1
0
mirror of https://github.com/aircrack-ng/rtl8812au.git synced 2024-11-23 13:49:57 +00:00
rtl8812au/core/efuse/rtw_efuse.c

2671 lines
67 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTW_EFUSE_C_
#include <drv_types.h>
#include <hal_data.h>
#include "../hal/efuse/efuse_mask.h"
/*------------------------Define local variable------------------------------*/
u8 fakeEfuseBank = {0};
u32 fakeEfuseUsedBytes = {0};
u8 fakeEfuseContent[EFUSE_MAX_HW_SIZE] = {0};
u8 fakeEfuseInitMap[EFUSE_MAX_MAP_LEN] = {0};
u8 fakeEfuseModifiedMap[EFUSE_MAX_MAP_LEN] = {0};
u32 BTEfuseUsedBytes = {0};
u8 BTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
u8 BTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u8 BTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u32 fakeBTEfuseUsedBytes = {0};
u8 fakeBTEfuseContent[EFUSE_MAX_BT_BANK][EFUSE_MAX_HW_SIZE];
u8 fakeBTEfuseInitMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u8 fakeBTEfuseModifiedMap[EFUSE_BT_MAX_MAP_LEN] = {0};
u8 maskfileBuffer[32];
/*------------------------Define local variable------------------------------*/
BOOLEAN rtw_file_efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
{
int r = Offset / 16;
int c = (Offset % 16) / 2;
int result = 0;
if (pAdapter->registrypriv.boffefusemask)
return FALSE;
if (c < 4) /* Upper double word */
result = (maskfileBuffer[r] & (0x10 << c));
else
result = (maskfileBuffer[r] & (0x01 << (c - 4)));
return (result > 0) ? 0 : 1;
}
BOOLEAN efuse_IsMasked(PADAPTER pAdapter, u16 Offset)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
if (pAdapter->registrypriv.boffefusemask)
return FALSE;
#if DEV_BUS_TYPE == RT_USB_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return (IS_MASKED(8188E, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return (IS_MASKED(8812A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821A)
#if 0
if (IS_HARDWARE_TYPE_8811AU(pAdapter))
return (IS_MASKED(8811A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
if (IS_HARDWARE_TYPE_8821(pAdapter))
return (IS_MASKED(8821A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return (IS_MASKED(8192E, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return (IS_MASKED(8723B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8703B)
if (IS_HARDWARE_TYPE_8703B(pAdapter))
return (IS_MASKED(8703B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return (IS_MASKED(8814A, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return (IS_MASKED(8188F, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return (IS_MASKED(8822B, _MUSB, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723D)
if (IS_HARDWARE_TYPE_8723D(pAdapter))
return (IS_MASKED(8723D, _MUSB, Offset)) ? TRUE : FALSE;
#endif
/*#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821C(pAdapter))
return (IS_MASKED(8821C,_MUSB,Offset)) ? TRUE : FALSE;
#endif*/
#elif DEV_BUS_TYPE == RT_PCI_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return (IS_MASKED(8188E, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return (IS_MASKED(8192E, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return (IS_MASKED(8812A, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
return (IS_MASKED(8821A, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return (IS_MASKED(8723B, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return (IS_MASKED(8814A, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return (IS_MASKED(8822B, _MPCIE, Offset)) ? TRUE : FALSE;
#endif
#elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
#ifdef CONFIG_RTL8188E_SDIO
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return (IS_MASKED(8188E, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#ifdef CONFIG_RTL8188F_SDIO
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return (IS_MASKED(8188F, _MSDIO, Offset)) ? TRUE : FALSE;
#endif
#endif
return FALSE;
}
void rtw_efuse_mask_array(PADAPTER pAdapter, u8 *pArray)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
#if DEV_BUS_TYPE == RT_USB_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
GET_MASK_ARRAY(8188E, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
GET_MASK_ARRAY(8812A, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
GET_MASK_ARRAY(8821A, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
GET_MASK_ARRAY(8192E, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
GET_MASK_ARRAY(8723B, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8703B)
if (IS_HARDWARE_TYPE_8703B(pAdapter))
GET_MASK_ARRAY(8703B, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
GET_MASK_ARRAY(8188F, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
GET_MASK_ARRAY(8814A, _MUSB, pArray);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
GET_MASK_ARRAY(8822B, _MUSB, pArray);
#endif
/*#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821C(pAdapter))
GET_MASK_ARRAY(8821C,_MUSB,pArray);
#endif*/
#elif DEV_BUS_TYPE == RT_PCI_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
GET_MASK_ARRAY(8188E, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
GET_MASK_ARRAY(8192E, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
GET_MASK_ARRAY(8812A, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
GET_MASK_ARRAY(8821A, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
GET_MASK_ARRAY(8723B, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
GET_MASK_ARRAY(8814A, _MPCIE, pArray);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
GET_MASK_ARRAY(8822B, _MPCIE, pArray);
#endif
#elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
GET_MASK_ARRAY(8188E, _MSDIO, pArray);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
GET_MASK_ARRAY(8188F, _MSDIO, pArray);
#endif
#endif /*#elif DEV_BUS_TYPE == RT_SDIO_INTERFACE*/
}
u16 rtw_get_efuse_mask_arraylen(PADAPTER pAdapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
#if DEV_BUS_TYPE == RT_USB_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return GET_MASK_ARRAY_LEN(8188E, _MUSB);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return GET_MASK_ARRAY_LEN(8812A, _MUSB);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
return GET_MASK_ARRAY_LEN(8821A, _MUSB);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return GET_MASK_ARRAY_LEN(8192E, _MUSB);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return GET_MASK_ARRAY_LEN(8723B, _MUSB);
#endif
#if defined(CONFIG_RTL8703B)
if (IS_HARDWARE_TYPE_8703B(pAdapter))
return GET_MASK_ARRAY_LEN(8703B, _MUSB);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return GET_MASK_ARRAY_LEN(8188F, _MUSB);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return GET_MASK_ARRAY_LEN(8814A, _MUSB);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return GET_MASK_ARRAY_LEN(8822B, _MUSB);
#endif
/*#if defined(CONFIG_RTL8821C)
if (IS_HARDWARE_TYPE_8821C(pAdapter))
return GET_MASK_ARRAY_LEN(8821C,_MUSB);
#endif*/
#elif DEV_BUS_TYPE == RT_PCI_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return GET_MASK_ARRAY_LEN(8188E, _MPCIE);
#endif
#if defined(CONFIG_RTL8192E)
if (IS_HARDWARE_TYPE_8192E(pAdapter))
return GET_MASK_ARRAY_LEN(8192E, _MPCIE);
#endif
#if defined(CONFIG_RTL8812A)
if (IS_HARDWARE_TYPE_8812(pAdapter))
return GET_MASK_ARRAY_LEN(8812A, _MPCIE);
#endif
#if defined(CONFIG_RTL8821A)
if (IS_HARDWARE_TYPE_8821(pAdapter))
return GET_MASK_ARRAY_LEN(8821A, _MPCIE);
#endif
#if defined(CONFIG_RTL8723B)
if (IS_HARDWARE_TYPE_8723B(pAdapter))
return GET_MASK_ARRAY_LEN(8723B, _MPCIE);
#endif
#if defined(CONFIG_RTL8814A)
if (IS_HARDWARE_TYPE_8814A(pAdapter))
return GET_MASK_ARRAY_LEN(8814A, _MPCIE);
#endif
#if defined(CONFIG_RTL8822B)
if (IS_HARDWARE_TYPE_8822B(pAdapter))
return GET_MASK_ARRAY_LEN(8822B, _MPCIE);
#endif
#elif DEV_BUS_TYPE == RT_SDIO_INTERFACE
#if defined(CONFIG_RTL8188E)
if (IS_HARDWARE_TYPE_8188E(pAdapter))
return GET_MASK_ARRAY_LEN(8188E, _MSDIO);
#endif
#if defined(CONFIG_RTL8188F)
if (IS_HARDWARE_TYPE_8188F(pAdapter))
return GET_MASK_ARRAY_LEN(8188F, _MSDIO);
#endif
#endif
return 0;
}
