/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _HAL_COM_C_ #include #include "hal_com_h2c.h" #include "hal_data.h" //#define CONFIG_GTK_OL_DBG #ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE char file_path[PATH_LENGTH_MAX]; #endif void dump_chip_info(HAL_VERSION ChipVersion) { int cnt = 0; u8 buf[128]={0}; if (IS_8188E(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8188E_"); else if (IS_8188F(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8188F_"); else if (IS_8812_SERIES(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8812_"); else if (IS_8192E(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8192E_"); else if (IS_8821_SERIES(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8821_"); else if (IS_8723B_SERIES(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8723B_"); else if (IS_8703B_SERIES(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8703B_"); else if (IS_8814A_SERIES(ChipVersion)) cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_8814A_"); else cnt += sprintf((buf+cnt), "Chip Version Info: CHIP_UNKNOWN_"); cnt += sprintf((buf+cnt), "%s_", IS_NORMAL_CHIP(ChipVersion)?"Normal_Chip":"Test_Chip"); if(IS_CHIP_VENDOR_TSMC(ChipVersion)) cnt += sprintf((buf+cnt), "%s_","TSMC"); else if(IS_CHIP_VENDOR_UMC(ChipVersion)) cnt += sprintf((buf+cnt), "%s_","UMC"); else if(IS_CHIP_VENDOR_SMIC(ChipVersion)) cnt += sprintf((buf+cnt), "%s_","SMIC"); if (IS_A_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "A_CUT_"); else if (IS_B_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "B_CUT_"); else if (IS_C_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "C_CUT_"); else if (IS_D_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "D_CUT_"); else if (IS_E_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "E_CUT_"); else if (IS_F_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "F_CUT_"); else if (IS_I_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "I_CUT_"); else if (IS_J_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "J_CUT_"); else if (IS_K_CUT(ChipVersion)) cnt += sprintf((buf+cnt), "K_CUT_"); else cnt += sprintf((buf+cnt), "UNKNOWN_CUT(%d)_", ChipVersion.CUTVersion); if(IS_1T1R(ChipVersion)) cnt += sprintf((buf+cnt), "1T1R_"); else if(IS_1T2R(ChipVersion)) cnt += sprintf((buf+cnt), "1T2R_"); else if(IS_2T2R(ChipVersion)) cnt += sprintf((buf+cnt), "2T2R_"); else if(IS_3T3R(ChipVersion)) cnt += sprintf((buf+cnt), "3T3R_"); else if(IS_3T4R(ChipVersion)) cnt += sprintf((buf+cnt), "3T4R_"); else if(IS_4T4R(ChipVersion)) cnt += sprintf((buf+cnt), "4T4R_"); else cnt += sprintf((buf+cnt), "UNKNOWN_RFTYPE(%d)_", ChipVersion.RFType); cnt += sprintf((buf+cnt), "RomVer(%d)\n", ChipVersion.ROMVer); DBG_871X("%s", buf); } void rtw_hal_config_rftype(PADAPTER padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if (IS_1T1R(pHalData->VersionID)) { pHalData->rf_type = RF_1T1R; pHalData->NumTotalRFPath = 1; } else if (IS_2T2R(pHalData->VersionID)) { pHalData->rf_type = RF_2T2R; pHalData->NumTotalRFPath = 2; } else if (IS_1T2R(pHalData->VersionID)) { pHalData->rf_type = RF_1T2R; pHalData->NumTotalRFPath = 2; } else if(IS_3T3R(pHalData->VersionID)) { pHalData->rf_type = RF_3T3R; pHalData->NumTotalRFPath = 3; } else if(IS_4T4R(pHalData->VersionID)) { pHalData->rf_type = RF_4T4R; pHalData->NumTotalRFPath = 4; } else { pHalData->rf_type = RF_1T1R; pHalData->NumTotalRFPath = 1; } DBG_871X("%s RF_Type is %d TotalTxPath is %d \n", __FUNCTION__, pHalData->rf_type, pHalData->NumTotalRFPath); } #define EEPROM_CHANNEL_PLAN_BY_HW_MASK 0x80 /* * Description: * Use hardware(efuse), driver parameter(registry) and default channel plan * to decide which one should be used. * * Parameters: * padapter pointer of adapter * hw_channel_plan channel plan from HW (efuse/eeprom) * BIT[7] software configure mode; 0:Enable, 1:disable * BIT[6:0] Channel Plan * sw_channel_plan channel plan from SW (registry/module param) * def_channel_plan channel plan used when HW/SW both invalid * AutoLoadFail efuse autoload fail or not * * Return: * Final channel plan decision * */ u8 hal_com_config_channel_plan( IN PADAPTER padapter, IN u8 hw_channel_plan, IN u8 sw_channel_plan, IN u8 def_channel_plan, IN BOOLEAN AutoLoadFail ) { PHAL_DATA_TYPE pHalData; u8 hwConfig; u8 chnlPlan; pHalData = GET_HAL_DATA(padapter); pHalData->bDisableSWChannelPlan = _FALSE; chnlPlan = def_channel_plan; if (0xFF == hw_channel_plan) AutoLoadFail = _TRUE; if (_FALSE == AutoLoadFail) { u8 hw_chnlPlan; hw_chnlPlan = hw_channel_plan & (~EEPROM_CHANNEL_PLAN_BY_HW_MASK); if (rtw_is_channel_plan_valid(hw_chnlPlan)) { #ifndef CONFIG_SW_CHANNEL_PLAN if (hw_channel_plan & EEPROM_CHANNEL_PLAN_BY_HW_MASK) pHalData->bDisableSWChannelPlan = _TRUE; #endif // !CONFIG_SW_CHANNEL_PLAN chnlPlan = hw_chnlPlan; } } if ((_FALSE == pHalData->bDisableSWChannelPlan) && rtw_is_channel_plan_valid(sw_channel_plan)) { chnlPlan = sw_channel_plan; } return chnlPlan; } BOOLEAN HAL_IsLegalChannel( IN PADAPTER Adapter, IN u32 Channel ) { BOOLEAN bLegalChannel = _TRUE; if (Channel > 14) { if(IsSupported5G(Adapter->registrypriv.wireless_mode) == _FALSE) { bLegalChannel = _FALSE; DBG_871X("Channel > 14 but wireless_mode do not support 5G\n"); } } else if ((Channel <= 14) && (Channel >=1)){ if(IsSupported24G(Adapter->registrypriv.wireless_mode) == _FALSE) { bLegalChannel = _FALSE; DBG_871X("(Channel <= 14) && (Channel >=1) but wireless_mode do not support 2.4G\n"); } } else { bLegalChannel = _FALSE; DBG_871X("Channel is Invalid !!!\n"); } return bLegalChannel; } u8 MRateToHwRate(u8 rate) { u8 ret = DESC_RATE1M; switch(rate) { case MGN_1M: ret = DESC_RATE1M; break; case MGN_2M: ret = DESC_RATE2M; break; case MGN_5_5M: ret = DESC_RATE5_5M; break; case MGN_11M: ret = DESC_RATE11M; break; case MGN_6M: ret = DESC_RATE6M; break; case MGN_9M: ret = DESC_RATE9M; break; case MGN_12M: ret = DESC_RATE12M; break; case MGN_18M: ret = DESC_RATE18M; break; case MGN_24M: ret = DESC_RATE24M; break; case MGN_36M: ret = DESC_RATE36M; break; case MGN_48M: ret = DESC_RATE48M; break; case MGN_54M: ret = DESC_RATE54M; break; case MGN_MCS0: ret = DESC_RATEMCS0; break; case MGN_MCS1: ret = DESC_RATEMCS1; break; case MGN_MCS2: ret = DESC_RATEMCS2; break; case MGN_MCS3: ret = DESC_RATEMCS3; break; case MGN_MCS4: ret = DESC_RATEMCS4; break; case MGN_MCS5: ret = DESC_RATEMCS5; break; case MGN_MCS6: ret = DESC_RATEMCS6; break; case MGN_MCS7: ret = DESC_RATEMCS7; break; case MGN_MCS8: ret = DESC_RATEMCS8; break; case MGN_MCS9: ret = DESC_RATEMCS9; break; case MGN_MCS10: ret = DESC_RATEMCS10; break; case MGN_MCS11: ret = DESC_RATEMCS11; break; case MGN_MCS12: ret = DESC_RATEMCS12; break; case MGN_MCS13: ret = DESC_RATEMCS13; break; case MGN_MCS14: ret = DESC_RATEMCS14; break; case MGN_MCS15: ret = DESC_RATEMCS15; break; case MGN_MCS16: ret = DESC_RATEMCS16; break; case MGN_MCS17: ret = DESC_RATEMCS17; break; case MGN_MCS18: ret = DESC_RATEMCS18; break; case MGN_MCS19: ret = DESC_RATEMCS19; break; case MGN_MCS20: ret = DESC_RATEMCS20; break; case MGN_MCS21: ret = DESC_RATEMCS21; break; case MGN_MCS22: ret = DESC_RATEMCS22; break; case MGN_MCS23: ret = DESC_RATEMCS23; break; case MGN_MCS24: ret = DESC_RATEMCS24; break; case MGN_MCS25: ret = DESC_RATEMCS25; break; case MGN_MCS26: ret = DESC_RATEMCS26; break; case MGN_MCS27: ret = DESC_RATEMCS27; break; case MGN_MCS28: ret = DESC_RATEMCS28; break; case MGN_MCS29: ret = DESC_RATEMCS29; break; case MGN_MCS30: ret = DESC_RATEMCS30; break; case MGN_MCS31: ret = DESC_RATEMCS31; break; case MGN_VHT1SS_MCS0: ret = DESC_RATEVHTSS1MCS0; break; case MGN_VHT1SS_MCS1: ret = DESC_RATEVHTSS1MCS1; break; case MGN_VHT1SS_MCS2: ret = DESC_RATEVHTSS1MCS2; break; case MGN_VHT1SS_MCS3: ret = DESC_RATEVHTSS1MCS3; break; case MGN_VHT1SS_MCS4: ret = DESC_RATEVHTSS1MCS4; break; case MGN_VHT1SS_MCS5: ret = DESC_RATEVHTSS1MCS5; break; case MGN_VHT1SS_MCS6: ret = DESC_RATEVHTSS1MCS6; break; case MGN_VHT1SS_MCS7: ret = DESC_RATEVHTSS1MCS7; break; case MGN_VHT1SS_MCS8: ret = DESC_RATEVHTSS1MCS8; break; case MGN_VHT1SS_MCS9: ret = DESC_RATEVHTSS1MCS9; break; case MGN_VHT2SS_MCS0: ret = DESC_RATEVHTSS2MCS0; break; case MGN_VHT2SS_MCS1: ret = DESC_RATEVHTSS2MCS1; break; case MGN_VHT2SS_MCS2: ret = DESC_RATEVHTSS2MCS2; break; case MGN_VHT2SS_MCS3: ret = DESC_RATEVHTSS2MCS3; break; case MGN_VHT2SS_MCS4: ret = DESC_RATEVHTSS2MCS4; break; case MGN_VHT2SS_MCS5: ret = DESC_RATEVHTSS2MCS5; break; case MGN_VHT2SS_MCS6: ret = DESC_RATEVHTSS2MCS6; break; case MGN_VHT2SS_MCS7: ret = DESC_RATEVHTSS2MCS7; break; case MGN_VHT2SS_MCS8: ret = DESC_RATEVHTSS2MCS8; break; case MGN_VHT2SS_MCS9: ret = DESC_RATEVHTSS2MCS9; break; case MGN_VHT3SS_MCS0: ret = DESC_RATEVHTSS3MCS0; break; case MGN_VHT3SS_MCS1: ret = DESC_RATEVHTSS3MCS1; break; case MGN_VHT3SS_MCS2: ret = DESC_RATEVHTSS3MCS2; break; case MGN_VHT3SS_MCS3: ret = DESC_RATEVHTSS3MCS3; break; case MGN_VHT3SS_MCS4: ret = DESC_RATEVHTSS3MCS4; break; case MGN_VHT3SS_MCS5: ret = DESC_RATEVHTSS3MCS5; break; case MGN_VHT3SS_MCS6: ret = DESC_RATEVHTSS3MCS6; break; case MGN_VHT3SS_MCS7: ret = DESC_RATEVHTSS3MCS7; break; case MGN_VHT3SS_MCS8: ret = DESC_RATEVHTSS3MCS8; break; case MGN_VHT3SS_MCS9: ret = DESC_RATEVHTSS3MCS9; break; case MGN_VHT4SS_MCS0: ret = DESC_RATEVHTSS4MCS0; break; case MGN_VHT4SS_MCS1: ret = DESC_RATEVHTSS4MCS1; break; case MGN_VHT4SS_MCS2: ret = DESC_RATEVHTSS4MCS2; break; case MGN_VHT4SS_MCS3: ret = DESC_RATEVHTSS4MCS3; break; case MGN_VHT4SS_MCS4: ret = DESC_RATEVHTSS4MCS4; break; case MGN_VHT4SS_MCS5: ret = DESC_RATEVHTSS4MCS5; break; case MGN_VHT4SS_MCS6: ret = DESC_RATEVHTSS4MCS6; break; case MGN_VHT4SS_MCS7: ret = DESC_RATEVHTSS4MCS7; break; case MGN_VHT4SS_MCS8: ret = DESC_RATEVHTSS4MCS8; break; case MGN_VHT4SS_MCS9: ret = DESC_RATEVHTSS4MCS9; break; default: break; } return ret; } u8 HwRateToMRate(u8 rate) { u8 ret_rate = MGN_1M; switch(rate) { case DESC_RATE1M: ret_rate = MGN_1M; break; case DESC_RATE2M: ret_rate = MGN_2M; break; case DESC_RATE5_5M: ret_rate = MGN_5_5M; break; case DESC_RATE11M: ret_rate = MGN_11M; break; case DESC_RATE6M: ret_rate = MGN_6M; break; case DESC_RATE9M: ret_rate = MGN_9M; break; case DESC_RATE12M: ret_rate = MGN_12M; break; case DESC_RATE18M: ret_rate = MGN_18M; break; case DESC_RATE24M: ret_rate = MGN_24M; break; case DESC_RATE36M: ret_rate = MGN_36M; break; case DESC_RATE48M: ret_rate = MGN_48M; break; case DESC_RATE54M: ret_rate = MGN_54M; break; case DESC_RATEMCS0: ret_rate = MGN_MCS0; break; case DESC_RATEMCS1: ret_rate = MGN_MCS1; break; case DESC_RATEMCS2: ret_rate = MGN_MCS2; break; case DESC_RATEMCS3: ret_rate = MGN_MCS3; break; case DESC_RATEMCS4: ret_rate = MGN_MCS4; break; case DESC_RATEMCS5: ret_rate = MGN_MCS5; break; case DESC_RATEMCS6: ret_rate = MGN_MCS6; break; case DESC_RATEMCS7: ret_rate = MGN_MCS7; break; case DESC_RATEMCS8: ret_rate = MGN_MCS8; break; case DESC_RATEMCS9: ret_rate = MGN_MCS9; break; case DESC_RATEMCS10: ret_rate = MGN_MCS10; break; case DESC_RATEMCS11: ret_rate = MGN_MCS11; break; case DESC_RATEMCS12: ret_rate = MGN_MCS12; break; case DESC_RATEMCS13: ret_rate = MGN_MCS13; break; case DESC_RATEMCS14: ret_rate = MGN_MCS14; break; case DESC_RATEMCS15: ret_rate = MGN_MCS15; break; case DESC_RATEMCS16: ret_rate = MGN_MCS16; break; case DESC_RATEMCS17: ret_rate = MGN_MCS17; break; case DESC_RATEMCS18: ret_rate = MGN_MCS18; break; case DESC_RATEMCS19: ret_rate = MGN_MCS19; break; case DESC_RATEMCS20: ret_rate = MGN_MCS20; break; case DESC_RATEMCS21: ret_rate = MGN_MCS21; break; case DESC_RATEMCS22: ret_rate = MGN_MCS22; break; case DESC_RATEMCS23: ret_rate = MGN_MCS23; break; case DESC_RATEMCS24: ret_rate = MGN_MCS24; break; case DESC_RATEMCS25: ret_rate = MGN_MCS25; break; case DESC_RATEMCS26: ret_rate = MGN_MCS26; break; case DESC_RATEMCS27: ret_rate = MGN_MCS27; break; case DESC_RATEMCS28: ret_rate = MGN_MCS28; break; case DESC_RATEMCS29: ret_rate = MGN_MCS29; break; case DESC_RATEMCS30: ret_rate = MGN_MCS30; break; case DESC_RATEMCS31: ret_rate = MGN_MCS31; break; case DESC_RATEVHTSS1MCS0: ret_rate = MGN_VHT1SS_MCS0; break; case DESC_RATEVHTSS1MCS1: ret_rate = MGN_VHT1SS_MCS1; break; case DESC_RATEVHTSS1MCS2: ret_rate = MGN_VHT1SS_MCS2; break; case DESC_RATEVHTSS1MCS3: ret_rate = MGN_VHT1SS_MCS3; break; case DESC_RATEVHTSS1MCS4: ret_rate = MGN_VHT1SS_MCS4; break; case DESC_RATEVHTSS1MCS5: ret_rate = MGN_VHT1SS_MCS5; break; case DESC_RATEVHTSS1MCS6: ret_rate = MGN_VHT1SS_MCS6; break; case DESC_RATEVHTSS1MCS7: ret_rate = MGN_VHT1SS_MCS7; break; case DESC_RATEVHTSS1MCS8: ret_rate = MGN_VHT1SS_MCS8; break; case DESC_RATEVHTSS1MCS9: ret_rate = MGN_VHT1SS_MCS9; break; case DESC_RATEVHTSS2MCS0: ret_rate = MGN_VHT2SS_MCS0; break; case DESC_RATEVHTSS2MCS1: ret_rate = MGN_VHT2SS_MCS1; break; case DESC_RATEVHTSS2MCS2: ret_rate = MGN_VHT2SS_MCS2; break; case DESC_RATEVHTSS2MCS3: ret_rate = MGN_VHT2SS_MCS3; break; case DESC_RATEVHTSS2MCS4: ret_rate = MGN_VHT2SS_MCS4; break; case DESC_RATEVHTSS2MCS5: ret_rate = MGN_VHT2SS_MCS5; break; case DESC_RATEVHTSS2MCS6: ret_rate = MGN_VHT2SS_MCS6; break; case DESC_RATEVHTSS2MCS7: ret_rate = MGN_VHT2SS_MCS7; break; case DESC_RATEVHTSS2MCS8: ret_rate = MGN_VHT2SS_MCS8; break; case DESC_RATEVHTSS2MCS9: ret_rate = MGN_VHT2SS_MCS9; break; case DESC_RATEVHTSS3MCS0: ret_rate = MGN_VHT3SS_MCS0; break; case DESC_RATEVHTSS3MCS1: ret_rate = MGN_VHT3SS_MCS1; break; case DESC_RATEVHTSS3MCS2: ret_rate = MGN_VHT3SS_MCS2; break; case DESC_RATEVHTSS3MCS3: ret_rate = MGN_VHT3SS_MCS3; break; case DESC_RATEVHTSS3MCS4: ret_rate = MGN_VHT3SS_MCS4; break; case DESC_RATEVHTSS3MCS5: ret_rate = MGN_VHT3SS_MCS5; break; case DESC_RATEVHTSS3MCS6: ret_rate = MGN_VHT3SS_MCS6; break; case DESC_RATEVHTSS3MCS7: ret_rate = MGN_VHT3SS_MCS7; break; case DESC_RATEVHTSS3MCS8: ret_rate = MGN_VHT3SS_MCS8; break; case DESC_RATEVHTSS3MCS9: ret_rate = MGN_VHT3SS_MCS9; break; case DESC_RATEVHTSS4MCS0: ret_rate = MGN_VHT4SS_MCS0; break; case DESC_RATEVHTSS4MCS1: ret_rate = MGN_VHT4SS_MCS1; break; case DESC_RATEVHTSS4MCS2: ret_rate = MGN_VHT4SS_MCS2; break; case DESC_RATEVHTSS4MCS3: ret_rate = MGN_VHT4SS_MCS3; break; case DESC_RATEVHTSS4MCS4: ret_rate = MGN_VHT4SS_MCS4; break; case DESC_RATEVHTSS4MCS5: ret_rate = MGN_VHT4SS_MCS5; break; case DESC_RATEVHTSS4MCS6: ret_rate = MGN_VHT4SS_MCS6; break; case DESC_RATEVHTSS4MCS7: ret_rate = MGN_VHT4SS_MCS7; break; case DESC_RATEVHTSS4MCS8: ret_rate = MGN_VHT4SS_MCS8; break; case DESC_RATEVHTSS4MCS9: ret_rate = MGN_VHT4SS_MCS9; break; default: DBG_871X("HwRateToMRate(): Non supported Rate [%x]!!!