { RTW_ERR("%s: addr=0x%x FAIL!!!\n", __FUNCTION__, addr); ret = _FALSE; } return ret; } static u8 hal_BT_EfusePgCheckAvailableAddr( PADAPTER pAdapter, u8 bPseudoTest) { u16 max_available = EFUSE_BT_REAL_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK; u16 current_size = 0; RTW_INFO("%s: max_available=%d\n", __FUNCTION__, max_available); current_size = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest); if (current_size >= max_available) { RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __FUNCTION__, current_size, max_available); return _FALSE; } return _TRUE; } u8 EfusePgPacketWrite_BT( PADAPTER pAdapter, u8 offset, u8 word_en, u8 *pData, u8 bPseudoTest) { PGPKT_STRUCT targetPkt; u16 startAddr = 0; u8 efuseType = EFUSE_BT; if (!hal_BT_EfusePgCheckAvailableAddr(pAdapter, bPseudoTest)) return _FALSE; hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt); if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest)) return _FALSE; return _TRUE; } #else /* !RTW_HALMAC */ /* ------------------------------------------------------------------------------ */ #define REG_EFUSE_CTRL 0x0030 #define EFUSE_CTRL REG_EFUSE_CTRL /* E-Fuse Control. */ /* ------------------------------------------------------------------------------ */ BOOLEAN Efuse_Read1ByteFromFakeContent( PADAPTER pAdapter, u16 Offset, u8 *Value); BOOLEAN Efuse_Read1ByteFromFakeContent( PADAPTER pAdapter, u16 Offset, u8 *Value) { if (Offset >= EFUSE_MAX_HW_SIZE) return _FALSE; /* DbgPrint("Read fake content, offset = %d\n", Offset); */ if (fakeEfuseBank == 0) *Value = fakeEfuseContent[Offset]; else *Value = fakeBTEfuseContent[fakeEfuseBank - 1][Offset]; return _TRUE; } BOOLEAN Efuse_Write1ByteToFakeContent( PADAPTER pAdapter, u16 Offset, u8 Value); BOOLEAN Efuse_Write1ByteToFakeContent( PADAPTER pAdapter, u16 Offset, u8 Value) { if (Offset >= EFUSE_MAX_HW_SIZE) return _FALSE; if (fakeEfuseBank == 0) fakeEfuseContent[Offset] = Value; else fakeBTEfuseContent[fakeEfuseBank - 1][Offset] = Value; return _TRUE; } /*----------------------------------------------------------------------------- * Function: Efuse_PowerSwitch * * Overview: When we want to enable write operation, we should change to * pwr on state. When we stop write, we should switch to 500k mode * and disable LDO 2.5V. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/17/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ void Efuse_PowerSwitch( PADAPTER pAdapter, u8 bWrite, u8 PwrState) { pAdapter->hal_func.EfusePowerSwitch(pAdapter, bWrite, PwrState); } void BTEfuse_PowerSwitch( PADAPTER pAdapter, u8 bWrite, u8 PwrState) { if (pAdapter->hal_func.BTEfusePowerSwitch) pAdapter->hal_func.BTEfusePowerSwitch(pAdapter, bWrite, PwrState); } /*----------------------------------------------------------------------------- * Function: efuse_GetCurrentSize * * Overview: Get current efuse size!!! * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/16/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ u16 Efuse_GetCurrentSize( PADAPTER pAdapter, u8 efuseType, BOOLEAN bPseudoTest) { u16 ret = 0; ret = pAdapter->hal_func.EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest); return ret; } /* * Description: * Execute E-Fuse read byte operation. * Refered from SD1 Richard. * * Assumption: * 1. Boot from E-Fuse and successfully auto-load. * 2. PASSIVE_LEVEL (USB interface) * * Created by Roger, 2008.10.21. * */ void ReadEFuseByte( PADAPTER Adapter, u16 _offset, u8 *pbuf, BOOLEAN bPseudoTest) { u32 value32; u8 readbyte; u16 retry; /* systime start=rtw_get_current_time(); */ if (bPseudoTest) { Efuse_Read1ByteFromFakeContent(Adapter, _offset, pbuf); return; } if (IS_HARDWARE_TYPE_8723B(Adapter)) { /* <20130121, Kordan> For SMIC S55 EFUSE specificatoin. */ /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */ phy_set_mac_reg(Adapter, EFUSE_TEST, BIT11, 0); } /* Write Address */ rtw_write8(Adapter, EFUSE_CTRL + 1, (_offset & 0xff)); readbyte = rtw_read8(Adapter, EFUSE_CTRL + 2); rtw_write8(Adapter, EFUSE_CTRL + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc)); /* Write bit 32 0 */ readbyte = rtw_read8(Adapter, EFUSE_CTRL + 3); rtw_write8(Adapter, EFUSE_CTRL + 3, (readbyte & 0x7f)); /* Check bit 32 read-ready */ retry = 0; value32 = rtw_read32(Adapter, EFUSE_CTRL); /* while(!