#ifdef RTW_HALMAC
#include "../../hal/hal_halmac.h"
void Efuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
{
}
void BTEfuse_PowerSwitch(PADAPTER adapter, u8 write, u8 pwrstate)
{
}
u8 efuse_GetCurrentSize(PADAPTER adapter, u16 *size)
{
*size = 0;
return _FAIL;
}
u16 efuse_GetMaxSize(PADAPTER adapter)
{
struct dvobj_priv *d;
u32 size = 0;
int err;
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_physical_efuse_size(d, &size);
if (err)
return 0;
return size;
}
u8 efuse_bt_GetCurrentSize(PADAPTER adapter, u16 *size)
{
*size = 0;
return _FAIL;
}
u16 efuse_bt_GetMaxSize(PADAPTER adapter)
{
return 0;
}
void EFUSE_GetEfuseDefinition(PADAPTER adapter, u8 efusetype, u8 type, void *out, BOOLEAN test)
{
struct dvobj_priv *d;
u32 v32 = 0;
d = adapter_to_dvobj(adapter);
if (adapter->HalFunc.EFUSEGetEfuseDefinition) {
adapter->HalFunc.EFUSEGetEfuseDefinition(adapter, efusetype, type, out, test);
return;
}
if (EFUSE_WIFI == efusetype) {
switch (type) {
case TYPE_EFUSE_MAP_LEN:
rtw_halmac_get_logical_efuse_size(d, &v32);
*(u16 *)out = (u16)v32;
return;
}
}
}
/*
* read/write raw efuse data
*/
u8 rtw_efuse_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size, i;
int err;
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_physical_efuse_size(d, &size);
if (err)
size = EFUSE_MAX_SIZE;
if ((addr + cnts) > size)
return _FAIL;
if (_TRUE == write) {
err = rtw_halmac_write_physical_efuse(d, addr, cnts, data);
if (err)
return _FAIL;
} else {
if (cnts > 16)
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_halmac_read_physical_efuse_map(d, efuse, size);
if (err) {
rtw_mfree(efuse, size);
return _FAIL;
}
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
} else {
err = rtw_halmac_read_physical_efuse(d, addr, cnts, data);
if (err)
return _FAIL;
}
}
return _SUCCESS;
}
static inline void dump_buf(u8 *buf, u32 len)
{
u32 i;
RTW_INFO("-----------------Len %d----------------\n", len);
for (i = 0; i < len; i++)
printk("%2.2x-", *(buf + i));
printk("\n");
}
/*
* read/write raw efuse data
*/
u8 rtw_efuse_bt_access(PADAPTER adapter, u8 write, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size, i;
int err = _FAIL;
d = adapter_to_dvobj(adapter);
size = EFUSE_BT_REAL_BANK_CONTENT_LEN;
if ((addr + cnts) > size)
return _FAIL;
if (_TRUE == write) {
err = rtw_halmac_write_bt_physical_efuse(d, addr, cnts, data);
if (err == -1) {
RTW_ERR("%s: rtw_halmac_write_bt_physical_efuse fail!\n", __FUNCTION__);
return _FAIL;
}
RTW_INFO("%s: rtw_halmac_write_bt_physical_efuse OK! data 0x%x\n", __FUNCTION__, *data);
} else {
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_halmac_read_bt_physical_efuse_map(d, efuse, size);
if (err == -1) {
RTW_ERR("%s: rtw_halmac_read_bt_physical_efuse_map fail!\n", __FUNCTION__);
rtw_mfree(efuse, size);
return _FAIL;
}
dump_buf(efuse + addr, cnts);
RTW_INFO("%s: rtw_halmac_read_bt_physical_efuse_map ok!\n", __FUNCTION__);
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
}
}
return _SUCCESS;
}
u8 rtw_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size, i;
int err;
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_logical_efuse_size(d, &size);
if (err)
return _FAIL;
/* size error handle */
if ((addr + cnts) > size) {
if (addr < size)
cnts = size - addr;
else
return _FAIL;
}
if (cnts > 16)
efuse = rtw_zmalloc(size);
if (efuse) {
err = rtw_halmac_read_logical_efuse_map(d, efuse, size);
if (err) {
rtw_mfree(efuse, size);
return _FAIL;
}
_rtw_memcpy(data, efuse + addr, cnts);
rtw_mfree(efuse, size);
} else {
err = rtw_halmac_read_logical_efuse(d, addr, cnts, data);
if (err)
return _FAIL;
}
return _SUCCESS;
}
u8 rtw_efuse_mask_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
return rtw_efuse_map_read(adapter, addr, cnts, data);
}
u8 rtw_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
struct dvobj_priv *d;
u8 *efuse = NULL;
u32 size, i;
int err;
u8 mask_buf[64] = "";
u16 mask_len = sizeof(u8) * rtw_get_efuse_mask_arraylen(adapter);
d = adapter_to_dvobj(adapter);
err = rtw_halmac_get_logical_efuse_size(d, &size);
if (err)
return _FAIL;
if ((addr + cnts) > size)
return _FAIL;
efuse = rtw_zmalloc(size);
if (!efuse)
return _FAIL;
err = rtw_halmac_read_logical_efuse_map(d, efuse, size);
if (err) {
rtw_mfree(efuse, size);
return _FAIL;
}
_rtw_memcpy(efuse + addr, data, cnts);
if (adapter->registrypriv.boffefusemask == 0) {
RTW_INFO("Use mask Array Len: %d\n", mask_len);
if (mask_len != 0) {
rtw_efuse_mask_array(adapter, mask_buf);
err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, mask_len);
} else
err = rtw_halmac_write_logical_efuse_map(d, efuse, size, NULL, 0);
} else {
_rtw_memset(mask_buf, 0xFF, sizeof(mask_buf));
RTW_INFO("Efuse mask off\n");
err = rtw_halmac_write_logical_efuse_map(d, efuse, size, mask_buf, size/16);
}
if (err) {
rtw_mfree(efuse, size);
return _FAIL;
}
rtw_mfree(efuse, size);
return _SUCCESS;
}
int Efuse_PgPacketRead(PADAPTER adapter, u8 offset, u8 *data, BOOLEAN test)
{
return _FALSE;
}
int Efuse_PgPacketWrite(PADAPTER adapter, u8 offset, u8 word_en, u8 *data, BOOLEAN test)
{
return _FALSE;
}
u8 rtw_BT_efuse_map_read(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
hal_ReadEFuse_BT_logic_map(adapter,addr, cnts, data);
return _SUCCESS;
}
u8 rtw_BT_efuse_map_write(PADAPTER adapter, u16 addr, u16 cnts, u8 *data)
{
#define RT_ASSERT_RET(expr) \
if (!(expr)) { \
printk("Assertion failed! %s at ......\n", #expr); \
printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
return _FAIL; \
}
u8 offset, word_en;
u8 *map;
u8 newdata[PGPKT_DATA_SIZE];
s32 i = 0, j = 0, idx;
u8 ret = _SUCCESS;
u16 mapLen = 1024;
if ((addr + cnts) > mapLen)
return _FAIL;
RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
map = rtw_zmalloc(mapLen);
if (map == NULL)
return _FAIL;
ret = rtw_BT_efuse_map_read(adapter, 0, mapLen, map);
if (ret == _FAIL)
goto exit;
RTW_INFO("OFFSET\tVALUE(hex)\n");
for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
RTW_INFO("0x%03x\t", i);
for (j = 0; j < 8; j++)
RTW_INFO("%02X ", map[i + j]);
RTW_INFO("\t");
for (; j < 16; j++)
RTW_INFO("%02X ", map[i + j]);
RTW_INFO("\n");
}
RTW_INFO("\n");
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (data[idx] != map[addr + idx]) {
word_en &= ~BIT(i >> 1);
newdata[i] = data[idx];
}
}
if (word_en != 0xF) {
RTW_INFO("offset=%x\n", offset);
RTW_INFO("word_en=%x\n", word_en);
RTW_INFO("%s: data=", __FUNCTION__);
for (i = 0; i < PGPKT_DATA_SIZE; i++)
RTW_INFO("0x%02X ", newdata[i]);
RTW_INFO("\n");
ret = EfusePgPacketWrite_BT(adapter, offset, word_en, newdata, _FALSE);
if (ret == _FAIL)
break;
}
offset++;
}
exit:
rtw_mfree(map, mapLen);
return _SUCCESS;
}
VOID hal_ReadEFuse_BT_logic_map(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
u8 *efuseTbl, *phyefuse;
u8 bank;
u16 eFuse_Addr = 0;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __FUNCTION__, _offset, _size_byte);
return;
}
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
phyefuse = rtw_malloc(EFUSE_BT_REAL_BANK_CONTENT_LEN);
if (efuseTbl == NULL || phyefuse == NULL) {
RTW_INFO("%s: efuseTbl malloc fail!\n", __FUNCTION__);
return;
}
/* 0xff will be efuse default value instead of 0x00. */
_rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
_rtw_memset(phyefuse, 0xFF, EFUSE_BT_REAL_BANK_CONTENT_LEN);
if(rtw_efuse_bt_access(padapter, _FALSE, 0, EFUSE_BT_REAL_BANK_CONTENT_LEN, phyefuse))
dump_buf(phyefuse, EFUSE_BT_REAL_BANK_CONTENT_LEN);
total = BANK_NUM;
for (bank = 1; bank <= total; bank++) { /* 8723d Max bake 0~2 */
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuseHeader = phyefuse[eFuse_Addr++];
if (efuseHeader == 0xFF)
break;
RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseHeader);
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /* extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
RTW_INFO("%s: extended header offset_2_0=0x%X\n", __FUNCTION__, offset);
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuseExtHdr = phyefuse[eFuse_Addr++];
RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __FUNCTION__, (((bank - 1) * EFUSE_BT_REAL_CONTENT_LEN) + eFuse_Addr - 1), efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION) {
u16 addr;
/* Get word enable value from PG header */
RTW_INFO("%s: Offset=%d Worden=%#X\n", __FUNCTION__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuseData = phyefuse[eFuse_Addr++];
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
/* ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuseData = phyefuse[eFuse_Addr++];
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __FUNCTION__, eFuse_Addr - 1, efuseData);
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_INFO("%s: offset(%d) is illegal!!\n", __FUNCTION__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
if ((eFuse_Addr - 1) < total) {
RTW_INFO("%s: bank(%d) data end at %#x\n", __FUNCTION__, bank, eFuse_Addr - 1);
break;
}
}
/* switch bank back to bank 0 for later BT and wifi use. */
//hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* Calculate Efuse utilization */
total = EFUSE_BT_REAL_BANK_CONTENT_LEN;
used = eFuse_Addr - 1;
if (total)
efuse_usage = (u8)((used * 100) / total);
else
efuse_usage = 100;
fakeBTEfuseUsedBytes = used;
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
}
static u8 hal_EfusePartialWriteCheck(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
u8 bRet = _FALSE;
u16 startAddr = 0, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN, efuse_max = EFUSE_BT_REAL_BANK_CONTENT_LEN;
u8 efuse_data = 0;
startAddr = (u16)fakeBTEfuseUsedBytes;
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = _FALSE;
RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
__FUNCTION__, startAddr, efuse_max_available_len);
break;
}
if (rtw_efuse_bt_access(padapter, _FALSE, startAddr, 1, &efuse_data)&& (efuse_data != 0xFF)) {
bRet = _FALSE;
RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
__FUNCTION__, startAddr, efuse_data);
break;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
/* RTW_INFO("%s: Started from unused header offset=%d\n", __FUNCTION__, startAddr)); */
bRet = _TRUE;
break;
}
}
return bRet;
}
static u8 hal_EfusePgPacketWrite2ByteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len = EFUSE_BT_REAL_BANK_CONTENT_LEN;
u8 pg_header = 0, tmp_header = 0;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len) {
RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
return _FALSE;
}
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
/* RTW_INFO("%s: pg_header=0x%x\n", __FUNCTION__, pg_header); */
do {
rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) {
RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
/* to write ext_header */
efuse_addr++;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
do {
rtw_efuse_bt_access(padapter, _TRUE, efuse_addr, 1, &pg_header);
rtw_efuse_bt_access(padapter, _FALSE, efuse_addr, 1, &tmp_header);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for ext_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) { /* offset PG fail */
RTW_ERR("%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8 hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
do {
rtw_efuse_bt_access(pAdapter, _TRUE, efuse_addr, 1, &pg_header);
rtw_efuse_bt_access(pAdapter, _FALSE, efuse_addr, 1, &tmp_header);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
} while (1);
if (tmp_header != pg_header) {
RTW_ERR("%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __FUNCTION__, pg_header, tmp_header);
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8 hal_EfusePgPacketWriteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static u8
Hal_EfuseWordEnableDataWrite(
PADAPTER padapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
u8 bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[PGPKT_DATA_SIZE];
/* RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __FUNCTION__, efuse_addr, word_en); */
_rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
if (!(word_en & BIT(0))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[0]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[1]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[0]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[1]);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT(0));
}
if (!(word_en & BIT(1))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[2]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[3]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[2]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[3]);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT(1));
}
if (!(word_en & BIT(2))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[4]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[5]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[4]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[5]);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT(2));
}
if (!(word_en & BIT(3))) {
tmpaddr = start_addr;
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[6]);
rtw_efuse_bt_access(padapter, _TRUE, start_addr++, 1, &data[7]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr, 1, &tmpdata[6]);
rtw_efuse_bt_access(padapter, _FALSE, tmpaddr + 1, 1, &tmpdata[7]);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT(3));
}
return badworden;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
PPGPKT_STRUCT pTargetPkt)
{
_rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
static u8
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
RTW_INFO("%s: Fail!!\n", __FUNCTION__);
return _FALSE;
}
/* RTW_INFO("%s: ok\n", __FUNCTION__); */
return _TRUE;
}
u8 EfusePgPacketWrite_BT(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
#else /* !RTW_HALMAC */
/* ------------------------------------------------------------------------------ */
#define REG_EFUSE_CTRL 0x0030
#define EFUSE_CTRL REG_EFUSE_CTRL /* E-Fuse Control. */
/* ------------------------------------------------------------------------------ */
BOOLEAN
Efuse_Read1ByteFromFakeContent(
IN PADAPTER pAdapter,
IN u16 Offset,
IN OUT u8 *Value);
BOOLEAN
Efuse_Read1ByteFromFakeContent(
IN PADAPTER pAdapter,
IN u16 Offset,
IN OUT u8 *Value)
{
if (Offset >= EFUSE_MAX_HW_SIZE)
return _FALSE;
/* DbgPrint("Read fake content, offset = %d\n", Offset); */
if (fakeEfuseBank == 0)
*Value = fakeEfuseContent[Offset];
else
*Value = fakeBTEfuseContent[fakeEfuseBank - 1][Offset];
return _TRUE;
}
BOOLEAN
Efuse_Write1ByteToFakeContent(
IN PADAPTER pAdapter,
IN u16 Offset,
IN u8 Value);
BOOLEAN
Efuse_Write1ByteToFakeContent(
IN PADAPTER pAdapter,
IN u16 Offset,
IN u8 Value)
{
if (Offset >= EFUSE_MAX_HW_SIZE)
return _FALSE;
if (fakeEfuseBank == 0)
fakeEfuseContent[Offset] = Value;
else
fakeBTEfuseContent[fakeEfuseBank - 1][Offset] = Value;
return _TRUE;
}
/*-----------------------------------------------------------------------------
* Function: Efuse_PowerSwitch
*
* Overview: When we want to enable write operation, we should change to
* pwr on state. When we stop write, we should switch to 500k mode
* and disable LDO 2.5V.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/17/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
VOID
Efuse_PowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
pAdapter->HalFunc.EfusePowerSwitch(pAdapter, bWrite, PwrState);
}
VOID
BTEfuse_PowerSwitch(
IN PADAPTER pAdapter,
IN u8 bWrite,
IN u8 PwrState)
{
if (pAdapter->HalFunc.BTEfusePowerSwitch)
pAdapter->HalFunc.BTEfusePowerSwitch(pAdapter, bWrite, PwrState);
}
/*-----------------------------------------------------------------------------
* Function: efuse_GetCurrentSize
*
* Overview: Get current efuse size!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/16/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
u16
Efuse_GetCurrentSize(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
u16 ret = 0;
ret = pAdapter->HalFunc.EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest);
return ret;
}
/*
* Description:
* Execute E-Fuse read byte operation.