\n",rate ); break; } return ret_rate; } void HalSetBrateCfg( IN PADAPTER Adapter, IN u8 *mBratesOS, OUT u16 *pBrateCfg) { u8 i, is_brate, brate; for(i=0;iQueue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[0];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } static VOID _TwoOutPipeMapping( IN PADAPTER pAdapter, IN BOOLEAN bWIFICfg ) { struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter); if(bWIFICfg){ //WMM // BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA //{ 0, 1, 0, 1, 0, 0, 0, 0, 0 }; //0:ep_0 num, 1:ep_1 num pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[1];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[0];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } else{//typical setting //BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA //{ 1, 1, 0, 0, 0, 0, 0, 0, 0 }; //0:ep_0 num, 1:ep_1 num pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[0];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[1];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } } static VOID _ThreeOutPipeMapping( IN PADAPTER pAdapter, IN BOOLEAN bWIFICfg ) { struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter); if(bWIFICfg){//for WMM // BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA //{ 1, 2, 1, 0, 0, 0, 0, 0, 0 }; //0:H, 1:N, 2:L pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } else{//typical setting // BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA //{ 2, 2, 1, 0, 0, 0, 0, 0, 0 }; //0:H, 1:N, 2:L pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[0];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } } static VOID _FourOutPipeMapping( IN PADAPTER pAdapter, IN BOOLEAN bWIFICfg ) { struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(pAdapter); if(bWIFICfg){//for WMM // BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA //{ 1, 2, 1, 0, 0, 0, 0, 0, 0 }; //0:H, 1:N, 2:L ,3:E pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[1];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[3];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } else{//typical setting // BK, BE, VI, VO, BCN, CMD,MGT,HIGH,HCCA //{ 2, 2, 1, 0, 0, 0, 0, 0, 0 }; //0:H, 1:N, 2:L pdvobjpriv->Queue2Pipe[0] = pdvobjpriv->RtOutPipe[0];//VO pdvobjpriv->Queue2Pipe[1] = pdvobjpriv->RtOutPipe[1];//VI pdvobjpriv->Queue2Pipe[2] = pdvobjpriv->RtOutPipe[2];//BE pdvobjpriv->Queue2Pipe[3] = pdvobjpriv->RtOutPipe[2];//BK pdvobjpriv->Queue2Pipe[4] = pdvobjpriv->RtOutPipe[0];//BCN pdvobjpriv->Queue2Pipe[5] = pdvobjpriv->RtOutPipe[0];//MGT pdvobjpriv->Queue2Pipe[6] = pdvobjpriv->RtOutPipe[3];//HIGH pdvobjpriv->Queue2Pipe[7] = pdvobjpriv->RtOutPipe[0];//TXCMD } } BOOLEAN Hal_MappingOutPipe( IN PADAPTER pAdapter, IN u8 NumOutPipe ) { struct registry_priv *pregistrypriv = &pAdapter->registrypriv; BOOLEAN bWIFICfg = (pregistrypriv->wifi_spec) ?_TRUE:_FALSE; BOOLEAN result = _TRUE; switch(NumOutPipe) { case 2: _TwoOutPipeMapping(pAdapter, bWIFICfg); break; case 3: case 4: _ThreeOutPipeMapping(pAdapter, bWIFICfg); break; case 1: _OneOutPipeMapping(pAdapter); break; default: result = _FALSE; break; } return result; } void hal_init_macaddr(_adapter *adapter) { rtw_hal_set_hwreg(adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(adapter)); #ifdef CONFIG_CONCURRENT_MODE if (adapter->pbuddy_adapter) rtw_hal_set_hwreg(adapter->pbuddy_adapter, HW_VAR_MAC_ADDR, adapter_mac_addr(adapter->pbuddy_adapter)); #endif } void rtw_init_hal_com_default_value(PADAPTER Adapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter); pHalData->AntDetection = 1; } /* * C2H event format: * Field TRIGGER CONTENT CMD_SEQ CMD_LEN CMD_ID * BITS [127:120] [119:16] [15:8] [7:4] [3:0] */ void c2h_evt_clear(_adapter *adapter) { rtw_write8(adapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); } s32 c2h_evt_read(_adapter *adapter, u8 *buf) { s32 ret = _FAIL; struct c2h_evt_hdr *c2h_evt; int i; u8 trigger; if (buf == NULL) goto exit; #if defined (CONFIG_RTL8188E) trigger = rtw_read8(adapter, REG_C2HEVT_CLEAR); if (trigger == C2H_EVT_HOST_CLOSE) { goto exit; /* Not ready */ } else if (trigger != C2H_EVT_FW_CLOSE) { goto clear_evt; /* Not a valid value */ } c2h_evt = (struct c2h_evt_hdr *)buf; _rtw_memset(c2h_evt, 0, 16); *buf = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL); *(buf+1) = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 1); RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): ", &c2h_evt , sizeof(c2h_evt)); if (0) { DBG_871X("%s id:%u, len:%u, seq:%u, trigger:0x%02x\n", __func__ , c2h_evt->id, c2h_evt->plen, c2h_evt->seq, trigger); } /* Read the content */ for (i = 0; i < c2h_evt->plen; i++) c2h_evt->payload[i] = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 2 + i); RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): Command Content:\n", c2h_evt->payload, c2h_evt->plen); ret = _SUCCESS; clear_evt: /* * Clear event to notify FW we have read the command. * If this field isn't clear, the FW won't update the next command message. */ c2h_evt_clear(adapter); #endif exit: return ret; } /* * C2H event format: * Field TRIGGER CMD_LEN CONTENT CMD_SEQ CMD_ID * BITS [127:120] [119:112] [111:16] [15:8] [7:0] */ s32 c2h_evt_read_88xx(_adapter *adapter, u8 *buf) { s32 ret = _FAIL; struct c2h_evt_hdr_88xx *c2h_evt; int i; u8 trigger; if (buf == NULL) goto exit; #if defined(CONFIG_RTL8812A) || defined(CONFIG_RTL8821A) || defined(CONFIG_RTL8192E) || defined(CONFIG_RTL8723B) || defined(CONFIG_RTL8703B) trigger = rtw_read8(adapter, REG_C2HEVT_CLEAR); if (trigger == C2H_EVT_HOST_CLOSE) { goto exit; /* Not ready */ } else if (trigger != C2H_EVT_FW_CLOSE) { goto clear_evt; /* Not a valid value */ } c2h_evt = (struct c2h_evt_hdr_88xx *)buf; _rtw_memset(c2h_evt, 0, 16); c2h_evt->id = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL); c2h_evt->seq = rtw_read8(adapter, REG_C2HEVT_CMD_SEQ_88XX); c2h_evt->plen = rtw_read8(adapter, REG_C2HEVT_CMD_LEN_88XX); RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): ", &c2h_evt , sizeof(c2h_evt)); if (0) { DBG_871X("%s id:%u, len:%u, seq:%u, trigger:0x%02x\n", __func__ , c2h_evt->id, c2h_evt->plen, c2h_evt->seq, trigger); } /* Read the content */ for (i = 0; i < c2h_evt->plen; i++) c2h_evt->payload[i] = rtw_read8(adapter, REG_C2HEVT_MSG_NORMAL + 2 + i); RT_PRINT_DATA(_module_hal_init_c_, _drv_info_, "c2h_evt_read(): Command Content:\n", c2h_evt->payload, c2h_evt->plen); ret = _SUCCESS; clear_evt: /* * Clear event to notify FW we have read the command. * If this field isn't clear, the FW won't update the next command message. */ c2h_evt_clear(adapter); #endif exit: return ret; } u8 rtw_hal_networktype_to_raid(_adapter *adapter, struct sta_info *psta) { if(IS_NEW_GENERATION_IC(adapter)){ return networktype_to_raid_ex(adapter,psta); } else{ return networktype_to_raid(adapter,psta); } } u8 rtw_get_mgntframe_raid(_adapter *adapter,unsigned char network_type) { u8 raid; if(IS_NEW_GENERATION_IC(adapter)){ raid = (network_type & WIRELESS_11B) ?RATEID_IDX_B :RATEID_IDX_G; } else{ raid = (network_type & WIRELESS_11B) ?RATR_INX_WIRELESS_B :RATR_INX_WIRELESS_G; } return raid; } void rtw_hal_update_sta_rate_mask(PADAPTER padapter, struct sta_info *psta) { u8 i, rf_type, limit; u64 tx_ra_bitmap; if(psta == NULL) { return; } tx_ra_bitmap = 0; //b/g mode ra_bitmap for (i=0; ibssrateset); i++) { if (psta->bssrateset[i]) tx_ra_bitmap |= rtw_get_bit_value_from_ieee_value(psta->bssrateset[i]&0x7f); } #ifdef CONFIG_80211N_HT #ifdef CONFIG_80211AC_VHT //AC mode ra_bitmap if(psta->vhtpriv.vht_option) { tx_ra_bitmap |= (rtw_vht_rate_to_bitmap(psta->vhtpriv.vht_mcs_map) << 12); } else #endif //CONFIG_80211AC_VHT { //n mode ra_bitmap if(psta->htpriv.ht_option) { rf_type = RF_1T1R; rtw_hal_get_hwreg(padapter, HW_VAR_RF_TYPE, (u8 *)(&rf_type)); if(rf_type == RF_2T2R) limit=16;// 2R else if(rf_type == RF_3T3R) limit=24;// 3R else limit=8;// 1R /* Handling SMPS mode for AP MODE only*/ if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE) { /*0:static SMPS, 1:dynamic SMPS, 3:SMPS disabled, 2:reserved*/ if (psta->htpriv.smps_cap == 0 || psta->htpriv.smps_cap == 1) { /*operate with only one active receive chain // 11n-MCS rate <= MSC7*/ limit = 8;/* 1R*/ } } for (i=0; ihtpriv.ht_cap.supp_mcs_set[i/8] & BIT(i%8)) tx_ra_bitmap |= BIT(i+12); } } } #endif //CONFIG_80211N_HT DBG_871X("supp_mcs_set = %02x, %02x, %02x, rf_type=%d, tx_ra_bitmap=%016llx\n" , psta->htpriv.ht_cap.supp_mcs_set[0], psta->htpriv.ht_cap.supp_mcs_set[1], psta->htpriv.ht_cap.supp_mcs_set[2], rf_type, tx_ra_bitmap); psta->ra_mask = tx_ra_bitmap; psta->init_rate = get_highest_rate_idx(tx_ra_bitmap)&0x3f; } #ifndef SEC_CAM_ACCESS_TIMEOUT_MS #define SEC_CAM_ACCESS_TIMEOUT_MS 200 #endif #ifndef DBG_SEC_CAM_ACCESS #define DBG_SEC_CAM_ACCESS 0 #endif u32 rtw_sec_read_cam(_adapter *adapter, u8 addr) { _mutex *mutex = &adapter_to_dvobj(adapter)->cam_ctl.sec_cam_access_mutex; u32 rdata; u32 cnt = 0; u32 start = 0, end = 0; u8 timeout = 0; u8 sr = 0; _enter_critical_mutex(mutex, NULL); rtw_write32(adapter, REG_CAMCMD, CAM_POLLINIG | addr); start = rtw_get_current_time(); while (1) { if (rtw_is_surprise_removed(adapter)) { sr = 1; break; } cnt++; if (0 == (rtw_read32(adapter, REG_CAMCMD) & CAM_POLLINIG)) break; if (rtw_get_passing_time_ms(start) > SEC_CAM_ACCESS_TIMEOUT_MS) { timeout = 1; break; } } end = rtw_get_current_time(); rdata = rtw_read32(adapter, REG_CAMREAD); _exit_critical_mutex(mutex, NULL); if (DBG_SEC_CAM_ACCESS || timeout) { DBG_871X(FUNC_ADPT_FMT" addr:0x%02x, rdata:0x%08x, to:%u, polling:%u, %d ms\n" , FUNC_ADPT_ARG(adapter), addr, rdata, timeout, cnt, rtw_get_time_interval_ms(start, end)); } return rdata; } void rtw_sec_write_cam(_adapter *adapter, u8 addr, u32 wdata) { _mutex *mutex = &adapter_to_dvobj(adapter)->cam_ctl.sec_cam_access_mutex; u32 cnt = 0; u32 start = 0, end = 0; u8 timeout = 0; u8 sr = 0; _enter_critical_mutex(mutex, NULL); rtw_write32(adapter, REG_CAMWRITE, wdata); rtw_write32(adapter, REG_CAMCMD, CAM_POLLINIG | CAM_WRITE | addr); start = rtw_get_current_time(); while (1) { if (rtw_is_surprise_removed(adapter)) { sr = 1; break; } cnt++; if (0 == (rtw_read32(adapter, REG_CAMCMD) & CAM_POLLINIG)) break; if (rtw_get_passing_time_ms(start) > SEC_CAM_ACCESS_TIMEOUT_MS) { timeout = 1; break; } } end = rtw_get_current_time(); _exit_critical_mutex(mutex, NULL); if (DBG_SEC_CAM_ACCESS || timeout) { DBG_871X(FUNC_ADPT_FMT" addr:0x%02x, wdata:0x%08x, to:%u, polling:%u, %d ms\n" , FUNC_ADPT_ARG(adapter), addr, wdata, timeout, cnt, rtw_get_time_interval_ms(start, end)); } } void rtw_sec_read_cam_ent(_adapter *adapter, u8 id, u8 *ctrl, u8 *mac, u8 *key) { unsigned int val, addr; u8 i; u32 rdata; u8 begin = 0; u8 end = 5; /* TODO: consider other key length accordingly */ if (!ctrl && !mac && !key) { rtw_warn_on(1); goto exit; } /* TODO: check id range */ if (!ctrl && !mac) begin = 2; /* read from key */ if (!key && !mac) end = 0; /* read to ctrl */ else if (!key) end = 2; /* read to mac */ for (i = begin; i <= end; i++) { rdata = rtw_sec_read_cam(adapter, (id << 3) | i); switch (i) { case 0: if (ctrl) _rtw_memcpy(ctrl, (u8 *)(&rdata), 2); if (mac) _rtw_memcpy(mac, ((u8 *)(&rdata)) + 2, 2); break; case 1: if (mac) _rtw_memcpy(mac + 2, (u8 *)(&rdata), 4); break; default: if (key) _rtw_memcpy(key + (i - 2) * 4, (u8 *)(&rdata), 4); break; } } exit: return; } void rtw_sec_write_cam_ent(_adapter *adapter, u8 id, u16 ctrl, u8 *mac, u8 *key) { unsigned int i; int j; u8 addr; u32 wdata; /* TODO: consider other key length accordingly */ #if 0 switch ((ctrl & 0x1c) >> 2) { case _WEP40_: case _TKIP_ case _AES_ case _WEP104_ } #else j = 5; #endif for (; j >= 0; j--) { switch (j) { case 0: wdata = (ctrl | (mac[0] << 16) | (mac[1] << 24)); break; case 1: wdata = (mac[2] | (mac[3] << 8) | (mac[4] << 16) | (mac[5] << 24)); break; default: i = (j - 2) << 2; wdata = (key[i] | (key[i + 1] << 8) | (key[i + 2] << 16) | (key[i + 3] << 24)); break; } addr = (id << 3) + j; rtw_sec_write_cam(adapter, addr, wdata); } } bool rtw_sec_read_cam_is_gk(_adapter *adapter, u8 id) { bool res; u16 ctrl; rtw_sec_read_cam_ent(adapter, id, (u8 *)&ctrl, NULL, NULL); res = (ctrl & BIT6) ? _TRUE : _FALSE; return res; } void hw_var_port_switch(_adapter *adapter) { #ifdef CONFIG_CONCURRENT_MODE #ifdef CONFIG_RUNTIME_PORT_SWITCH /* 0x102: MSR 0x550: REG_BCN_CTRL 0x551: REG_BCN_CTRL_1 0x55A: REG_ATIMWND 0x560: REG_TSFTR 0x568: REG_TSFTR1 0x570: REG_ATIMWND_1 0x610: REG_MACID 0x618: REG_BSSID 0x700: REG_MACID1 0x708: REG_BSSID1 */ int i; u8 msr; u8 bcn_ctrl; u8 bcn_ctrl_1; u8 atimwnd[2]; u8 atimwnd_1[2]; u8 tsftr[8]; u8 tsftr_1[8]; u8 macid[6]; u8 bssid[6]; u8 macid_1[6]; u8 bssid_1[6]; u8 iface_type; msr = rtw_read8(adapter, MSR); bcn_ctrl = rtw_read8(adapter, REG_BCN_CTRL); bcn_ctrl_1 = rtw_read8(adapter, REG_BCN_CTRL_1); for (i=0; i<2; i++) atimwnd[i] = rtw_read8(adapter, REG_ATIMWND+i); for (i=0; i<2; i++) atimwnd_1[i] = rtw_read8(adapter, REG_ATIMWND_1+i); for (i=0; i<8; i++) tsftr[i] = rtw_read8(adapter, REG_TSFTR+i); for (i=0; i<8; i++) tsftr_1[i] = rtw_read8(adapter, REG_TSFTR1+i); for (i=0; i<6; i++) macid[i] = rtw_read8(adapter, REG_MACID+i); for (i=0; i<6; i++) bssid[i] = rtw_read8(adapter, REG_BSSID+i); for (i=0; i<6; i++) macid_1[i] = rtw_read8(adapter, REG_MACID1+i); for (i=0; i<6; i++) bssid_1[i] = rtw_read8(adapter, REG_BSSID1+i); #ifdef DBG_RUNTIME_PORT_SWITCH DBG_871X(FUNC_ADPT_FMT" before switch\n" "msr:0x%02x\n" "bcn_ctrl:0x%02x\n" "bcn_ctrl_1:0x%02x\n" "atimwnd:0x%04x\n" "atimwnd_1:0x%04x\n" "tsftr:%llu\n" "tsftr1:%llu\n" "macid:"MAC_FMT"\n" "bssid:"MAC_FMT"\n" "macid_1:"MAC_FMT"\n" "bssid_1:"MAC_FMT"\n" , FUNC_ADPT_ARG(adapter) , msr , bcn_ctrl , bcn_ctrl_1 , *((u16*)atimwnd) , *((u16*)atimwnd_1) , *((u64*)tsftr) , *((u64*)tsftr_1) , MAC_ARG(macid) , MAC_ARG(bssid) , MAC_ARG(macid_1) , MAC_ARG(bssid_1) ); #endif /* DBG_RUNTIME_PORT_SWITCH */ /* disable bcn function, disable update TSF */ rtw_write8(adapter, REG_BCN_CTRL, (bcn_ctrl & (~EN_BCN_FUNCTION)) | DIS_TSF_UDT); rtw_write8(adapter, REG_BCN_CTRL_1, (bcn_ctrl_1 & (~EN_BCN_FUNCTION)) | DIS_TSF_UDT); /* switch msr */ msr = (msr&0xf0) |((msr&0x03) << 2) | ((msr&0x0c) >> 2); rtw_write8(adapter, MSR, msr); /* write port0 */ rtw_write8(adapter, REG_BCN_CTRL, bcn_ctrl_1 & ~EN_BCN_FUNCTION); for (i=0; i<2; i++) rtw_write8(adapter, REG_ATIMWND+i, atimwnd_1[i]); for (i=0; i<8; i++) rtw_write8(adapter, REG_TSFTR+i, tsftr_1[i]); for (i=0; i<6; i++) rtw_write8(adapter, REG_MACID+i, macid_1[i]); for (i=0; i<6; i++) rtw_write8(adapter, REG_BSSID+i, bssid_1[i]); /* write port1 */ rtw_write8(adapter, REG_BCN_CTRL_1, bcn_ctrl & ~EN_BCN_FUNCTION); for (i=0; i<2; i++) rtw_write8(adapter, REG_ATIMWND_1+1, atimwnd[i]); for (i=0; i<8; i++) rtw_write8(adapter, REG_TSFTR1+i, tsftr[i]); for (i=0; i<6; i++) rtw_write8(adapter, REG_MACID1+i, macid[i]); for (i=0; i<6; i++) rtw_write8(adapter, REG_BSSID1+i, bssid[i]); /* write bcn ctl */ #ifdef CONFIG_BT_COEXIST #if defined(CONFIG_RTL8723B) || defined(CONFIG_RTL8703B) // always enable port0 beacon function for PSTDMA bcn_ctrl_1 |= EN_BCN_FUNCTION; // always disable port1 beacon function for PSTDMA bcn_ctrl &= ~EN_BCN_FUNCTION; #endif #endif rtw_write8(adapter, REG_BCN_CTRL, bcn_ctrl_1); rtw_write8(adapter, REG_BCN_CTRL_1, bcn_ctrl); if (adapter->iface_type == IFACE_PORT0) { adapter->iface_type = IFACE_PORT1; adapter->pbuddy_adapter->iface_type = IFACE_PORT0; DBG_871X_LEVEL(_drv_always_, "port switch - port0("ADPT_FMT"), port1("ADPT_FMT")\n", ADPT_ARG(adapter->pbuddy_adapter), ADPT_ARG(adapter)); } else { adapter->iface_type = IFACE_PORT0; adapter->pbuddy_adapter->iface_type = IFACE_PORT1; DBG_871X_LEVEL(_drv_always_, "port switch - port0("ADPT_FMT"), port1("ADPT_FMT")\n", ADPT_ARG(adapter), ADPT_ARG(adapter->pbuddy_adapter)); } #ifdef DBG_RUNTIME_PORT_SWITCH msr = rtw_read8(adapter, MSR); bcn_ctrl = rtw_read8(adapter, REG_BCN_CTRL); bcn_ctrl_1 = rtw_read8(adapter, REG_BCN_CTRL_1); for (i=0; i<2; i++) atimwnd[i] = rtw_read8(adapter, REG_ATIMWND+i); for (i=0; i<2; i++) atimwnd_1[i] = rtw_read8(adapter, REG_ATIMWND_1+i); for (i=0; i<8; i++) tsftr[i] = rtw_read8(adapter, REG_TSFTR+i); for (i=0; i<8; i++) tsftr_1[i] = rtw_read8(adapter, REG_TSFTR1+i); for (i=0; i<6; i++) macid[i] = rtw_read8(adapter, REG_MACID+i); for (i=0; i<6; i++) bssid[i] = rtw_read8(adapter, REG_BSSID+i); for (i=0; i<6; i++) macid_1[i] = rtw_read8(adapter, REG_MACID1+i); for (i=0; i<6; i++) bssid_1[i] = rtw_read8(adapter, REG_BSSID1+i); DBG_871X(FUNC_ADPT_FMT" after switch\n" "msr:0x%02x\n" "bcn_ctrl:0x%02x\n" "bcn_ctrl_1:0x%02x\n" "atimwnd:%u\n" "atimwnd_1:%u\n" "tsftr:%llu\n" "tsftr1:%llu\n" "macid:"MAC_FMT"\n" "bssid:"MAC_FMT"\n" "macid_1:"MAC_FMT"\n" "bssid_1:"MAC_FMT"\n" , FUNC_ADPT_ARG(adapter) , msr , bcn_ctrl , bcn_ctrl_1 , *((u16*)atimwnd) , *((u16*)atimwnd_1) , *((u64*)tsftr) , *((u64*)tsftr_1) , MAC_ARG(macid) , MAC_ARG(bssid) , MAC_ARG(macid_1) , MAC_ARG(bssid_1) ); #endif /* DBG_RUNTIME_PORT_SWITCH */ #endif /* CONFIG_RUNTIME_PORT_SWITCH */ #endif /* CONFIG_CONCURRENT_MODE */ } void rtw_hal_set_FwRsvdPage_cmd(PADAPTER padapter, PRSVDPAGE_LOC rsvdpageloc) { struct hal_ops *pHalFunc = &padapter->HalFunc; u8 u1H2CRsvdPageParm[H2C_RSVDPAGE_LOC_LEN]={0}; u8 ret = 0; DBG_871X("RsvdPageLoc: ProbeRsp=%d PsPoll=%d Null=%d QoSNull=%d BTNull=%d\n", rsvdpageloc->LocProbeRsp, rsvdpageloc->LocPsPoll, rsvdpageloc->LocNullData, rsvdpageloc->LocQosNull, rsvdpageloc->LocBTQosNull); SET_H2CCMD_RSVDPAGE_LOC_PROBE_RSP(u1H2CRsvdPageParm, rsvdpageloc->LocProbeRsp); SET_H2CCMD_RSVDPAGE_LOC_PSPOLL(u1H2CRsvdPageParm, rsvdpageloc->LocPsPoll); SET_H2CCMD_RSVDPAGE_LOC_NULL_DATA(u1H2CRsvdPageParm, rsvdpageloc->LocNullData); SET_H2CCMD_RSVDPAGE_LOC_QOS_NULL_DATA(u1H2CRsvdPageParm, rsvdpageloc->LocQosNull); SET_H2CCMD_RSVDPAGE_LOC_BT_QOS_NULL_DATA(u1H2CRsvdPageParm, rsvdpageloc->LocBTQosNull); ret = rtw_hal_fill_h2c_cmd(padapter, H2C_RSVD_PAGE, H2C_RSVDPAGE_LOC_LEN, u1H2CRsvdPageParm); } #ifdef CONFIG_GPIO_WAKEUP /* * Switch GPIO_13, GPIO_14 to wlan control, or pull GPIO_13,14 MUST fail. * It happended at 8723B/8192E/8821A. New IC will check multi function GPIO, * and implement HAL function. */ static void rtw_hal_switch_gpio_wl_ctrl(_adapter* padapter, u8 index, u8 enable) { if (index !=13 && index != 14) return; rtw_hal_set_hwreg(padapter, HW_SET_GPIO_WL_CTRL, (u8 *)(&enable)); } void rtw_hal_set_output_gpio(_adapter *padapter, u8 index, u8 outputval) { if ( index <= 7 ) { /* config GPIO mode */ rtw_write8(padapter, REG_GPIO_PIN_CTRL + 3, rtw_read8(padapter, REG_GPIO_PIN_CTRL + 3) & ~BIT(index) ); /* config GPIO Sel */ /* 0: input */ /* 1: output */ rtw_write8(padapter, REG_GPIO_PIN_CTRL + 2, rtw_read8(padapter, REG_GPIO_PIN_CTRL + 2) | BIT(index)); /* set output value */ if ( outputval ) { rtw_write8(padapter, REG_GPIO_PIN_CTRL + 1, rtw_read8(padapter, REG_GPIO_PIN_CTRL + 1) | BIT(index)); } else { rtw_write8(padapter, REG_GPIO_PIN_CTRL + 1, rtw_read8(padapter, REG_GPIO_PIN_CTRL + 1) & ~BIT(index)); } } else if (index <= 15){ /* 88C Series: */ /* index: 11~8 transform to 3~0 */ /* 8723 Series: */ /* index: 12~8 transform to 4~0 */ index -= 8; /* config GPIO mode */ rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 3, rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 3) & ~BIT(index) ); /* config GPIO Sel */ /* 0: input */ /* 1: output */ rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 2, rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 2) | BIT(index)); /* set output value */ if ( outputval ) { rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 1, rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 1) | BIT(index)); } else { rtw_write8(padapter, REG_GPIO_PIN_CTRL_2 + 1, rtw_read8(padapter, REG_GPIO_PIN_CTRL_2 + 1) & ~BIT(index)); } } else { DBG_871X("%s: invalid GPIO%d=%d\n", __FUNCTION__, index, outputval); } } #endif void rtw_hal_set_FwAoacRsvdPage_cmd(PADAPTER padapter, PRSVDPAGE_LOC rsvdpageloc) { struct hal_ops *pHalFunc = &padapter->HalFunc; struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter); struct mlme_priv *pmlmepriv = &padapter->mlmepriv; u8 res = 0, count = 0, ret = 0; #ifdef CONFIG_WOWLAN u8 u1H2CAoacRsvdPageParm[H2C_AOAC_RSVDPAGE_LOC_LEN]={0}; DBG_871X("AOACRsvdPageLoc: RWC=%d ArpRsp=%d NbrAdv=%d GtkRsp=%d GtkInfo=%d ProbeReq=%d NetworkList=%d\n", rsvdpageloc->LocRemoteCtrlInfo, rsvdpageloc->LocArpRsp, rsvdpageloc->LocNbrAdv, rsvdpageloc->LocGTKRsp, rsvdpageloc->LocGTKInfo, rsvdpageloc->LocProbeReq, rsvdpageloc->LocNetList); if (check_fwstate(pmlmepriv, _FW_LINKED)) { SET_H2CCMD_AOAC_RSVDPAGE_LOC_REMOTE_WAKE_CTRL_INFO(u1H2CAoacRsvdPageParm, rsvdpageloc->LocRemoteCtrlInfo); SET_H2CCMD_AOAC_RSVDPAGE_LOC_ARP_RSP(u1H2CAoacRsvdPageParm, rsvdpageloc->LocArpRsp); //SET_H2CCMD_AOAC_RSVDPAGE_LOC_NEIGHBOR_ADV(u1H2CAoacRsvdPageParm, rsvdpageloc->LocNbrAdv); SET_H2CCMD_AOAC_RSVDPAGE_LOC_GTK_RSP(u1H2CAoacRsvdPageParm, rsvdpageloc->LocGTKRsp); SET_H2CCMD_AOAC_RSVDPAGE_LOC_GTK_INFO(u1H2CAoacRsvdPageParm, rsvdpageloc->LocGTKInfo); #ifdef CONFIG_GTK_OL SET_H2CCMD_AOAC_RSVDPAGE_LOC_GTK_EXT_MEM(u1H2CAoacRsvdPageParm, rsvdpageloc->LocGTKEXTMEM); #endif // CONFIG_GTK_OL ret = rtw_hal_fill_h2c_cmd(padapter, H2C_AOAC_RSVD_PAGE, H2C_AOAC_RSVDPAGE_LOC_LEN, u1H2CAoacRsvdPageParm); } #ifdef CONFIG_PNO_SUPPORT else { if(!pwrpriv->pno_in_resume) { DBG_871X("NLO_INFO=%d\n", rsvdpageloc->LocPNOInfo); _rtw_memset(&u1H2CAoacRsvdPageParm, 0, sizeof(u1H2CAoacRsvdPageParm)); SET_H2CCMD_AOAC_RSVDPAGE_LOC_NLO_INFO(u1H2CAoacRsvdPageParm, rsvdpageloc->LocPNOInfo); ret = rtw_hal_fill_h2c_cmd(padapter, H2C_AOAC_RSVDPAGE3, H2C_AOAC_RSVDPAGE_LOC_LEN, u1H2CAoacRsvdPageParm); } } #endif //CONFIG_PNO_SUPPORT #endif // CONFIG_WOWLAN } #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) static void rtw_hal_force_enable_rxdma(_adapter *adapter) { DBG_871X("%s: Set 0x690=0x00\n", __func__); rtw_write8(adapter, REG_WOW_CTRL, (rtw_read8(adapter, REG_WOW_CTRL)&0xf0)); DBG_871X_LEVEL(_drv_always_, "%s: Release RXDMA\n", __func__); rtw_write32(adapter, REG_RXPKT_NUM, (rtw_read32(adapter,REG_RXPKT_NUM)&(~RW_RELEASE_EN))); } static void rtw_hal_disable_tx_report(_adapter *adapter) { rtw_write8(adapter, REG_TX_RPT_CTRL, ((rtw_read8(adapter, REG_TX_RPT_CTRL)&~BIT(1)))&~BIT(5)); DBG_871X("disable TXRPT:0x%02x\n", rtw_read8(adapter, REG_TX_RPT_CTRL)); } static void rtw_hal_enable_tx_report(_adapter *adapter) { rtw_write8(adapter, REG_TX_RPT_CTRL, ((rtw_read8(adapter, REG_TX_RPT_CTRL)|BIT(1)))|BIT(5)); DBG_871X("enable TX_RPT:0x%02x\n", rtw_read8(adapter, REG_TX_RPT_CTRL)); } static void rtw_hal_release_rx_dma(_adapter *adapter) { u32 val32 = 0; val32 = rtw_read32(adapter, REG_RXPKT_NUM); rtw_write32(adapter, REG_RXPKT_NUM, (val32 & (~RW_RELEASE_EN))); DBG_871X("%s, [0x%04x]: 0x%08x\n", __func__, REG_RXPKT_NUM, (val32 & (~RW_RELEASE_EN))); } static u8 rtw_hal_pause_rx_dma(_adapter *adapter) { u8 ret = 0; s8 trycnt = 100; u16 len = 0; u32 tmp = 0; int res = 0; //RX DMA stop DBG_871X_LEVEL(_drv_always_, "Pause DMA\n"); rtw_write32(adapter, REG_RXPKT_NUM, (rtw_read32(adapter,REG_RXPKT_NUM)|RW_RELEASE_EN)); do{ if((rtw_read32(adapter, REG_RXPKT_NUM)&RXDMA_IDLE)) { DBG_871X_LEVEL(_drv_always_, "RX_DMA_IDLE is true\n"); ret = _SUCCESS; break; } #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) else { // If RX_DMA is not idle, receive one pkt from DMA res = sdio_local_read(adapter, SDIO_REG_RX0_REQ_LEN, 4, (u8*)&tmp); len = le16_to_cpu(tmp); DBG_871X_LEVEL(_drv_always_, "RX len:%d\n", len); if (len > 0) res = RecvOnePkt(adapter, len); else DBG_871X_LEVEL(_drv_always_, "read length fail %d\n", len); DBG_871X_LEVEL(_drv_always_, "RecvOnePkt Result: %d\n", res); } #endif //CONFIG_SDIO_HCI || CONFIG_GSPI_HCI #ifdef CONFIG_USB_HCI else { if (adapter->intf_start) adapter->intf_start(adapter); tmp = rtw_read32(adapter, REG_RXPKT_NUM) & RXDMA_IDLE; if (tmp) { if (adapter->intf_stop) adapter->intf_stop(adapter); RTW_ENABLE_FUNC(adapter, DF_RX_BIT); RTW_ENABLE_FUNC(adapter, DF_TX_BIT); } } #endif }while(trycnt--); if (trycnt < 0) { tmp = rtw_read16(adapter, REG_RXPKT_NUM + 3); DBG_871X_LEVEL(_drv_always_, "Stop RX DMA failed......