(((value32 >> 24) & 0xff) & 0x80) && (retry<10)) */ while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) { value32 = rtw_read32(Adapter, EFUSE_CTRL); retry++; } /* 20100205 Joseph: Add delay suggested by SD1 Victor. */ /* This fix the problem that Efuse read error in high temperature condition. */ /* Designer says that there shall be some delay after ready bit is set, or the */ /* result will always stay on last data we read. */ rtw_udelay_os(50); value32 = rtw_read32(Adapter, EFUSE_CTRL); *pbuf = (u8)(value32 & 0xff); /* RTW_INFO("ReadEFuseByte _offset:%08u, in %d ms\n",_offset ,rtw_get_passing_time_ms(start)); */ } /* * Description: * 1. Execute E-Fuse read byte operation according as map offset and * save to E-Fuse table. * 2. Refered from SD1 Richard. * * Assumption: * 1. Boot from E-Fuse and successfully auto-load. * 2. PASSIVE_LEVEL (USB interface) * * Created by Roger, 2008.10.21. * * 2008/12/12 MH 1. Reorganize code flow and reserve bytes. and add description. * 2. Add efuse utilization collect. * 2008/12/22 MH Read Efuse must check if we write section 1 data again!!! Sec1 * write addr must be after sec5. * */ void efuse_ReadEFuse( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, BOOLEAN bPseudoTest ); void efuse_ReadEFuse( PADAPTER Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, BOOLEAN bPseudoTest ) { Adapter->hal_func.ReadEFuse(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest); } void EFUSE_GetEfuseDefinition( PADAPTER pAdapter, u8 efuseType, u8 type, void *pOut, BOOLEAN bPseudoTest ) { pAdapter->hal_func.EFUSEGetEfuseDefinition(pAdapter, efuseType, type, pOut, bPseudoTest); } /* 11/16/2008 MH Read one byte from real Efuse. */ u8 efuse_OneByteRead( PADAPTER pAdapter, u16 addr, u8 *data, BOOLEAN bPseudoTest) { u32 tmpidx = 0; u8 bResult; u8 readbyte; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); /* RTW_INFO("===> EFUSE_OneByteRead(), addr = %x\n", addr); */ /* RTW_INFO("===> EFUSE_OneByteRead() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */ if (bPseudoTest) { bResult = Efuse_Read1ByteFromFakeContent(pAdapter, addr, data); return bResult; } #ifdef CONFIG_RTL8710B /* <20171208, Peter>, Dont do the following write16(0x34) */ if (IS_HARDWARE_TYPE_8710B(pAdapter)) { bResult = pAdapter->hal_func.efuse_indirect_read4(pAdapter, addr, data); return bResult; } #endif if (IS_HARDWARE_TYPE_8723B(pAdapter) || (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) || (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id)) ) { /* <20130121, Kordan> For SMIC EFUSE specificatoin. */ /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */ /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 0); */ rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11)); } /* -----------------e-fuse reg ctrl --------------------------------- */ /* address */ rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff)); rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) | (rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC)); /* rtw_write8(pAdapter, EFUSE_CTRL+3, 0x72); */ /* read cmd */ /* Write bit 32 0 */ readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3); rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f)); while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) { rtw_mdelay_os(1); tmpidx++; } if (tmpidx < 100) { *data = rtw_read8(pAdapter, EFUSE_CTRL); bResult = _TRUE; } else { *data = 0xff; bResult = _FALSE; RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult); RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL)); } return bResult; } /* 11/16/2008 MH Write one byte to reald Efuse. */ u8 efuse_OneByteWrite( PADAPTER pAdapter, u16 addr, u8 data, BOOLEAN bPseudoTest) { u8 tmpidx = 0; u8 bResult = _FALSE; u32 efuseValue = 0; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter); /* RTW_INFO("===> EFUSE_OneByteWrite(), addr = %x data=%x\n", addr, data); */ /* RTW_INFO("===> EFUSE_OneByteWrite() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */ if (bPseudoTest) { bResult = Efuse_Write1ByteToFakeContent(pAdapter, addr, data); return bResult; } Efuse_PowerSwitch(pAdapter, _TRUE, _TRUE); /* -----------------e-fuse reg ctrl --------------------------------- */ /* address */ efuseValue = rtw_read32(pAdapter, EFUSE_CTRL); efuseValue |= (BIT21 | BIT31); efuseValue &= ~(0x3FFFF); efuseValue |= ((addr << 8 | data) & 0x3FFFF); /* <20130227, Kordan> 8192E MP chip A-cut had better not set 0x34[11] until B-Cut. */ if (IS_HARDWARE_TYPE_8723B(pAdapter) || (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) || (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id)) ) { /* <20130121, Kordan> For SMIC EFUSE specificatoin. */ /* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */ /* phy_set_mac_reg(pAdapter, 0x34, BIT11, 1); */ rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) | (BIT11)); rtw_write32(pAdapter, EFUSE_CTRL, 0x90600000 | ((addr << 8 | data))); } else rtw_write32(pAdapter, EFUSE_CTRL, efuseValue); rtw_mdelay_os(1); while ((0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100)) { rtw_mdelay_os(1); tmpidx++; } if (tmpidx < 100) bResult = _TRUE; else { bResult = _FALSE; RTW_INFO("%s: [ERROR] addr=0x%x ,efuseValue=0x%x ,bResult=%d time out 1s !!!\n", __FUNCTION__, addr, efuseValue, bResult); RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL)); } /* disable Efuse program enable */ if (IS_HARDWARE_TYPE_8723B(pAdapter) || (IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->version_id))) || (IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->version_id)) ) phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT(11), 0); Efuse_PowerSwitch(pAdapter, _TRUE, _FALSE); return bResult; } int Efuse_PgPacketRead(PADAPTER pAdapter, u8 offset, u8 *data, BOOLEAN bPseudoTest) { int ret = 0; ret = pAdapter->hal_func.Efuse_PgPacketRead(pAdapter, offset, data, bPseudoTest); return ret; } int Efuse_PgPacketWrite(PADAPTER pAdapter, u8 offset, u8 word_en, u8 *data, BOOLEAN bPseudoTest) { int ret; ret = pAdapter->hal_func.Efuse_PgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest); return ret; } int Efuse_PgPacketWrite_BT(PADAPTER pAdapter, u8 offset, u8 word_en, u8 *data, BOOLEAN bPseudoTest) { int ret; ret = pAdapter->hal_func.Efuse_PgPacketWrite_BT(pAdapter, offset, word_en, data, bPseudoTest); return ret; } u8 Efuse_WordEnableDataWrite(PADAPTER pAdapter, u16 efuse_addr, u8 word_en, u8 *data, BOOLEAN bPseudoTest) { u8 ret = 0; ret = pAdapter->hal_func.Efuse_WordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest); return ret; } static u8 efuse_read8(PADAPTER padapter, u16 address, u8 *value) { return efuse_OneByteRead(padapter, address, value, _FALSE); } static u8 efuse_write8(PADAPTER padapter, u16 address, u8 *value) { return efuse_OneByteWrite(padapter, address, *value, _FALSE); } /* * read/wirte raw efuse data */ u8 rtw_efuse_access(PADAPTER padapter, u8 bWrite, u16 start_addr, u16 cnts, u8 *data) { int i = 0; u16 real_content_len = 0, max_available_size = 0; u8 res = _FAIL ; u8(*rw8)(PADAPTER, u16, u8 *); u32 backupRegs[4] = {0}; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&real_content_len, _FALSE); EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_available_size, _FALSE); if (start_addr > real_content_len) return _FAIL; if (_TRUE == bWrite) { if ((start_addr + cnts) > max_available_size) return _FAIL; rw8 = &efuse_write8; } else rw8 = &efuse_read8; efuse_PreUpdateAction(padapter, backupRegs); Efuse_PowerSwitch(padapter, bWrite, _TRUE); /* e-fuse one byte read / write */ for (i = 0; i < cnts; i++) { if (start_addr >= real_content_len) { res = _FAIL; break; } res = rw8(padapter, start_addr++, data++); if (_FAIL == res) break; } Efuse_PowerSwitch(padapter, bWrite, _FALSE); efuse_PostUpdateAction(padapter, backupRegs); return res; } /* ------------------------------------------------------------------------------ */ u16 efuse_GetMaxSize(PADAPTER padapter) { u16 max_size; max_size = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_size, _FALSE); return max_size; } /* ------------------------------------------------------------------------------ */ u8 efuse_GetCurrentSize(PADAPTER padapter, u16 *size) { Efuse_PowerSwitch(padapter, _FALSE, _TRUE); *size = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE); Efuse_PowerSwitch(padapter, _FALSE, _FALSE); return _SUCCESS; } /* ------------------------------------------------------------------------------ */ u16 efuse_bt_GetMaxSize(PADAPTER padapter) { u16 max_size; max_size = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_BT , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (void *)&max_size, _FALSE); return max_size; } u8 efuse_bt_GetCurrentSize(PADAPTER padapter, u16 *size) { Efuse_PowerSwitch(padapter, _FALSE, _TRUE); *size = Efuse_GetCurrentSize(padapter, EFUSE_BT, _FALSE); Efuse_PowerSwitch(padapter, _FALSE, _FALSE); return _SUCCESS; } u8 rtw_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { u16 mapLen = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE); if ((addr + cnts) > mapLen) return _FAIL; Efuse_PowerSwitch(padapter, _FALSE, _TRUE); efuse_ReadEFuse(padapter, EFUSE_WIFI, addr, cnts, data, _FALSE); Efuse_PowerSwitch(padapter, _FALSE, _FALSE); return _SUCCESS; } u8 rtw_BT_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { u16 mapLen = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE); if ((addr + cnts) > mapLen) return _FAIL; Efuse_PowerSwitch(padapter, _FALSE, _TRUE); efuse_ReadEFuse(padapter, EFUSE_BT, addr, cnts, data, _FALSE); Efuse_PowerSwitch(padapter, _FALSE, _FALSE); return _SUCCESS; } /* ------------------------------------------------------------------------------ */ u8 rtw_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { #define RT_ASSERT_RET(expr) \ if (!(expr)) { \ printk("Assertion failed! %s at ......\n", #expr); \ printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \ return _FAIL; \ } u8 *efuse = NULL; u8 offset, word_en; u8 *map = NULL; u8 newdata[PGPKT_DATA_SIZE]; s32 i, j, idx, chk_total_byte; u8 ret = _SUCCESS; u16 mapLen = 0, startAddr = 0, efuse_max_available_len = 0; u32 backupRegs[4] = {0}; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE); EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, _FALSE); if ((addr + cnts) > mapLen) return _FAIL; RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */ RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */ efuse = rtw_zmalloc(mapLen); if (!efuse) return _FAIL; map = rtw_zmalloc(mapLen); if (map == NULL) { rtw_mfree(efuse, mapLen); return _FAIL; } _rtw_memset(map, 0xFF, mapLen); ret = rtw_efuse_map_read(padapter, 0, mapLen, map); if (ret == _FAIL) goto exit; _rtw_memcpy(efuse , map, mapLen); _rtw_memcpy(efuse + addr, data, cnts); if (padapter->registrypriv.boffefusemask == 0) { for (i = 0; i < cnts; i++) { if (padapter->registrypriv.bFileMaskEfuse == _TRUE) { if (rtw_file_efuse_IsMasked(padapter, addr + i, maskfileBuffer)) /*use file efuse mask. */ efuse[addr + i] = map[addr + i]; } else { if (efuse_IsMasked(padapter, addr + i)) efuse[addr + i] = map[addr + i]; } RTW_INFO("%s , data[%d] = %x, map[addr+i]= %x\n", __func__, addr + i, efuse[ addr + i], map[addr + i]); } } /*Efuse_PowerSwitch(padapter, _TRUE, _TRUE);*/ chk_total_byte = 0; idx = 0; offset = (addr >> 3); while (idx < cnts) { word_en = 0xF; j = (addr + idx) & 0x7; for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) { if (efuse[addr + idx] != map[addr + idx]) word_en &= ~BIT(i >> 1); } if (word_en != 0xF) { chk_total_byte += Efuse_CalculateWordCnts(word_en) * 2; if (offset >= EFUSE_MAX_SECTION_BASE) /* Over EFUSE_MAX_SECTION 16 for 2 ByteHeader */ chk_total_byte += 2; else chk_total_byte += 1; } offset++; } RTW_INFO("Total PG bytes Count = %d\n", chk_total_byte); rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr); if (startAddr == 0) { startAddr = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE); RTW_INFO("%s: Efuse_GetCurrentSize startAddr=%#X\n", __func__, startAddr); } RTW_DBG("%s: startAddr=%#X\n", __func__, startAddr); if ((startAddr + chk_total_byte) >= efuse_max_available_len) { RTW_INFO("%s: startAddr(0x%X) + PG data len %d >= efuse_max_available_len(0x%X)\n", __func__, startAddr, chk_total_byte, efuse_max_available_len); ret = _FAIL; goto exit; } efuse_PreUpdateAction(padapter, backupRegs); idx = 0; offset = (addr >> 3); while (idx < cnts) { word_en = 0xF; j = (addr + idx) & 0x7; _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE); for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) { if (efuse[addr + idx] != map[addr + idx]) { word_en &= ~BIT(i >> 1); newdata[i] = efuse[addr + idx]; #ifdef CONFIG_RTL8723B if (addr + idx == 0x8) { if (IS_C_CUT(pHalData->version_id) || IS_B_CUT(pHalData->version_id)) { if (pHalData->adjuseVoltageVal == 6) { newdata[i] = map[addr + idx]; RTW_INFO(" %s ,\n adjuseVoltageVal = %d ,newdata[%d] = %x\n", __func__, pHalData->adjuseVoltageVal, i, newdata[i]); } } } #endif } } if (word_en != 0xF) { ret = Efuse_PgPacketWrite(padapter, offset, word_en, newdata, _FALSE); RTW_INFO("offset=%x\n", offset); RTW_INFO("word_en=%x\n", word_en); for (i = 0; i < PGPKT_DATA_SIZE; i++) RTW_INFO("data=%x \t", newdata[i]); if (ret == _FAIL) break; } offset++; } /*Efuse_PowerSwitch(padapter, _TRUE, _FALSE);*/ efuse_PostUpdateAction(padapter, backupRegs); exit: rtw_mfree(map, mapLen); rtw_mfree(efuse, mapLen); return ret; } u8 rtw_BT_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data) { #define RT_ASSERT_RET(expr) \ if (!