* Refered from SD1 Richard.
*
* Assumption:
* 1. Boot from E-Fuse and successfully auto-load.
* 2. PASSIVE_LEVEL (USB interface)
*
* Created by Roger, 2008.10.21.
* */
VOID
ReadEFuseByte(
PADAPTER Adapter,
u16 _offset,
u8 *pbuf,
IN BOOLEAN bPseudoTest)
{
u32 value32;
u8 readbyte;
u16 retry;
/* u32 start=rtw_get_current_time(); */
if (bPseudoTest) {
Efuse_Read1ByteFromFakeContent(Adapter, _offset, pbuf);
return;
}
if (IS_HARDWARE_TYPE_8723B(Adapter)) {
/* <20130121, Kordan> For SMIC S55 EFUSE specificatoin. */
/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
PHY_SetMacReg(Adapter, EFUSE_TEST, BIT11, 0);
}
/* Write Address */
rtw_write8(Adapter, EFUSE_CTRL + 1, (_offset & 0xff));
readbyte = rtw_read8(Adapter, EFUSE_CTRL + 2);
rtw_write8(Adapter, EFUSE_CTRL + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
/* Write bit 32 0 */
readbyte = rtw_read8(Adapter, EFUSE_CTRL + 3);
rtw_write8(Adapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
/* Check bit 32 read-ready */
retry = 0;
value32 = rtw_read32(Adapter, EFUSE_CTRL);
/* while(!(((value32 >> 24) & 0xff) & 0x80) && (retry<10)) */
while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
value32 = rtw_read32(Adapter, EFUSE_CTRL);
retry++;
}
/* 20100205 Joseph: Add delay suggested by SD1 Victor. */
/* This fix the problem that Efuse read error in high temperature condition. */
/* Designer says that there shall be some delay after ready bit is set, or the */
/* result will always stay on last data we read. */
rtw_udelay_os(50);
value32 = rtw_read32(Adapter, EFUSE_CTRL);
*pbuf = (u8)(value32 & 0xff);
/* RTW_INFO("ReadEFuseByte _offset:%08u, in %d ms\n",_offset ,rtw_get_passing_time_ms(start)); */
}
/*
* Description:
* 1. Execute E-Fuse read byte operation according as map offset and
* save to E-Fuse table.
* 2. Refered from SD1 Richard.
*
* Assumption:
* 1. Boot from E-Fuse and successfully auto-load.
* 2. PASSIVE_LEVEL (USB interface)
*
* Created by Roger, 2008.10.21.
*
* 2008/12/12 MH 1. Reorganize code flow and reserve bytes. and add description.
* 2. Add efuse utilization collect.
* 2008/12/22 MH Read Efuse must check if we write section 1 data again!!! Sec1
* write addr must be after sec5.
* */
VOID
efuse_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
);
VOID
efuse_ReadEFuse(
PADAPTER Adapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
IN BOOLEAN bPseudoTest
)
{
Adapter->HalFunc.ReadEFuse(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
}
VOID
EFUSE_GetEfuseDefinition(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN u8 type,
OUT void *pOut,
IN BOOLEAN bPseudoTest
)
{
pAdapter->HalFunc.EFUSEGetEfuseDefinition(pAdapter, efuseType, type, pOut, bPseudoTest);
}
/*-----------------------------------------------------------------------------
* Function: EFUSE_Read1Byte
*
* Overview: Copy from WMAC fot EFUSE read 1 byte.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 09/23/2008 MHC Copy from WMAC.
*
*---------------------------------------------------------------------------*/
u8
EFUSE_Read1Byte(
IN PADAPTER Adapter,
IN u16 Address)
{
u8 data;
u8 Bytetemp = {0x00};
u8 temp = {0x00};
u32 k = 0;
u16 contentLen = 0;
EFUSE_GetEfuseDefinition(Adapter, EFUSE_WIFI , TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&contentLen, _FALSE);
if (Address < contentLen) { /* E-fuse 512Byte */
/* Write E-fuse Register address bit0~7 */
temp = Address & 0xFF;
rtw_write8(Adapter, EFUSE_CTRL + 1, temp);
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 2);
/* Write E-fuse Register address bit8~9 */
temp = ((Address >> 8) & 0x03) | (Bytetemp & 0xFC);
rtw_write8(Adapter, EFUSE_CTRL + 2, temp);
/* Write 0x30[31]=0 */
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 3);
temp = Bytetemp & 0x7F;
rtw_write8(Adapter, EFUSE_CTRL + 3, temp);
/* Wait Write-ready (0x30[31]=1) */
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 3);
while (!(Bytetemp & 0x80)) {
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 3);
k++;
if (k == 1000) {
k = 0;
break;
}
}
data = rtw_read8(Adapter, EFUSE_CTRL);
return data;
} else
return 0xFF;
} /* EFUSE_Read1Byte */
/*-----------------------------------------------------------------------------
* Function: EFUSE_Write1Byte
*
* Overview: Copy from WMAC fot EFUSE write 1 byte.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 09/23/2008 MHC Copy from WMAC.
*
*---------------------------------------------------------------------------*/
void
EFUSE_Write1Byte(
IN PADAPTER Adapter,
IN u16 Address,
IN u8 Value);
void
EFUSE_Write1Byte(
IN PADAPTER Adapter,
IN u16 Address,
IN u8 Value)
{
u8 Bytetemp = {0x00};
u8 temp = {0x00};
u32 k = 0;
u16 contentLen = 0;
EFUSE_GetEfuseDefinition(Adapter, EFUSE_WIFI , TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&contentLen, _FALSE);
if (Address < contentLen) { /* E-fuse 512Byte */
rtw_write8(Adapter, EFUSE_CTRL, Value);
/* Write E-fuse Register address bit0~7 */
temp = Address & 0xFF;
rtw_write8(Adapter, EFUSE_CTRL + 1, temp);
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 2);
/* Write E-fuse Register address bit8~9 */
temp = ((Address >> 8) & 0x03) | (Bytetemp & 0xFC);
rtw_write8(Adapter, EFUSE_CTRL + 2, temp);
/* Write 0x30[31]=1 */
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 3);
temp = Bytetemp | 0x80;
rtw_write8(Adapter, EFUSE_CTRL + 3, temp);
/* Wait Write-ready (0x30[31]=0) */
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 3);
while (Bytetemp & 0x80) {
Bytetemp = rtw_read8(Adapter, EFUSE_CTRL + 3);
k++;
if (k == 100) {
k = 0;
break;
}
}
}
} /* EFUSE_Write1Byte */
/* 11/16/2008 MH Read one byte from real Efuse. */
u8
efuse_OneByteRead(
IN PADAPTER pAdapter,
IN u16 addr,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u32 tmpidx = 0;
u8 bResult;
u8 readbyte;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
/* RTW_INFO("===> EFUSE_OneByteRead(), addr = %x\n", addr); */
/* RTW_INFO("===> EFUSE_OneByteRead() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
if (bPseudoTest) {
bResult = Efuse_Read1ByteFromFakeContent(pAdapter, addr, data);
return bResult;
}
if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
(IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->VersionID))) ||
(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->VersionID))
) {
/* <20130121, Kordan> For SMIC EFUSE specificatoin. */
/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
/* PHY_SetMacReg(pAdapter, 0x34, BIT11, 0); */
rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) & (~BIT11));
}
/* -----------------e-fuse reg ctrl --------------------------------- */
/* address */
rtw_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
rtw_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
(rtw_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
/* rtw_write8(pAdapter, EFUSE_CTRL+3, 0x72); */ /* read cmd */
/* Write bit 32 0 */
readbyte = rtw_read8(pAdapter, EFUSE_CTRL + 3);
rtw_write8(pAdapter, EFUSE_CTRL + 3, (readbyte & 0x7f));
while (!(0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 1000)) {
rtw_mdelay_os(1);
tmpidx++;
}
if (tmpidx < 100) {
*data = rtw_read8(pAdapter, EFUSE_CTRL);
bResult = _TRUE;
} else {
*data = 0xff;
bResult = _FALSE;