\n"); DBG_871X_LEVEL(_drv_always_, "%s, RXPKT_NUM: 0x%04x\n", __func__, tmp); tmp = rtw_read16(adapter, REG_RXPKT_NUM + 2); if (tmp & BIT(3)) DBG_871X_LEVEL(_drv_always_, "%s, RX DMA has req\n", __func__); else DBG_871X_LEVEL(_drv_always_, "%s, RX DMA no req\n", __func__); ret = _FAIL; } return ret; } #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) static u8 rtw_hal_enable_cpwm2(_adapter* adapter) { u8 ret = 0; int res = 0; u32 tmp = 0; DBG_871X_LEVEL(_drv_always_, "%s\n", __func__); res = sdio_local_read(adapter, SDIO_REG_HIMR, 4, (u8*)&tmp); if (!res) DBG_871X_LEVEL(_drv_info_, "read SDIO_REG_HIMR: 0x%08x\n", tmp); else DBG_871X_LEVEL(_drv_info_, "sdio_local_read fail\n"); tmp = SDIO_HIMR_CPWM2_MSK; res = sdio_local_write(adapter, SDIO_REG_HIMR, 4, (u8*)&tmp); if (!res){ res = sdio_local_read(adapter, SDIO_REG_HIMR, 4, (u8*)&tmp); DBG_871X_LEVEL(_drv_info_, "read again SDIO_REG_HIMR: 0x%08x\n", tmp); ret = _SUCCESS; }else { DBG_871X_LEVEL(_drv_info_, "sdio_local_write fail\n"); ret = _FAIL; } return ret; } #endif /* CONFIG_SDIO_HCI, CONFIG_GSPI_HCI */ #endif /* CONFIG_WOWLAN || CONFIG_AP_WOWLAN */ #ifdef CONFIG_WOWLAN /* * rtw_hal_check_wow_ctrl * chk_type: _TRUE means to check enable, if 0x690 & bit1, WOW enable successful * _FALSE means to check disable, if 0x690 & bit1, WOW disable fail */ static u8 rtw_hal_check_wow_ctrl(_adapter *adapter, u8 chk_type) { u8 mstatus = 0; u8 trycnt = 25; u8 res = _FALSE; mstatus = rtw_read8(adapter, REG_WOW_CTRL); DBG_871X_LEVEL(_drv_info_, "%s mstatus:0x%02x\n", __func__, mstatus); if (chk_type) { while (!(mstatus&BIT1) && trycnt > 1) { mstatus = rtw_read8(adapter, REG_WOW_CTRL); DBG_871X_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus); trycnt--; rtw_msleep_os(20); } if (mstatus & BIT1) res = _TRUE; else res = _FALSE; } else { while (mstatus&BIT1 && trycnt > 1) { mstatus = rtw_read8(adapter, REG_WOW_CTRL); DBG_871X_LEVEL(_drv_always_, "Loop index: %d :0x%02x\n", trycnt, mstatus); trycnt--; rtw_msleep_os(20); } if (mstatus & BIT1) res = _FALSE; else res = _TRUE; } DBG_871X_LEVEL(_drv_always_, "%s check_type: %d res: %d trycnt: %d\n", __func__, chk_type, res, (25 - trycnt)); return res; } #ifdef CONFIG_PNO_SUPPORT static u8 rtw_hal_check_pno_enabled(_adapter *adapter) { struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter); u8 res = 0, count = 0; u8 ret = _FALSE; if (ppwrpriv->wowlan_pno_enable && ppwrpriv->pno_in_resume == _FALSE) { res = rtw_read8(adapter, REG_PNO_STATUS); while (!(res&BIT(7)) && count < 25) { DBG_871X("[%d] cmd: 0x81 REG_PNO_STATUS: 0x%02x\n", count, res); res = rtw_read8(adapter, REG_PNO_STATUS); count++; rtw_msleep_os(2); } if (res & BIT(7)) ret = _TRUE; else ret = _FALSE; DBG_871X("cmd: 0x81 REG_PNO_STATUS: ret(%d)\n", ret); } return ret; } #endif static void rtw_hal_backup_rate(_adapter *adapter) { DBG_871X("%s\n", __func__); /* backup data rate to register 0x8b for wowlan FW */ rtw_write8(adapter, 0x8d, 1); rtw_write8(adapter, 0x8c, 0); rtw_write8(adapter, 0x8f, 0x40); rtw_write8(adapter, 0x8b, rtw_read8(adapter, 0x2f0)); } #ifdef CONFIG_GTK_OL static void rtw_hal_fw_sync_cam_id(_adapter *adapter) { struct security_priv *psecuritypriv = &adapter->securitypriv; u8 null_addr[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; int cam_id; u32 algorithm = 0; u16 ctrl = 0; u8 *addr; u8 index = 0; u8 get_key[16]; addr = get_bssid(&adapter->mlmepriv); if (addr == NULL) { DBG_871X("%s: get bssid MAC addr fail!!\n", __func__); return; } do{ cam_id = rtw_camid_search(adapter, addr, index, -1); if (cam_id == -1) { DBG_871X("%s: cam_id: %d, key_id:%d\n", __func__, cam_id, index); } else if (rtw_camid_is_gk(adapter, cam_id) != _TRUE) { DBG_871X("%s: cam_id: %d key_id(%d) is not GK\n", __func__, cam_id, index); } else { rtw_sec_read_cam_ent(adapter, cam_id, NULL, NULL, get_key); algorithm = psecuritypriv->dot11PrivacyAlgrthm; ctrl = BIT(15) | BIT6 |(algorithm << 2) | index; write_cam(adapter, index, ctrl, addr, get_key); ctrl = 0; write_cam(adapter, cam_id, ctrl, null_addr, get_key); } index++; }while(index < 4); rtw_write8(adapter, REG_SECCFG, 0xcc); } static void rtw_hal_update_gtk_offload_info(_adapter *adapter) { struct security_priv *psecuritypriv = &adapter->securitypriv; u8 default_cam_id = 0; u8 cam_id=5; u8 *addr; u8 null_addr[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; u8 gtk_keyindex=0; u8 get_key[16]; u8 index = 1; u16 ctrl = 0; u32 algorithm = 0; addr = get_bssid(&adapter->mlmepriv); if (addr == NULL) { DBG_871X("%s: get bssid MAC addr fail!!\n", __func__); return; } _rtw_memset(get_key, 0, sizeof(get_key)); algorithm = psecuritypriv->dot11PrivacyAlgrthm; if(psecuritypriv->binstallKCK_KEK == _TRUE) { //read gtk key index gtk_keyindex = rtw_read8(adapter, 0x48c); do{ /* chech if GK */ if (rtw_sec_read_cam_is_gk(adapter, default_cam_id) == _TRUE) { rtw_sec_read_cam_ent(adapter, default_cam_id, NULL, NULL, get_key); algorithm = psecuritypriv->dot11PrivacyAlgrthm; /* in default cam entry, cam id = key id */ ctrl = BIT(15) | BIT6 | (algorithm << 2) | default_cam_id; write_cam(adapter, cam_id, ctrl, addr, get_key); cam_id++; ctrl = 0; write_cam(adapter, default_cam_id, ctrl, null_addr, get_key); } if (gtk_keyindex < 4 && (default_cam_id == gtk_keyindex)) { psecuritypriv->dot118021XGrpKeyid = gtk_keyindex; _rtw_memcpy(psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey, get_key, 16); DBG_871X_LEVEL(_drv_always_, "GTK (%d) = 0x%08x, 0x%08x, 0x%08x, 0x%08x\n", gtk_keyindex, psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].lkey[0], psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].lkey[1], psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].lkey[2], psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].lkey[3]); } default_cam_id++; } while (default_cam_id < 4); rtw_write8(adapter, REG_SECCFG, 0x0c); #ifdef CONFIG_GTK_OL_DBG //if (gtk_keyindex != 5) dump_sec_cam(RTW_DBGDUMP, adapter); #endif } } #endif static void rtw_hal_update_tx_iv(_adapter *adapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); u64 iv_low = 0, iv_high = 0; // 3.1 read fw iv iv_low = rtw_read32(adapter, REG_TXPKTBUF_IV_LOW); //only low two bytes is PN, check AES_IV macro for detail iv_low &= 0xffff; iv_high = rtw_read32(adapter, REG_TXPKTBUF_IV_HIGH); //get the real packet number pwrctl->wowlan_fw_iv = iv_high << 16 | iv_low; DBG_871X_LEVEL(_drv_always_, "fw_iv: 0x%016llx\n", pwrctl->wowlan_fw_iv); //Update TX iv data. rtw_set_sec_pn(adapter); } static u8 rtw_hal_set_keep_alive_cmd(_adapter *adapter, u8 enable, u8 pkt_type) { struct hal_ops *pHalFunc = &adapter->HalFunc; u8 u1H2CKeepAliveParm[H2C_KEEP_ALIVE_CTRL_LEN]={0}; u8 adopt = 1, check_period = 5; u8 ret = _FAIL; DBG_871X("%s(): enable = %d\n", __func__, enable); SET_H2CCMD_KEEPALIVE_PARM_ENABLE(u1H2CKeepAliveParm, enable); SET_H2CCMD_KEEPALIVE_PARM_ADOPT(u1H2CKeepAliveParm, adopt); SET_H2CCMD_KEEPALIVE_PARM_PKT_TYPE(u1H2CKeepAliveParm, pkt_type); SET_H2CCMD_KEEPALIVE_PARM_CHECK_PERIOD(u1H2CKeepAliveParm, check_period); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_KEEP_ALIVE, H2C_KEEP_ALIVE_CTRL_LEN, u1H2CKeepAliveParm); return ret; } static u8 rtw_hal_set_disconnect_decision_cmd(_adapter *adapter, u8 enable) { struct hal_ops *pHalFunc = &adapter->HalFunc; u8 u1H2CDisconDecisionParm[H2C_DISCON_DECISION_LEN]={0}; u8 adopt = 1, check_period = 10, trypkt_num = 0; u8 ret = _FAIL; DBG_871X("%s(): enable = %d\n", __func__, enable); SET_H2CCMD_DISCONDECISION_PARM_ENABLE(u1H2CDisconDecisionParm, enable); SET_H2CCMD_DISCONDECISION_PARM_ADOPT(u1H2CDisconDecisionParm, adopt); SET_H2CCMD_DISCONDECISION_PARM_CHECK_PERIOD(u1H2CDisconDecisionParm, check_period); SET_H2CCMD_DISCONDECISION_PARM_TRY_PKT_NUM(u1H2CDisconDecisionParm, trypkt_num); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_DISCON_DECISION, H2C_DISCON_DECISION_LEN, u1H2CDisconDecisionParm); return ret; } static u8 rtw_hal_set_wowlan_ctrl_cmd(_adapter *adapter, u8 enable, u8 change_unit) { struct security_priv *psecpriv = &adapter->securitypriv; struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter); struct hal_ops *pHalFunc = &adapter->HalFunc; u8 u1H2CWoWlanCtrlParm[H2C_WOWLAN_LEN]={0}; u8 discont_wake = 1, gpionum = 0, gpio_dur = 0; u8 hw_unicast = 0, gpio_pulse_cnt = 0, gpio_pulse_en = 0; u8 sdio_wakeup_enable = 1; u8 gpio_high_active = 0; u8 pattern_en = 0; u8 magic_pkt = 0; u8 gpio_unit = 0; /*0: 