(expr)) { \ printk("Assertion failed! %s at ......\n", #expr); \ printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \ return _FAIL; \ } u8 offset, word_en; u8 *map; u8 newdata[PGPKT_DATA_SIZE]; s32 i = 0, j = 0, idx; u8 ret = _SUCCESS; u16 mapLen = 0; EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, _FALSE); if ((addr + cnts) > mapLen) return _FAIL; RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */ RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */ map = rtw_zmalloc(mapLen); if (map == NULL) return _FAIL; ret = rtw_BT_efuse_map_read(padapter, 0, mapLen, map); if (ret == _FAIL) goto exit; RTW_INFO("OFFSET\tVALUE(hex)\n"); for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */ RTW_INFO("0x%03x\t", i); for (j = 0; j < 8; j++) RTW_INFO("%02X ", map[i + j]); RTW_INFO("\t"); for (; j < 16; j++) RTW_INFO("%02X ", map[i + j]); RTW_INFO("\n"); } RTW_INFO("\n"); Efuse_PowerSwitch(padapter, _TRUE, _TRUE); idx = 0; offset = (addr >> 3); while (idx < cnts) { word_en = 0xF; j = (addr + idx) & 0x7; _rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE); for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) { if (data[idx] != map[addr + idx]) { word_en &= ~BIT(i >> 1); newdata[i] = data[idx]; } } if (word_en != 0xF) { RTW_INFO("offset=%x\n", offset); RTW_INFO("word_en=%x\n", word_en); RTW_INFO("%s: data=", __FUNCTION__); for (i = 0; i < PGPKT_DATA_SIZE; i++) RTW_INFO("0x%02X ", newdata[i]); RTW_INFO("\n"); ret = Efuse_PgPacketWrite_BT(padapter, offset, word_en, newdata, _FALSE); if (ret == _FAIL) break; } offset++; } Efuse_PowerSwitch(padapter, _TRUE, _FALSE); exit: rtw_mfree(map, mapLen); return ret; } /*----------------------------------------------------------------------------- * Function: Efuse_ReadAllMap * * Overview: Read All Efuse content * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/11/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ void Efuse_ReadAllMap( PADAPTER pAdapter, u8 efuseType, u8 *Efuse, BOOLEAN bPseudoTest); void Efuse_ReadAllMap( PADAPTER pAdapter, u8 efuseType, u8 *Efuse, BOOLEAN bPseudoTest) { u16 mapLen = 0; Efuse_PowerSwitch(pAdapter, _FALSE, _TRUE); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest); efuse_ReadEFuse(pAdapter, efuseType, 0, mapLen, Efuse, bPseudoTest); Efuse_PowerSwitch(pAdapter, _FALSE, _FALSE); } /*----------------------------------------------------------------------------- * Function: efuse_ShadowWrite1Byte * efuse_ShadowWrite2Byte * efuse_ShadowWrite4Byte * * Overview: Write efuse modify map by one/two/four byte. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/12/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ #ifdef PLATFORM static void efuse_ShadowWrite1Byte( PADAPTER pAdapter, u16 Offset, u8 Value); #endif /* PLATFORM */ static void efuse_ShadowWrite1Byte( PADAPTER pAdapter, u16 Offset, u8 Value) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); pHalData->efuse_eeprom_data[Offset] = Value; } /* efuse_ShadowWrite1Byte */ /* ---------------Write Two Bytes */ static void efuse_ShadowWrite2Byte( PADAPTER pAdapter, u16 Offset, u16 Value) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); pHalData->efuse_eeprom_data[Offset] = Value & 0x00FF; pHalData->efuse_eeprom_data[Offset + 1] = Value >> 8; } /* efuse_ShadowWrite1Byte */ /* ---------------Write Four Bytes */ static void efuse_ShadowWrite4Byte( PADAPTER pAdapter, u16 Offset, u32 Value) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); pHalData->efuse_eeprom_data[Offset] = (u8)(Value & 0x000000FF); pHalData->efuse_eeprom_data[Offset + 1] = (u8)((Value >> 8) & 0x0000FF); pHalData->efuse_eeprom_data[Offset + 2] = (u8)((Value >> 16) & 0x00FF); pHalData->efuse_eeprom_data[Offset + 3] = (u8)((Value >> 24) & 