RTW_INFO("%s: [ERROR] addr=0x%x bResult=%d time out 1s !!!\n", __FUNCTION__, addr, bResult);
RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
}
return bResult;
}
/* 11/16/2008 MH Write one byte to reald Efuse. */
u8
efuse_OneByteWrite(
IN PADAPTER pAdapter,
IN u16 addr,
IN u8 data,
IN BOOLEAN bPseudoTest)
{
u8 tmpidx = 0;
u8 bResult = _FALSE;
u32 efuseValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
/* RTW_INFO("===> EFUSE_OneByteWrite(), addr = %x data=%x\n", addr, data); */
/* RTW_INFO("===> EFUSE_OneByteWrite() start, 0x34 = 0x%X\n", rtw_read32(pAdapter, EFUSE_TEST)); */
if (bPseudoTest) {
bResult = Efuse_Write1ByteToFakeContent(pAdapter, addr, data);
return bResult;
}
Efuse_PowerSwitch(pAdapter, _TRUE, _TRUE);
/* -----------------e-fuse reg ctrl --------------------------------- */
/* address */
efuseValue = rtw_read32(pAdapter, EFUSE_CTRL);
efuseValue |= (BIT21 | BIT31);
efuseValue &= ~(0x3FFFF);
efuseValue |= ((addr << 8 | data) & 0x3FFFF);
/* <20130227, Kordan> 8192E MP chip A-cut had better not set 0x34[11] until B-Cut. */
if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
(IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->VersionID))) ||
(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->VersionID))
) {
/* <20130121, Kordan> For SMIC EFUSE specificatoin. */
/* 0x34[11]: SW force PGMEN input of efuse to high. (for the bank selected by 0x34[9:8]) */
/* PHY_SetMacReg(pAdapter, 0x34, BIT11, 1); */
rtw_write16(pAdapter, 0x34, rtw_read16(pAdapter, 0x34) | (BIT11));
rtw_write32(pAdapter, EFUSE_CTRL, 0x90600000 | ((addr << 8 | data)));
} else
rtw_write32(pAdapter, EFUSE_CTRL, efuseValue);
while ((0x80 & rtw_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100)) {
rtw_mdelay_os(1);
tmpidx++;
}
if (tmpidx < 100)
bResult = _TRUE;
else {
bResult = _FALSE;
RTW_INFO("%s: [ERROR] addr=0x%x ,efuseValue=0x%x ,bResult=%d time out 1s !!!\n",
__FUNCTION__, addr, efuseValue, bResult);
RTW_INFO("%s: [ERROR] EFUSE_CTRL =0x%08x !!!\n", __FUNCTION__, rtw_read32(pAdapter, EFUSE_CTRL));
}
/* disable Efuse program enable */
if (IS_HARDWARE_TYPE_8723B(pAdapter) ||
(IS_HARDWARE_TYPE_8192E(pAdapter) && (!IS_A_CUT(pHalData->VersionID))) ||
(IS_VENDOR_8188E_I_CUT_SERIES(pAdapter)) || (IS_CHIP_VENDOR_SMIC(pHalData->VersionID))
)
PHY_SetMacReg(pAdapter, EFUSE_TEST, BIT(11), 0);
Efuse_PowerSwitch(pAdapter, _TRUE, _FALSE);
return bResult;
}
int
Efuse_PgPacketRead(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret = 0;
ret = pAdapter->HalFunc.Efuse_PgPacketRead(pAdapter, offset, data, bPseudoTest);
return ret;
}
int
Efuse_PgPacketWrite(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = pAdapter->HalFunc.Efuse_PgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
int
Efuse_PgPacketWrite_BT(IN PADAPTER pAdapter,
IN u8 offset,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
int ret;
ret = pAdapter->HalFunc.Efuse_PgPacketWrite_BT(pAdapter, offset, word_en, data, bPseudoTest);
return ret;
}
u8
Efuse_WordEnableDataWrite(IN PADAPTER pAdapter,
IN u16 efuse_addr,
IN u8 word_en,
IN u8 *data,
IN BOOLEAN bPseudoTest)
{
u8 ret = 0;
ret = pAdapter->HalFunc.Efuse_WordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
return ret;
}
static u8 efuse_read8(PADAPTER padapter, u16 address, u8 *value)
{
return efuse_OneByteRead(padapter, address, value, _FALSE);
}
static u8 efuse_write8(PADAPTER padapter, u16 address, u8 *value)
{
return efuse_OneByteWrite(padapter, address, *value, _FALSE);
}
/*
* read/wirte raw efuse data
*/
u8 rtw_efuse_access(PADAPTER padapter, u8 bWrite, u16 start_addr, u16 cnts, u8 *data)
{
int i = 0;
u16 real_content_len = 0, max_available_size = 0;
u8 res = _FAIL ;
u8(*rw8)(PADAPTER, u16, u8 *);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_REAL_CONTENT_LEN, (PVOID)&real_content_len, _FALSE);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_available_size, _FALSE);
if (start_addr > real_content_len)
return _FAIL;
if (_TRUE == bWrite) {
if ((start_addr + cnts) > max_available_size)
return _FAIL;
rw8 = &efuse_write8;
} else
rw8 = &efuse_read8;
Efuse_PowerSwitch(padapter, bWrite, _TRUE);
/* e-fuse one byte read / write */
for (i = 0; i < cnts; i++) {
if (start_addr >= real_content_len) {
res = _FAIL;
break;
}
res = rw8(padapter, start_addr++, data++);
if (_FAIL == res)
break;
}
Efuse_PowerSwitch(padapter, bWrite, _FALSE);
return res;
}
/* ------------------------------------------------------------------------------ */
u16 efuse_GetMaxSize(PADAPTER padapter)
{
u16 max_size;
max_size = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_size, _FALSE);
return max_size;
}
/* ------------------------------------------------------------------------------ */
u8 efuse_GetCurrentSize(PADAPTER padapter, u16 *size)
{
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
*size = Efuse_GetCurrentSize(padapter, EFUSE_WIFI, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
/* ------------------------------------------------------------------------------ */
u16 efuse_bt_GetMaxSize(PADAPTER padapter)
{
u16 max_size;
max_size = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT , TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, (PVOID)&max_size, _FALSE);
return max_size;
}
u8 efuse_bt_GetCurrentSize(PADAPTER padapter, u16 *size)
{
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
*size = Efuse_GetCurrentSize(padapter, EFUSE_BT, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
u8 rtw_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
efuse_ReadEFuse(padapter, EFUSE_WIFI, addr, cnts, data, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
u8 rtw_BT_efuse_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
Efuse_PowerSwitch(padapter, _FALSE, _TRUE);
efuse_ReadEFuse(padapter, EFUSE_BT, addr, cnts, data, _FALSE);
Efuse_PowerSwitch(padapter, _FALSE, _FALSE);
return _SUCCESS;
}
/* ------------------------------------------------------------------------------ */
u8 rtw_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
#define RT_ASSERT_RET(expr) \
if (!(expr)) { \
printk("Assertion failed! %s at ......\n", #expr); \
printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
return _FAIL; \
}
u8 offset, word_en;
u8 *map;
u8 newdata[PGPKT_DATA_SIZE];
s32 i, j, idx;
u8 ret = _SUCCESS;
u16 mapLen = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
map = rtw_zmalloc(mapLen);
if (map == NULL)
return _FAIL;
_rtw_memset(map, 0xFF, mapLen);
ret = rtw_efuse_map_read(padapter, 0, mapLen, map);
if (ret == _FAIL)
goto exit;
if (padapter->registrypriv.boffefusemask == 0) {
for (i = 0; i < cnts; i++) {
if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
if (rtw_file_efuse_IsMasked(padapter, addr + i)) /*use file efuse mask. */
data[i] = map[addr + i];
} else {
if (efuse_IsMasked(padapter, addr + i))
data[i] = map[addr + i];
}
RTW_INFO("%s , data[%d] = %x, map[addr+i]= %x\n", __func__, i, data[i], map[addr + i]);
}
}
/*Efuse_PowerSwitch(padapter, _TRUE, _TRUE);*/
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (data[idx] != map[addr + idx]) {
word_en &= ~BIT(i >> 1);
newdata[i] = data[idx];
#ifdef CONFIG_RTL8723B
if (addr + idx == 0x8) {
if (IS_C_CUT(pHalData->VersionID) || IS_B_CUT(pHalData->VersionID)) {
if (pHalData->adjuseVoltageVal == 6) {
newdata[i] = map[addr + idx];
RTW_INFO(" %s ,\n adjuseVoltageVal = %d ,newdata[%d] = %x\n", __func__, pHalData->adjuseVoltageVal, i, newdata[i]);
}
}
}
#endif
}
}
if (word_en != 0xF) {
ret = Efuse_PgPacketWrite(padapter, offset, word_en, newdata, _FALSE);
RTW_INFO("offset=%x\n", offset);
RTW_INFO("word_en=%x\n", word_en);
for (i = 0; i < PGPKT_DATA_SIZE; i++)
RTW_INFO("data=%x \t", newdata[i]);
if (ret == _FAIL)
break;
}
offset++;
}
/*Efuse_PowerSwitch(padapter, _TRUE, _FALSE);*/
exit:
rtw_mfree(map, mapLen);
return ret;
}
u8 rtw_efuse_mask_map_read(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
u8 ret = _SUCCESS;
u16 mapLen = 0, i = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
ret = rtw_efuse_map_read(padapter, addr, cnts , data);
if (padapter->registrypriv.boffefusemask == 0) {
for (i = 0; i < cnts; i++) {
if (padapter->registrypriv.bFileMaskEfuse == _TRUE) {
if (rtw_file_efuse_IsMasked(padapter, addr + i)) /*use file efuse mask.*/
data[i] = 0xff;
} else {
/*RTW_INFO(" %s , data[%d] = %x\n", __func__, i, data[i]);*/
if (efuse_IsMasked(padapter, addr + i)) {
data[i] = 0xff;
/*RTW_INFO(" %s ,mask data[%d] = %x\n", __func__, i, data[i]);*/
}
}
}
}
return ret;
}
u8 rtw_BT_efuse_map_write(PADAPTER padapter, u16 addr, u16 cnts, u8 *data)
{
#define RT_ASSERT_RET(expr) \
if (!(expr)) { \
printk("Assertion failed! %s at ......\n", #expr); \
printk(" ......%s,%s, line=%d\n",__FILE__, __FUNCTION__, __LINE__); \
return _FAIL; \
}
u8 offset, word_en;
u8 *map;
u8 newdata[PGPKT_DATA_SIZE];
s32 i = 0, j = 0, idx;
u8 ret = _SUCCESS;
u16 mapLen = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, _FALSE);
if ((addr + cnts) > mapLen)
return _FAIL;
RT_ASSERT_RET(PGPKT_DATA_SIZE == 8); /* have to be 8 byte alignment */
RT_ASSERT_RET((mapLen & 0x7) == 0); /* have to be PGPKT_DATA_SIZE alignment for memcpy */
map = rtw_zmalloc(mapLen);
if (map == NULL)
return _FAIL;
ret = rtw_BT_efuse_map_read(padapter, 0, mapLen, map);
if (ret == _FAIL)
goto exit;
RTW_INFO("OFFSET\tVALUE(hex)\n");
for (i = 0; i < 1024; i += 16) { /* set 512 because the iwpriv's extra size have limit 0x7FF */
RTW_INFO("0x%03x\t", i);
for (j = 0; j < 8; j++)
RTW_INFO("%02X ", map[i + j]);
RTW_INFO("\t");
for (; j < 16; j++)
RTW_INFO("%02X ", map[i + j]);
RTW_INFO("\n");
}
RTW_INFO("\n");
Efuse_PowerSwitch(padapter, _TRUE, _TRUE);
idx = 0;
offset = (addr >> 3);
while (idx < cnts) {
word_en = 0xF;
j = (addr + idx) & 0x7;
_rtw_memcpy(newdata, &map[offset << 3], PGPKT_DATA_SIZE);
for (i = j; i < PGPKT_DATA_SIZE && idx < cnts; i++, idx++) {
if (data[idx] != map[addr + idx]) {
word_en &= ~BIT(i >> 1);
newdata[i] = data[idx];
}
}
if (word_en != 0xF) {
RTW_INFO("offset=%x\n", offset);
RTW_INFO("word_en=%x\n", word_en);
RTW_INFO("%s: data=", __FUNCTION__);
for (i = 0; i < PGPKT_DATA_SIZE; i++)
RTW_INFO("0x%02X ", newdata[i]);
RTW_INFO("\n");
ret = Efuse_PgPacketWrite_BT(padapter, offset, word_en, newdata, _FALSE);
if (ret == _FAIL)
break;
}
offset++;
}
Efuse_PowerSwitch(padapter, _TRUE, _FALSE);
exit:
rtw_mfree(map, mapLen);
return ret;
}
/*-----------------------------------------------------------------------------
* Function: Efuse_ReadAllMap
*
* Overview: Read All Efuse content
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/11/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
VOID
Efuse_ReadAllMap(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u8 *Efuse,
IN BOOLEAN bPseudoTest);
VOID
Efuse_ReadAllMap(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN OUT u8 *Efuse,
IN BOOLEAN bPseudoTest)
{
u16 mapLen = 0;
Efuse_PowerSwitch(pAdapter, _FALSE, _TRUE);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
efuse_ReadEFuse(pAdapter, efuseType, 0, mapLen, Efuse, bPseudoTest);
Efuse_PowerSwitch(pAdapter, _FALSE, _FALSE);
}
/*-----------------------------------------------------------------------------
* Function: efuse_ShadowRead1Byte
* efuse_ShadowRead2Byte
* efuse_ShadowRead4Byte
*
* Overview: Read from efuse init map by one/two/four bytes !!!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
static VOID
efuse_ShadowRead1Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN OUT u8 *Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
*Value = pHalData->efuse_eeprom_data[Offset];
} /* EFUSE_ShadowRead1Byte */
/* ---------------Read Two Bytes */
static VOID
efuse_ShadowRead2Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN OUT u16 *Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
*Value = pHalData->efuse_eeprom_data[Offset];
*Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
} /* EFUSE_ShadowRead2Byte */
/* ---------------Read Four Bytes */
static VOID
efuse_ShadowRead4Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN OUT u32 *Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
*Value = pHalData->efuse_eeprom_data[Offset];
*Value |= pHalData->efuse_eeprom_data[Offset + 1] << 8;
*Value |= pHalData->efuse_eeprom_data[Offset + 2] << 16;
*Value |= pHalData->efuse_eeprom_data[Offset + 3] << 24;
} /* efuse_ShadowRead4Byte */
/*-----------------------------------------------------------------------------
* Function: efuse_ShadowWrite1Byte
* efuse_ShadowWrite2Byte
* efuse_ShadowWrite4Byte
*
* Overview: Write efuse modify map by one/two/four byte.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
#ifdef PLATFORM
static VOID
efuse_ShadowWrite1Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN u8 Value);
#endif /* PLATFORM */
static VOID
efuse_ShadowWrite1Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN u8 Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
pHalData->efuse_eeprom_data[Offset] = Value;
} /* efuse_ShadowWrite1Byte */
/* ---------------Write Two Bytes */
static VOID
efuse_ShadowWrite2Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN u16 Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
pHalData->efuse_eeprom_data[Offset] = Value & 0x00FF;
pHalData->efuse_eeprom_data[Offset + 1] = Value >> 8;
} /* efuse_ShadowWrite1Byte */
/* ---------------Write Four Bytes */
static VOID
efuse_ShadowWrite4Byte(
IN PADAPTER pAdapter,
IN u16 Offset,
IN u32 Value)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
pHalData->efuse_eeprom_data[Offset] = (u8)(Value & 0x000000FF);
pHalData->efuse_eeprom_data[Offset + 1] = (u8)((Value >> 8) & 0x0000FF);
pHalData->efuse_eeprom_data[Offset + 2] = (u8)((Value >> 16) & 0x00FF);
pHalData->efuse_eeprom_data[Offset + 3] = (u8)((Value >> 24) & 0xFF);
} /* efuse_ShadowWrite1Byte */
/*-----------------------------------------------------------------------------
* Function: EFUSE_ShadowRead
*
* Overview: Read from efuse init map !!!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void
EFUSE_ShadowRead(
IN PADAPTER pAdapter,
IN u8 Type,
IN u16 Offset,
IN OUT u32 *Value)
{
if (Type == 1)
efuse_ShadowRead1Byte(pAdapter, Offset, (u8 *)Value);
else if (Type == 2)
efuse_ShadowRead2Byte(pAdapter, Offset, (u16 *)Value);
else if (Type == 4)
efuse_ShadowRead4Byte(pAdapter, Offset, (u32 *)Value);
} /* EFUSE_ShadowRead */
/*-----------------------------------------------------------------------------
* Function: EFUSE_ShadowWrite
*
* Overview: Write efuse modify map for later update operation to use!!!!!