0xFF); } /* efuse_ShadowWrite1Byte */ /*----------------------------------------------------------------------------- * Function: EFUSE_ShadowWrite * * Overview: Write efuse modify map for later update operation to use!!!!! * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/12/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ void EFUSE_ShadowWrite( PADAPTER pAdapter, u8 Type, u16 Offset, u32 Value); void EFUSE_ShadowWrite( PADAPTER pAdapter, u8 Type, u16 Offset, u32 Value) { #if (MP_DRIVER == 0) return; #endif if (pAdapter->registrypriv.mp_mode == 0) return; if (Type == 1) efuse_ShadowWrite1Byte(pAdapter, Offset, (u8)Value); else if (Type == 2) efuse_ShadowWrite2Byte(pAdapter, Offset, (u16)Value); else if (Type == 4) efuse_ShadowWrite4Byte(pAdapter, Offset, (u32)Value); } /* EFUSE_ShadowWrite */ #endif /* !RTW_HALMAC */ /*----------------------------------------------------------------------------- * Function: efuse_ShadowRead1Byte * efuse_ShadowRead2Byte * efuse_ShadowRead4Byte * * Overview: Read from efuse init map by one/two/four bytes !!!!! * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/12/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ static void efuse_ShadowRead1Byte( PADAPTER pAdapter, u16 Offset, u8 *Value) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); *Value = pHalData->efuse_eeprom_data[Offset]; } /* EFUSE_ShadowRead1Byte */ /* ---------------Read Two Bytes */ static void efuse_ShadowRead2Byte( PADAPTER pAdapter, u16 Offset, u16 *Value) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); *Value = pHalData->efuse_eeprom_data[Offset]; *Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8; } /* EFUSE_ShadowRead2Byte */ /* ---------------Read Four Bytes */ static void efuse_ShadowRead4Byte( PADAPTER pAdapter, u16 Offset, u32 *Value) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); *Value = pHalData->efuse_eeprom_data[Offset]; *Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8; *Value |= pHalData->efuse_eeprom_data[Offset + 2] << 16; *Value |= pHalData->efuse_eeprom_data[Offset + 3] << 24; } /* efuse_ShadowRead4Byte */ /*----------------------------------------------------------------------------- * Function: EFUSE_ShadowRead * * Overview: Read from pHalData->efuse_eeprom_data *---------------------------------------------------------------------------*/ void EFUSE_ShadowRead( PADAPTER pAdapter, u8 Type, u16 Offset, u32 *Value) { if (Type == 1) efuse_ShadowRead1Byte(pAdapter, Offset, (u8 *)Value); else if (Type == 2) efuse_ShadowRead2Byte(pAdapter, Offset, (u16 *)Value); else if (Type == 4) efuse_ShadowRead4Byte(pAdapter, Offset, (u32 *)Value); } /* EFUSE_ShadowRead */ /* 11/16/2008 MH Add description. Get current efuse area enabled word!!. */ u8 Efuse_CalculateWordCnts(u8 word_en) { u8 word_cnts = 0; if (!(word_en & BIT(0))) word_cnts++; /* 0 : write enable */ if (!(word_en & BIT(1))) word_cnts++; if (!(word_en & BIT(2))) word_cnts++; if (!(word_en & BIT(3))) word_cnts++; return word_cnts; } /*----------------------------------------------------------------------------- * Function: efuse_WordEnableDataRead * * Overview: Read allowed word in current efuse section data. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/16/2008 MHC Create Version 0. * 11/21/2008 MHC Fix Write bug when we only enable late word. * *---------------------------------------------------------------------------*/ void efuse_WordEnableDataRead(u8 word_en, u8 *sourdata, u8 *targetdata) { if (!(word_en & BIT(0))) { targetdata[0] = sourdata[0]; targetdata[1] = sourdata[1]; } if (!(word_en & BIT(1))) { targetdata[2] = sourdata[2]; targetdata[3] = sourdata[3]; } if (!(word_en & BIT(2))) { targetdata[4] = sourdata[4]; targetdata[5] = sourdata[5]; } if (!(word_en & BIT(3))) { targetdata[6] = sourdata[6]; targetdata[7] = sourdata[7]; } } /*----------------------------------------------------------------------------- * Function: EFUSE_ShadowMapUpdate * * Overview: Transfer current EFUSE content to shadow init and modify map. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 11/13/2008 MHC Create Version 0. * *---------------------------------------------------------------------------*/ void EFUSE_ShadowMapUpdate( PADAPTER pAdapter, u8 efuseType, BOOLEAN bPseudoTest) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter); u16 mapLen = 0; #ifdef RTW_HALMAC u8 *efuse_map = NULL; int err; mapLen = EEPROM_MAX_SIZE; efuse_map = pHalData->efuse_eeprom_data; /* efuse default content is 0xFF */ _rtw_memset(efuse_map, 0xFF, EEPROM_MAX_SIZE); EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest); if (!mapLen) { RTW_WARN("%s: fail to get efuse size!\n", __FUNCTION__); mapLen = EEPROM_MAX_SIZE; } if (mapLen > EEPROM_MAX_SIZE) { RTW_WARN("%s: size of efuse data(%d) is large than expected(%d)!\n", __FUNCTION__, mapLen, EEPROM_MAX_SIZE); mapLen = EEPROM_MAX_SIZE; } if (pHalData->bautoload_fail_flag == _FALSE) { err = rtw_halmac_read_logical_efuse_map(adapter_to_dvobj(pAdapter), efuse_map, mapLen, NULL, 0); if (err) RTW_ERR("%s: fail to get efuse map!\n", __FUNCTION__); } #else /* !RTW_HALMAC */ EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (void *)&mapLen, bPseudoTest); if (pHalData->bautoload_fail_flag == _TRUE) _rtw_memset(pHalData->efuse_eeprom_data, 0xFF, mapLen); else { #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE if (_SUCCESS != retriveAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data)) { #endif Efuse_ReadAllMap(pAdapter, efuseType, pHalData->efuse_eeprom_data, bPseudoTest); #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE storeAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data); } #endif } /* PlatformMoveMemory((void *)&pHalData->EfuseMap[EFUSE_MODIFY_MAP][0], */ /* (void *)&pHalData->EfuseMap[EFUSE_INIT_MAP][0], mapLen); */ #endif /* !RTW_HALMAC */ #ifdef CONFIG_MP_INCLUDED if (rtw_mp_mode_check(pAdapter)) { PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal; if (GET_EFUSE_UPDATE_ON(pAdapter)) _rtw_memcpy(pHalData->efuse_eeprom_data, pEfuseHal->fakeEfuseModifiedMap, mapLen); } #endif rtw_mask_map_read(pAdapter, 0x00, mapLen, pHalData->efuse_eeprom_data); rtw_dump_cur_efuse(pAdapter); } /* EFUSE_ShadowMapUpdate */ const u8 _mac_hidden_max_bw_to_hal_bw_cap[MAC_HIDDEN_MAX_BW_NUM] = { 0, 0, (BW_CAP_160M | BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M), (BW_CAP_5M), (BW_CAP_10M | BW_CAP_5M), (BW_CAP_20M | BW_CAP_10M | BW_CAP_5M), (BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M), (BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M), }; const u8 _mac_hidden_proto_to_hal_proto_cap[MAC_HIDDEN_PROTOCOL_NUM] = { 0, 0, (PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B), (PROTO_CAP_11AC | PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B), }; u8 mac_hidden_wl_func_to_hal_wl_func(u8 func) { u8 wl_func = 0; if (func & BIT0) wl_func |= WL_FUNC_MIRACAST; if (func & BIT1) wl_func |= WL_FUNC_P2P; if (func & BIT2) wl_func |= WL_FUNC_TDLS; if (func & BIT3) wl_func |= WL_FUNC_FTM; return wl_func; } #ifdef PLATFORM_LINUX #ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE /* #include */ int isAdaptorInfoFileValid(void) { return _TRUE; } int storeAdaptorInfoFile(char *path, u8 *efuse_data) { int ret = _SUCCESS; if (path && efuse_data) { ret = rtw_store_to_file(path, efuse_data, EEPROM_MAX_SIZE_512); if (ret == EEPROM_MAX_SIZE) ret = _SUCCESS; else ret = _FAIL; } else { RTW_INFO("%s NULL pointer\n", __FUNCTION__); ret = _FAIL; } return ret; } int retriveAdaptorInfoFile(char *path, u8 *efuse_data) { int ret = _SUCCESS; mm_segment_t oldfs; struct file *fp; if (path && efuse_data) { ret = rtw_retrieve_from_file(path, efuse_data, EEPROM_MAX_SIZE); if (ret == EEPROM_MAX_SIZE) ret = _SUCCESS; else ret = _FAIL; #if 0 if (isAdaptorInfoFileValid()) return 0; else return _FAIL; #endif } else { RTW_INFO("%s NULL pointer\n", __FUNCTION__); ret = _FAIL; } return ret; } #endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */ u8 rtw_efuse_file_read(PADAPTER padapter, u8 *filepath, u8 *buf, u32 len) { char *ptmpbuf = NULL, *ptr; u8 val8; u32 count, i, j; int err; u32 bufsize = 4096; ptmpbuf = rtw_zmalloc(bufsize); if (ptmpbuf == NULL) return _FALSE; count = rtw_retrieve_from_file(filepath, ptmpbuf, bufsize); if (count <= 90) { rtw_mfree(ptmpbuf, bufsize); RTW_ERR("%s, filepatch %s, size=%d, FAIL!!