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
VOID
EFUSE_ShadowWrite(
IN PADAPTER pAdapter,
IN u8 Type,
IN u16 Offset,
IN OUT u32 Value);
VOID
EFUSE_ShadowWrite(
IN PADAPTER pAdapter,
IN u8 Type,
IN u16 Offset,
IN OUT u32 Value)
{
#if (MP_DRIVER == 0)
return;
#endif
if (pAdapter->registrypriv.mp_mode == 0)
return;
if (Type == 1)
efuse_ShadowWrite1Byte(pAdapter, Offset, (u8)Value);
else if (Type == 2)
efuse_ShadowWrite2Byte(pAdapter, Offset, (u16)Value);
else if (Type == 4)
efuse_ShadowWrite4Byte(pAdapter, Offset, (u32)Value);
} /* EFUSE_ShadowWrite */
VOID
Efuse_InitSomeVar(
IN PADAPTER pAdapter
);
VOID
Efuse_InitSomeVar(
IN PADAPTER pAdapter
)
{
u8 i;
_rtw_memset((PVOID)&fakeEfuseContent[0], 0xff, EFUSE_MAX_HW_SIZE);
_rtw_memset((PVOID)&fakeEfuseInitMap[0], 0xff, EFUSE_MAX_MAP_LEN);
_rtw_memset((PVOID)&fakeEfuseModifiedMap[0], 0xff, EFUSE_MAX_MAP_LEN);
for (i = 0; i < EFUSE_MAX_BT_BANK; i++)
_rtw_memset((PVOID)&BTEfuseContent[i][0], EFUSE_MAX_HW_SIZE, 0xff);
_rtw_memset((PVOID)&BTEfuseInitMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
_rtw_memset((PVOID)&BTEfuseModifiedMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
for (i = 0; i < EFUSE_MAX_BT_BANK; i++)
_rtw_memset((PVOID)&fakeBTEfuseContent[i][0], 0xff, EFUSE_MAX_HW_SIZE);
_rtw_memset((PVOID)&fakeBTEfuseInitMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
_rtw_memset((PVOID)&fakeBTEfuseModifiedMap[0], 0xff, EFUSE_BT_MAX_MAP_LEN);
}
#endif /* !RTW_HALMAC */
/* 11/16/2008 MH Add description. Get current efuse area enabled word!!. */
u8
Efuse_CalculateWordCnts(IN u8 word_en)
{
u8 word_cnts = 0;
if (!(word_en & BIT(0)))
word_cnts++; /* 0 : write enable */
if (!(word_en & BIT(1)))
word_cnts++;
if (!(word_en & BIT(2)))
word_cnts++;
if (!(word_en & BIT(3)))
word_cnts++;
return word_cnts;
}
/*-----------------------------------------------------------------------------
* Function: efuse_WordEnableDataRead
*
* Overview: Read allowed word in current efuse section data.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/16/2008 MHC Create Version 0.
* 11/21/2008 MHC Fix Write bug when we only enable late word.
*
*---------------------------------------------------------------------------*/
void
efuse_WordEnableDataRead(IN u8 word_en,
IN u8 *sourdata,
IN u8 *targetdata)
{
if (!(word_en & BIT(0))) {
targetdata[0] = sourdata[0];
targetdata[1] = sourdata[1];
}
if (!(word_en & BIT(1))) {
targetdata[2] = sourdata[2];
targetdata[3] = sourdata[3];
}
if (!(word_en & BIT(2))) {
targetdata[4] = sourdata[4];
targetdata[5] = sourdata[5];
}
if (!(word_en & BIT(3))) {
targetdata[6] = sourdata[6];
targetdata[7] = sourdata[7];
}
}
/*-----------------------------------------------------------------------------
* Function: EFUSE_ShadowMapUpdate
*
* Overview: Transfer current EFUSE content to shadow init and modify map.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 11/13/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
void EFUSE_ShadowMapUpdate(
IN PADAPTER pAdapter,
IN u8 efuseType,
IN BOOLEAN bPseudoTest)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
u16 mapLen = 0;
#ifdef RTW_HALMAC
u8 *efuse_map = NULL;
int err;
mapLen = EEPROM_MAX_SIZE;
efuse_map = pHalData->efuse_eeprom_data;
/* efuse default content is 0xFF */
_rtw_memset(efuse_map, 0xFF, EEPROM_MAX_SIZE);
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
if (!mapLen) {
RTW_WARN("%s: <ERROR> fail to get efuse size!\n", __FUNCTION__);
mapLen = EEPROM_MAX_SIZE;
}
if (mapLen > EEPROM_MAX_SIZE) {
RTW_WARN("%s: <ERROR> size of efuse data(%d) is large than expected(%d)!\n",
__FUNCTION__, mapLen, EEPROM_MAX_SIZE);
mapLen = EEPROM_MAX_SIZE;
}
if (pHalData->bautoload_fail_flag == _FALSE) {
err = rtw_halmac_read_logical_efuse_map(adapter_to_dvobj(pAdapter), efuse_map, mapLen);
if (err)
RTW_ERR("%s: <ERROR> fail to get efuse map!\n", __FUNCTION__);
}
#else /* !RTW_HALMAC */
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_MAP_LEN, (PVOID)&mapLen, bPseudoTest);
if (pHalData->bautoload_fail_flag == _TRUE)
_rtw_memset(pHalData->efuse_eeprom_data, 0xFF, mapLen);
else {
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
if (_SUCCESS != retriveAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data)) {
#endif
Efuse_ReadAllMap(pAdapter, efuseType, pHalData->efuse_eeprom_data, bPseudoTest);
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
storeAdaptorInfoFile(pAdapter->registrypriv.adaptor_info_caching_file_path, pHalData->efuse_eeprom_data);
}
#endif
}
/* PlatformMoveMemory((PVOID)&pHalData->EfuseMap[EFUSE_MODIFY_MAP][0], */
/* (PVOID)&pHalData->EfuseMap[EFUSE_INIT_MAP][0], mapLen); */
#endif /* !RTW_HALMAC */
rtw_dump_cur_efuse(pAdapter);
} /* EFUSE_ShadowMapUpdate */
const u8 _mac_hidden_max_bw_to_hal_bw_cap[MAC_HIDDEN_MAX_BW_NUM] = {
0,
0,
(BW_CAP_160M | BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
(BW_CAP_5M),
(BW_CAP_10M | BW_CAP_5M),
(BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
(BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
(BW_CAP_80M | BW_CAP_40M | BW_CAP_20M | BW_CAP_10M | BW_CAP_5M),
};
const u8 _mac_hidden_proto_to_hal_proto_cap[MAC_HIDDEN_PROTOCOL_NUM] = {
0,
0,
(PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