\n", __FUNCTION__, filepath, count); return _FALSE; } i = 0; j = 0; ptr = ptmpbuf; while ((j < len) && (i < count)) { if (ptmpbuf[i] == '\0') break; ptr = strpbrk(&ptmpbuf[i], " \t\n\r"); if (ptr) { if (ptr == &ptmpbuf[i]) { i++; continue; } /* Add string terminating null */ *ptr = 0; } else { ptr = &ptmpbuf[count-1]; } err = sscanf(&ptmpbuf[i], "%hhx", &val8); if (err != 1) { RTW_WARN("Something wrong to parse efuse file, string=%s\n", &ptmpbuf[i]); } else { buf[j] = val8; RTW_DBG("i=%d, j=%d, 0x%02x\n", i, j, buf[j]); j++; } i = ptr - ptmpbuf + 1; } rtw_mfree(ptmpbuf, bufsize); RTW_INFO("%s, filepatch %s, size=%d, done\n", __FUNCTION__, filepath, count); return _TRUE; } u8 rtw_efuse_file_store(PADAPTER padapter, u8 *filepath, u8 *buf, u32 len) { int err = 0, i = 0, j = 0, mapLen = 0 ; char *cbuf, *pchr; cbuf = rtw_zmalloc(len * 3); pchr = cbuf; if (filepath && buf) { if (cbuf == NULL) { RTW_INFO("%s, malloc cbuf _FAIL\n", __FUNCTION__); err = _FAIL; } else { for (i = 0; i <= len; i += 16) { for (j = 0; j < 16; j++) pchr += sprintf(pchr, "%02X ", buf[i + j]); pchr += sprintf(pchr, "\n"); } err = rtw_store_to_file(filepath, cbuf, strlen(cbuf)); RTW_INFO("%s, rtw_store_to_file len=%d,err =%d, len(cbuf)=%zd\n", __FUNCTION__, len, err, strlen(cbuf)); if (err == strlen(cbuf)) { err = _SUCCESS; RTW_INFO("%s, filepatch %s, len=%d, done\n", __FUNCTION__, filepath, len); } else { err = _FAIL; RTW_INFO("%s, filepatch %s, len=%d,err =%d, _FAIL\n", __FUNCTION__, filepath, len, err); } } } if (cbuf) rtw_mfree(cbuf, len * 3); return err; } #ifdef CONFIG_EFUSE_CONFIG_FILE u32 rtw_read_efuse_from_file(const char *path, u8 *buf, int map_size) { u32 i; u8 c; u8 temp[3]; u8 temp_i; u8 end = _FALSE; u32 ret = _FAIL; u8 *file_data = NULL; u32 file_size, read_size, pos = 0; u8 *map = NULL; if (rtw_is_file_readable_with_size(path, &file_size) != _TRUE) { RTW_PRINT("%s %s is not readable\n", __func__, path); goto exit; } file_data = rtw_vmalloc(file_size); if (!file_data) { RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, file_size); goto exit; } read_size = rtw_retrieve_from_file(path, file_data, file_size); if (read_size == 0) { RTW_ERR("%s read from %s fail\n", __func__, path); goto exit; } map = rtw_vmalloc(map_size); if (!map) { RTW_ERR("%s rtw_vmalloc(%d) fail\n", __func__, map_size); goto exit; } _rtw_memset(map, 0xff, map_size); temp[2] = 0; /* end of string '\0' */ for (i = 0 ; i < map_size ; i++) { temp_i = 0; while (1) { if (pos >= read_size) { end = _TRUE; break; } c = file_data[pos++]; /* bypass spece or eol or null before first hex digit */ if (temp_i == 0 && (is_eol(c) == _TRUE || is_space(c) == _TRUE || is_null(c) == _TRUE)) continue; if (IsHexDigit(c) == _FALSE) { RTW_ERR("%s invalid 8-bit hex format for offset:0x%03x\n", __func__, i); goto exit; } temp[temp_i++] = c; if (temp_i == 2) { /* parse value */ if (sscanf(temp, "%hhx", &map[i]) != 1) { RTW_ERR("%s sscanf fail for offset:0x%03x\n", __func__, i); goto exit; } break; } } if (end == _TRUE) { if (temp_i != 0) { RTW_ERR("%s incomplete 8-bit hex format for offset:0x%03x\n", __func__, i); goto exit; } break; } } RTW_PRINT("efuse file:%s, 0x%03x byte content read\n", path, i); _rtw_memcpy(buf, map, map_size); ret = _SUCCESS; exit: if (file_data) rtw_vmfree(file_data, file_size); if (map) rtw_vmfree(map, map_size); return ret; } u32 rtw_read_macaddr_from_file(const char *path, u8 *buf) { u32 i; u8 temp[3]; u32 ret = _FAIL; u8 file_data[17]; u32 read_size; u8 addr[ETH_ALEN]; if (rtw_is_file_readable(path) != _TRUE) { RTW_PRINT("%s %s is not readable\n", __func__, path); goto exit; } read_size = rtw_retrieve_from_file(path, file_data, 17); if (read_size != 17) { RTW_ERR("%s read from %s fail\n", __func__, path); goto exit; } temp[2] = 0; /* end of string '\0' */ for (i = 0 ; i < ETH_ALEN ; i++) { if (IsHexDigit(file_data[i * 3]) == _FALSE || IsHexDigit(file_data[i * 3 + 1]) == _FALSE) { RTW_ERR("%s invalid 8-bit hex format for address offset:%u\n", __func__, i); goto exit; } if (i < ETH_ALEN - 1 && file_data[i * 3 + 2] != ':') { RTW_ERR("%s invalid separator after address offset:%u\n", __func__, i); goto exit; } temp[0] = file_data[i * 3]; temp[1] = file_data[i * 3 + 1]; if (sscanf(temp, "%hhx", &addr[i]) != 1) { RTW_ERR("%s sscanf fail for address offset:0x%03x\n", __func__, i); goto exit; } } _rtw_memcpy(buf, addr, ETH_ALEN); RTW_PRINT("wifi_mac file: %s\n", path); #ifdef CONFIG_RTW_DEBUG RTW_INFO(MAC_FMT"\n", MAC_ARG(buf)); #endif ret = _SUCCESS; exit: return ret; } #endif /* CONFIG_EFUSE_CONFIG_FILE */ #endif /* PLATFORM_LINUX */