(PROTO_CAP_11AC | PROTO_CAP_11N | PROTO_CAP_11G | PROTO_CAP_11B),
};
u8 mac_hidden_wl_func_to_hal_wl_func(u8 func)
{
u8 wl_func = 0;
if (func & BIT0)
wl_func |= WL_FUNC_MIRACAST;
if (func & BIT1)
wl_func |= WL_FUNC_P2P;
if (func & BIT2)
wl_func |= WL_FUNC_TDLS;
if (func & BIT3)
wl_func |= WL_FUNC_FTM;
return wl_func;
}
#ifdef PLATFORM_LINUX
#ifdef CONFIG_ADAPTOR_INFO_CACHING_FILE
/* #include <rtw_eeprom.h> */
int isAdaptorInfoFileValid(void)
{
return _TRUE;
}
int storeAdaptorInfoFile(char *path, u8 *efuse_data)
{
int ret = _SUCCESS;
if (path && efuse_data) {
ret = rtw_store_to_file(path, efuse_data, EEPROM_MAX_SIZE_512);
if (ret == EEPROM_MAX_SIZE)
ret = _SUCCESS;
else
ret = _FAIL;
} else {
RTW_INFO("%s NULL pointer\n", __FUNCTION__);
ret = _FAIL;
}
return ret;
}
int retriveAdaptorInfoFile(char *path, u8 *efuse_data)
{
int ret = _SUCCESS;
mm_segment_t oldfs;
struct file *fp;
if (path && efuse_data) {
ret = rtw_retrieve_from_file(path, efuse_data, EEPROM_MAX_SIZE);
if (ret == EEPROM_MAX_SIZE)
ret = _SUCCESS;
else
ret = _FAIL;
#if 0
if (isAdaptorInfoFileValid())
return 0;
else
return _FAIL;
#endif
} else {
RTW_INFO("%s NULL pointer\n", __FUNCTION__);
ret = _FAIL;
}
return ret;
}
#endif /* CONFIG_ADAPTOR_INFO_CACHING_FILE */
u8 rtw_efuse_file_read(PADAPTER padapter, u8 *filepatch, u8 *buf, u32 len)
{
char *ptmpbuf = NULL, *ptr;
u8 val8;
u32 count, i, j;
int err;
u32 bufsize = 4096;
ptmpbuf = rtw_zmalloc(bufsize);
if (ptmpbuf == NULL)
return _FALSE;
count = rtw_retrieve_from_file(filepatch, ptmpbuf, bufsize);
if (count <= 100) {
rtw_mfree(ptmpbuf, bufsize);
RTW_ERR("%s, filepatch %s, size=%d, FAIL!!\n", __FUNCTION__, filepatch, count);
return _FALSE;
}
i = 0;
j = 0;
ptr = ptmpbuf;
while ((j < len) && (i < count)) {
if (ptmpbuf[i] == '\0')
break;
ptr = strpbrk(&ptmpbuf[i], " \t\n\r");
if (ptr) {
if (ptr == &ptmpbuf[i]) {
i++;
continue;
}
/* Add string terminating null */
*ptr = 0;
} else {
ptr = &ptmpbuf[count-1];
}
err = sscanf(&ptmpbuf[i], "%hhx", &val8);
if (err != 1) {
RTW_WARN("Something wrong to parse efuse file, string=%s\n", &ptmpbuf[i]);
} else {
buf[j] = val8;
RTW_DBG("i=%d, j=%d, 0x%02x\n", i, j, buf[j]);
j++;
}
i = ptr - ptmpbuf + 1;
}
rtw_mfree(ptmpbuf, bufsize);
RTW_INFO("%s, filepatch %s, size=%d, done\n", __FUNCTION__, filepatch, count);
return _TRUE;
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
u32 rtw_read_efuse_from_file(const char *path, u8 *buf)
{
u32 i;
u8 temp[3];
u32 ret = _FAIL;
struct file *fp;
mm_segment_t fs;
loff_t pos = 0;
fp = filp_open(path, O_RDONLY, 0);
if (fp == NULL || IS_ERR(fp)) {
if (fp != NULL)
RTW_PRINT("%s open %s fail, err:%ld\n"
, __func__, path, PTR_ERR(fp));
else
RTW_PRINT("%s open %s fail, fp is NULL\n"
, __func__, path);
goto exit;
}
temp[2] = 0; /* add end of string '\0' */
fs = get_fs();
set_fs(KERNEL_DS);
for (i = 0 ; i < HWSET_MAX_SIZE ; i++) {
2017-10-22 23:05:31 +00:00
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
kernel_read(fp, temp, 2, &pos);
#else
vfs_read(fp, temp, 2, &pos);
2017-10-22 23:05:31 +00:00
#endif
if (sscanf(temp, "%hhx", &buf[i]) != 1) {
if (0)
RTW_ERR("%s sscanf fail\n", __func__);
buf[i] = 0xFF;
}
if ((i % EFUSE_FILE_COLUMN_NUM) == (EFUSE_FILE_COLUMN_NUM - 1)) {
/* Filter the lates space char. */
2017-10-22 23:05:31 +00:00
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
kernel_read(fp, temp, 1, &pos);
#else
vfs_read(fp, temp, 1, &pos);
2017-10-22 23:05:31 +00:00
#endif
if (strchr(temp, ' ') == NULL) {
pos--;
2017-10-22 23:05:31 +00:00
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
kernel_read(fp, temp, 2, &pos);
#else
vfs_read(fp, temp, 2, &pos);
2017-10-22 23:05:31 +00:00
#endif
}
} else {
pos += 1; /* Filter the space character */
}
}
set_fs(fs);
RTW_PRINT("efuse file: %s\n", path);
#ifdef CONFIG_RTW_DEBUG
for (i = 0; i < HWSET_MAX_SIZE; i++) {
if (i % 16 == 0)
RTW_PRINT_SEL(RTW_DBGDUMP, "0x%03x: ", i);
_RTW_PRINT_SEL(RTW_DBGDUMP, "%02X%s"
, buf[i]
, ((i + 1) % 16 == 0) ? "\n" : (((i + 1) % 8 == 0) ? " " : " ")
);
}
_RTW_PRINT_SEL(RTW_DBGDUMP, "\n");
#endif
ret = _SUCCESS;
exit:
return ret;
}
u32 rtw_read_macaddr_from_file(const char *path, u8 *buf)
{
struct file *fp;
mm_segment_t fs;
loff_t pos = 0;
u8 source_addr[18];
u8 *head, *end;
int i;
u32 ret = _FAIL;
_rtw_memset(source_addr, 0, 18);
fp = filp_open(path, O_RDONLY, 0);
if (fp == NULL || IS_ERR(fp)) {
if (fp != NULL)
RTW_PRINT("%s open %s fail, err:%ld\n"
, __func__, path, PTR_ERR(fp));
else
RTW_PRINT("%s open %s fail, fp is NULL\n"
, __func__, path);
goto exit;
}
fs = get_fs();
set_fs(KERNEL_DS);
2017-10-22 23:05:31 +00:00
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
kernel_read(fp, source_addr, 18, &pos);
#else
vfs_read(fp, source_addr, 18, &pos);
2017-10-22 23:05:31 +00:00
#endif
source_addr[17] = ':';
head = end = source_addr;
for (i = 0; i < ETH_ALEN; i++) {
while (end && (*end != ':'))
end++;
if (end && (*end == ':'))
*end = '\0';
if (sscanf(head, "%hhx", &buf[i]) != 1) {
if (0)
RTW_ERR("%s sscanf fail\n", __func__);
buf[i] = 0xFF;
}
if (end) {
end++;
head = end;
}
}
set_fs(fs);
RTW_PRINT("wifi_mac file: %s\n", path);
#ifdef CONFIG_RTW_DEBUG
RTW_INFO(MAC_FMT"\n", MAC_ARG(buf));
#endif
ret = _SUCCESS;
exit:
return ret;
}
#endif /* CONFIG_EFUSE_CONFIG_FILE */
#endif /* PLATFORM_LINUX */