64ns, 1: 8ms*/ u8 ret = _FAIL; #ifdef CONFIG_GPIO_WAKEUP gpio_high_active = ppwrpriv->is_high_active; gpionum = WAKEUP_GPIO_IDX; sdio_wakeup_enable = 0; #endif //CONFIG_GPIO_WAKEUP if (!ppwrpriv->wowlan_pno_enable) magic_pkt = enable; if (psecpriv->dot11PrivacyAlgrthm == _WEP40_ || psecpriv->dot11PrivacyAlgrthm == _WEP104_) hw_unicast = 1; else hw_unicast = 0; if (ppwrpriv->wowlan_pattern) { if (enable) pattern_en = 1; else pattern_en = 0; } DBG_871X("%s(): enable=%d change_unit=%d\n", __func__, enable, change_unit); /* time = (gpio_dur/2) * gpio_unit, default:256 ms */ if (enable && change_unit) { gpio_dur = 0x40; gpio_unit = 1; gpio_pulse_en = 1; } #ifdef CONFIG_PLATFORM_ARM_RK3188 if (enable) { gpio_pulse_en = 1; gpio_pulse_cnt = 0x04; } #endif SET_H2CCMD_WOWLAN_FUNC_ENABLE(u1H2CWoWlanCtrlParm, enable); SET_H2CCMD_WOWLAN_PATTERN_MATCH_ENABLE(u1H2CWoWlanCtrlParm, pattern_en); SET_H2CCMD_WOWLAN_MAGIC_PKT_ENABLE(u1H2CWoWlanCtrlParm, magic_pkt); SET_H2CCMD_WOWLAN_UNICAST_PKT_ENABLE(u1H2CWoWlanCtrlParm, hw_unicast); SET_H2CCMD_WOWLAN_ALL_PKT_DROP(u1H2CWoWlanCtrlParm, 0); SET_H2CCMD_WOWLAN_GPIO_ACTIVE(u1H2CWoWlanCtrlParm, gpio_high_active); #ifndef CONFIG_GTK_OL SET_H2CCMD_WOWLAN_REKEY_WAKE_UP(u1H2CWoWlanCtrlParm, enable); #endif SET_H2CCMD_WOWLAN_DISCONNECT_WAKE_UP(u1H2CWoWlanCtrlParm, discont_wake); SET_H2CCMD_WOWLAN_GPIONUM(u1H2CWoWlanCtrlParm, gpionum); SET_H2CCMD_WOWLAN_DATAPIN_WAKE_UP(u1H2CWoWlanCtrlParm, sdio_wakeup_enable); SET_H2CCMD_WOWLAN_GPIO_DURATION(u1H2CWoWlanCtrlParm, gpio_dur); SET_H2CCMD_WOWLAN_CHANGE_UNIT(u1H2CWoWlanCtrlParm, gpio_unit); SET_H2CCMD_WOWLAN_GPIO_PULSE_EN(u1H2CWoWlanCtrlParm, gpio_pulse_en); SET_H2CCMD_WOWLAN_GPIO_PULSE_COUNT(u1H2CWoWlanCtrlParm, gpio_pulse_cnt); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_WOWLAN, H2C_WOWLAN_LEN, u1H2CWoWlanCtrlParm); return ret; } static u8 rtw_hal_set_remote_wake_ctrl_cmd(_adapter *adapter, u8 enable) { struct hal_ops *pHalFunc = &adapter->HalFunc; struct security_priv* psecuritypriv=&(adapter->securitypriv); struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter); u8 u1H2CRemoteWakeCtrlParm[H2C_REMOTE_WAKE_CTRL_LEN]={0}; u8 ret = _FAIL, count = 0; DBG_871X("%s(): enable=%d\n", __func__, enable); if (!ppwrpriv->wowlan_pno_enable) { SET_H2CCMD_REMOTE_WAKECTRL_ENABLE( u1H2CRemoteWakeCtrlParm, enable); SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_OFFLOAD_EN( u1H2CRemoteWakeCtrlParm, 1); #ifdef CONFIG_GTK_OL if (psecuritypriv->binstallKCK_KEK == _TRUE && psecuritypriv->dot11PrivacyAlgrthm == _AES_) { SET_H2CCMD_REMOTE_WAKE_CTRL_GTK_OFFLOAD_EN( u1H2CRemoteWakeCtrlParm, 1); } else { DBG_871X("no kck or security is not AES\n"); SET_H2CCMD_REMOTE_WAKE_CTRL_GTK_OFFLOAD_EN( u1H2CRemoteWakeCtrlParm, 0); } #endif //CONFIG_GTK_OL SET_H2CCMD_REMOTE_WAKE_CTRL_FW_UNICAST_EN( u1H2CRemoteWakeCtrlParm, !ppwrpriv->wowlan_pattern); /* * filter NetBios name service pkt to avoid being waked-up * by this kind of unicast pkt this exceptional modification * is used for match competitor's behavior */ SET_H2CCMD_REMOTE_WAKE_CTRL_NBNS_FILTER_EN( u1H2CRemoteWakeCtrlParm, !ppwrpriv->wowlan_pattern); if ((psecuritypriv->dot11PrivacyAlgrthm == _AES_) || (psecuritypriv->dot11PrivacyAlgrthm == _NO_PRIVACY_)) { SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_ACTION( u1H2CRemoteWakeCtrlParm, 0); } else { SET_H2CCMD_REMOTE_WAKE_CTRL_ARP_ACTION( u1H2CRemoteWakeCtrlParm, 1); } SET_H2CCMD_REMOTE_WAKE_CTRL_FW_PARSING_UNTIL_WAKEUP( u1H2CRemoteWakeCtrlParm, 1); } #ifdef CONFIG_PNO_SUPPORT else { SET_H2CCMD_REMOTE_WAKECTRL_ENABLE( u1H2CRemoteWakeCtrlParm, enable); SET_H2CCMD_REMOTE_WAKE_CTRL_NLO_OFFLOAD_EN( u1H2CRemoteWakeCtrlParm, enable); } #endif #ifdef CONFIG_P2P_WOWLAN if (_TRUE == ppwrpriv->wowlan_p2p_mode) { DBG_871X("P2P OFFLOAD ENABLE\n"); SET_H2CCMD_REMOTE_WAKE_CTRL_P2P_OFFLAD_EN(u1H2CRemoteWakeCtrlParm,1); } else { DBG_871X("P2P OFFLOAD DISABLE\n"); SET_H2CCMD_REMOTE_WAKE_CTRL_P2P_OFFLAD_EN(u1H2CRemoteWakeCtrlParm,0); } #endif //CONFIG_P2P_WOWLAN ret = rtw_hal_fill_h2c_cmd(adapter, H2C_REMOTE_WAKE_CTRL, H2C_REMOTE_WAKE_CTRL_LEN, u1H2CRemoteWakeCtrlParm); return ret; } static u8 rtw_hal_set_global_info_cmd(_adapter* adapter, u8 group_alg, u8 pairwise_alg) { struct hal_ops *pHalFunc = &adapter->HalFunc; u8 ret = _FAIL; u8 u1H2CAOACGlobalInfoParm[H2C_AOAC_GLOBAL_INFO_LEN]={0}; DBG_871X("%s(): group_alg=%d pairwise_alg=%d\n", __func__, group_alg, pairwise_alg); SET_H2CCMD_AOAC_GLOBAL_INFO_PAIRWISE_ENC_ALG(u1H2CAOACGlobalInfoParm, pairwise_alg); SET_H2CCMD_AOAC_GLOBAL_INFO_GROUP_ENC_ALG(u1H2CAOACGlobalInfoParm, group_alg); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_AOAC_GLOBAL_INFO, H2C_AOAC_GLOBAL_INFO_LEN, u1H2CAOACGlobalInfoParm); return ret; } #ifdef CONFIG_PNO_SUPPORT static u8 rtw_hal_set_scan_offload_info_cmd(_adapter* adapter, PRSVDPAGE_LOC rsvdpageloc, u8 enable) { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter); struct hal_ops *pHalFunc = &adapter->HalFunc; u8 u1H2CScanOffloadInfoParm[H2C_SCAN_OFFLOAD_CTRL_LEN]={0}; u8 res = 0, count = 0, ret = _FAIL; DBG_871X("%s: loc_probe_packet:%d, loc_scan_info: %d loc_ssid_info:%d\n", __func__, rsvdpageloc->LocProbePacket, rsvdpageloc->LocScanInfo, rsvdpageloc->LocSSIDInfo); SET_H2CCMD_AOAC_NLO_FUN_EN(u1H2CScanOffloadInfoParm, enable); SET_H2CCMD_AOAC_NLO_IPS_EN(u1H2CScanOffloadInfoParm, enable); SET_H2CCMD_AOAC_RSVDPAGE_LOC_SCAN_INFO(u1H2CScanOffloadInfoParm, rsvdpageloc->LocScanInfo); SET_H2CCMD_AOAC_RSVDPAGE_LOC_PROBE_PACKET(u1H2CScanOffloadInfoParm, rsvdpageloc->LocProbePacket); SET_H2CCMD_AOAC_RSVDPAGE_LOC_SSID_INFO(u1H2CScanOffloadInfoParm, rsvdpageloc->LocSSIDInfo); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_D0_SCAN_OFFLOAD_INFO, H2C_SCAN_OFFLOAD_CTRL_LEN, u1H2CScanOffloadInfoParm); return ret; } #endif //CONFIG_PNO_SUPPORT void rtw_hal_set_fw_wow_related_cmd(_adapter* padapter, u8 enable) { struct security_priv *psecpriv = &padapter->securitypriv; struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(padapter); struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct sta_info *psta = NULL; u16 media_status_rpt; u8 pkt_type = 0; u8 ret = _SUCCESS; DBG_871X_LEVEL(_drv_always_, "+%s()+: enable=%d\n", __func__, enable); _func_enter_; rtw_hal_set_wowlan_ctrl_cmd(padapter, enable, _FALSE); if (enable) { rtw_hal_set_global_info_cmd(padapter, psecpriv->dot118021XGrpPrivacy, psecpriv->dot11PrivacyAlgrthm); if (!(ppwrpriv->wowlan_pno_enable)) { rtw_hal_set_disconnect_decision_cmd(padapter, enable); #ifdef CONFIG_ARP_KEEP_ALIVE if ((psecpriv->dot11PrivacyAlgrthm == _WEP40_) || (psecpriv->dot11PrivacyAlgrthm == _WEP104_)) pkt_type = 0; else pkt_type = 1; #else pkt_type = 0; #endif //CONFIG_ARP_KEEP_ALIVE rtw_hal_set_keep_alive_cmd(padapter, enable, pkt_type); } rtw_hal_set_remote_wake_ctrl_cmd(padapter, enable); #ifdef CONFIG_PNO_SUPPORT rtw_hal_check_pno_enabled(padapter); #endif //CONFIG_PNO_SUPPORT } else { #if 0 { u32 PageSize = 0; rtw_hal_get_def_var(padapter, HAL_DEF_TX_PAGE_SIZE, (u8 *)&PageSize); dump_TX_FIFO(padapter, 4, PageSize); } #endif rtw_hal_set_remote_wake_ctrl_cmd(padapter, enable); } _func_exit_; DBG_871X_LEVEL(_drv_always_, "-%s()-\n", __func__); } #endif //CONFIG_WOWLAN #ifdef CONFIG_AP_WOWLAN static u8 rtw_hal_set_ap_wowlan_ctrl_cmd(_adapter *adapter, u8 enable) { struct security_priv *psecpriv = &adapter->securitypriv; struct pwrctrl_priv *ppwrpriv = adapter_to_pwrctl(adapter); struct hal_ops *pHalFunc = &adapter->HalFunc; u8 u1H2CAPWoWlanCtrlParm[H2C_AP_WOW_GPIO_CTRL_LEN] = {0}; u8 gpionum = 0, gpio_dur = 0; u8 gpio_pulse = enable; u8 sdio_wakeup_enable = 1; u8 gpio_high_active = 0; u8 ret = _FAIL; #ifdef CONFIG_GPIO_WAKEUP gpio_high_active = ppwrpriv->is_high_active; gpionum = WAKEUP_GPIO_IDX; sdio_wakeup_enable = 0; #endif /*CONFIG_GPIO_WAKEUP*/ DBG_871X("%s(): enable=%d\n", __func__, enable); SET_H2CCMD_AP_WOW_GPIO_CTRL_INDEX(u1H2CAPWoWlanCtrlParm, gpionum); SET_H2CCMD_AP_WOW_GPIO_CTRL_PLUS(u1H2CAPWoWlanCtrlParm, gpio_pulse); SET_H2CCMD_AP_WOW_GPIO_CTRL_HIGH_ACTIVE(u1H2CAPWoWlanCtrlParm, gpio_high_active); SET_H2CCMD_AP_WOW_GPIO_CTRL_EN(u1H2CAPWoWlanCtrlParm, enable); SET_H2CCMD_AP_WOW_GPIO_CTRL_DURATION(u1H2CAPWoWlanCtrlParm, gpio_dur); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_AP_WOW_GPIO_CTRL, H2C_AP_WOW_GPIO_CTRL_LEN, u1H2CAPWoWlanCtrlParm); return ret; } static u8 rtw_hal_set_ap_offload_ctrl_cmd(_adapter *adapter, u8 enable) { struct hal_ops *pHalFunc = &adapter->HalFunc; u8 u1H2CAPOffloadCtrlParm[H2C_WOWLAN_LEN] = {0}; u8 ret = _FAIL; DBG_871X("%s(): bFuncEn=%d\n", __func__, enable); SET_H2CCMD_AP_WOWLAN_EN(u1H2CAPOffloadCtrlParm, enable); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_AP_OFFLOAD, H2C_AP_OFFLOAD_LEN, u1H2CAPOffloadCtrlParm); return ret; } static u8 rtw_hal_set_ap_ps_cmd(_adapter *adapter, u8 enable) { struct hal_ops *pHalFunc = &adapter->HalFunc; u8 ap_ps_parm[H2C_AP_PS_LEN] = {0}; u8 ret = _FAIL; DBG_871X("%s(): enable=%d\n" , __func__ , enable); SET_H2CCMD_AP_WOW_PS_EN(ap_ps_parm, enable); #ifndef CONFIG_USB_HCI SET_H2CCMD_AP_WOW_PS_32K_EN(ap_ps_parm, enable); #endif /*CONFIG_USB_HCI*/ SET_H2CCMD_AP_WOW_PS_RF(ap_ps_parm, enable); if (enable) SET_H2CCMD_AP_WOW_PS_DURATION(ap_ps_parm, 0x32); else SET_H2CCMD_AP_WOW_PS_DURATION(ap_ps_parm, 0x0); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_SAP_PS_, H2C_AP_PS_LEN, ap_ps_parm); return ret; } static void rtw_hal_set_ap_rsvdpage_loc_cmd(PADAPTER padapter, PRSVDPAGE_LOC rsvdpageloc) { struct hal_ops *pHalFunc = &padapter->HalFunc; u8 rsvdparm[H2C_AOAC_RSVDPAGE_LOC_LEN] = {0}; u8 ret = _FAIL, header = 0; if (pHalFunc->fill_h2c_cmd == NULL) { DBG_871X("%s: Please hook fill_h2c_cmd first!\n", __func__); return; } header = rtw_read8(padapter, REG_BCNQ_BDNY); DBG_871X("%s: beacon: %d, probeRsp: %d, header:0x%02x\n", __func__, rsvdpageloc->LocApOffloadBCN, rsvdpageloc->LocProbeRsp, header); SET_H2CCMD_AP_WOWLAN_RSVDPAGE_LOC_BCN(rsvdparm, rsvdpageloc->LocApOffloadBCN + header); ret = rtw_hal_fill_h2c_cmd(padapter, H2C_BCN_RSVDPAGE, H2C_BCN_RSVDPAGE_LEN, rsvdparm); if (ret == _FAIL) DBG_871X("%s: H2C_BCN_RSVDPAGE cmd fail\n", __func__); rtw_msleep_os(10); _rtw_memset(&rsvdparm, 0, sizeof(rsvdparm)); SET_H2CCMD_AP_WOWLAN_RSVDPAGE_LOC_ProbeRsp(rsvdparm, rsvdpageloc->LocProbeRsp + header); ret = rtw_hal_fill_h2c_cmd(padapter, H2C_PROBERSP_RSVDPAGE, H2C_PROBERSP_RSVDPAGE_LEN, rsvdparm); if (ret == _FAIL) DBG_871X("%s: H2C_PROBERSP_RSVDPAGE cmd fail\n", __func__); rtw_msleep_os(10); } static void rtw_hal_set_fw_ap_wow_related_cmd(_adapter *padapter, u8 enable) { rtw_hal_set_ap_offload_ctrl_cmd(padapter, enable); rtw_hal_set_ap_wowlan_ctrl_cmd(padapter, enable); rtw_hal_set_ap_ps_cmd(padapter, enable); } static void rtw_hal_ap_wow_enable(_adapter *padapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); struct security_priv *psecuritypriv = &padapter->securitypriv; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct hal_ops *pHalFunc = &padapter->HalFunc; struct sta_info *psta = NULL; #ifdef DBG_CHECK_FW_PS_STATE struct dvobj_priv *psdpriv = padapter->dvobj; struct debug_priv *pdbgpriv = &psdpriv->drv_dbg; #endif /*DBG_CHECK_FW_PS_STATE*/ int res; u16 media_status_rpt; DBG_871X("%s, WOWLAN_AP_ENABLE\n", __func__); #ifdef DBG_CHECK_FW_PS_STATE if (rtw_fw_ps_state(padapter) == _FAIL) { pdbgpriv->dbg_enwow_dload_fw_fail_cnt++; DBG_871X_LEVEL(_drv_always_, "wowlan enable no leave 32k\n"); } #endif /*DBG_CHECK_FW_PS_STATE*/ /* 1. Download WOWLAN FW*/ if (pHalFunc->hal_set_wowlan_fw != NULL) pHalFunc->hal_set_wowlan_fw(padapter, _TRUE); else DBG_871X("hal_set_wowlan_fw is null\n"); media_status_rpt = RT_MEDIA_CONNECT; rtw_hal_set_hwreg(padapter, HW_VAR_H2C_FW_JOINBSSRPT, (u8 *)&media_status_rpt); issue_beacon(padapter, 0); rtw_msleep_os(2); if (IS_HARDWARE_TYPE_8188E(padapter)) rtw_hal_disable_tx_report(padapter); /* RX DMA stop */ res = rtw_hal_pause_rx_dma(padapter); if (res == _FAIL) DBG_871X_LEVEL(_drv_always_, "[WARNING] pause RX DMA fail\n"); #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) /* Enable CPWM2 only. */ res = rtw_hal_enable_cpwm2(padapter); if (res == _FAIL) DBG_871X_LEVEL(_drv_always_, "[WARNING] enable cpwm2 fail\n"); #endif #ifdef CONFIG_GPIO_WAKEUP rtw_hal_switch_gpio_wl_ctrl(padapter, WAKEUP_GPIO_IDX, _TRUE); #endif /* 5. Set Enable WOWLAN H2C command. */ DBG_871X_LEVEL(_drv_always_, "Set Enable AP WOWLan cmd\n"); rtw_hal_set_fw_ap_wow_related_cmd(padapter, 1); rtw_write8(padapter, REG_MCUTST_WOWLAN, 0); #ifdef CONFIG_USB_HCI if (padapter->intf_stop) padapter->intf_stop(padapter); #ifdef CONFIG_CONCURRENT_MODE if (rtw_buddy_adapter_up(padapter))/*free buddy adapter's resource*/ padapter->pbuddy_adapter->intf_stop(padapter->pbuddy_adapter); #endif /*CONFIG_CONCURRENT_MODE*/ /* Invoid SE0 reset signal during suspending*/ rtw_write8(padapter, REG_RSV_CTRL, 0x20); rtw_write8(padapter, REG_RSV_CTRL, 0x60); #endif /*CONFIG_USB_HCI*/ } static void rtw_hal_ap_wow_disable(_adapter *padapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); struct hal_ops *pHalFunc = &padapter->HalFunc; #ifdef DBG_CHECK_FW_PS_STATE struct dvobj_priv *psdpriv = padapter->dvobj; struct debug_priv *pdbgpriv = &psdpriv->drv_dbg; #endif /*DBG_CHECK_FW_PS_STATE*/ u16 media_status_rpt; u8 val8; DBG_871X("%s, WOWLAN_AP_DISABLE\n", __func__); /* 1. Read wakeup reason*/ pwrctl->wowlan_wake_reason = rtw_read8(padapter, REG_MCUTST_WOWLAN); DBG_871X_LEVEL(_drv_always_, "wakeup_reason: 0x%02x\n", pwrctl->wowlan_wake_reason); rtw_hal_set_fw_ap_wow_related_cmd(padapter, 0); rtw_msleep_os(2); #ifdef DBG_CHECK_FW_PS_STATE if (rtw_fw_ps_state(padapter) == _FAIL) { pdbgpriv->dbg_diswow_dload_fw_fail_cnt++; DBG_871X_LEVEL(_drv_always_, "wowlan enable no leave 32k\n"); } #endif /*DBG_CHECK_FW_PS_STATE*/ if (IS_HARDWARE_TYPE_8188E(padapter)) rtw_hal_enable_tx_report(padapter); rtw_hal_force_enable_rxdma(padapter); if (pHalFunc->hal_set_wowlan_fw != NULL) pHalFunc->hal_set_wowlan_fw(padapter, _FALSE); else DBG_871X("hal_set_wowlan_fw is null\n"); #ifdef CONFIG_GPIO_WAKEUP val8 = (pwrctl->is_high_active == 0) ? 1 : 0; DBG_871X_LEVEL(_drv_always_, "Set Wake GPIO to default(%d).\n", val8); rtw_hal_set_output_gpio(padapter, WAKEUP_GPIO_IDX, val8); rtw_hal_switch_gpio_wl_ctrl(padapter, WAKEUP_GPIO_IDX, _FALSE); #endif media_status_rpt = RT_MEDIA_CONNECT; rtw_hal_set_hwreg(padapter, HW_VAR_H2C_FW_JOINBSSRPT, (u8 *)&media_status_rpt); issue_beacon(padapter, 0); } #endif /*CONFIG_AP_WOWLAN*/ #ifdef CONFIG_P2P_WOWLAN static int update_hidden_ssid(u8 *ies, u32 ies_len, u8 hidden_ssid_mode) { u8 *ssid_ie; sint ssid_len_ori; int len_diff = 0; ssid_ie = rtw_get_ie(ies, WLAN_EID_SSID, &ssid_len_ori, ies_len); //DBG_871X("%s hidden_ssid_mode:%u, ssid_ie:%p, ssid_len_ori:%d\n", __FUNCTION__, hidden_ssid_mode, ssid_ie, ssid_len_ori); if(ssid_ie && ssid_len_ori>0) { switch(hidden_ssid_mode) { case 1: { u8 *next_ie = ssid_ie + 2 + ssid_len_ori; u32 remain_len = 0; remain_len = ies_len -(next_ie-ies); ssid_ie[1] = 0; _rtw_memcpy(ssid_ie+2, next_ie, remain_len); len_diff -= ssid_len_ori; break; } case 2: _rtw_memset(&ssid_ie[2], 0, ssid_len_ori); break; default: break; } } return len_diff; } static void rtw_hal_construct_P2PBeacon(_adapter *padapter, u8 *pframe, u32 *pLength) { //struct xmit_frame *pmgntframe; //struct pkt_attrib *pattrib; //unsigned char *pframe; struct rtw_ieee80211_hdr *pwlanhdr; unsigned short *fctrl; unsigned int rate_len; struct xmit_priv *pxmitpriv = &(padapter->xmitpriv); u32 pktlen; //#if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) // _irqL irqL; // struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); //#endif //#if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; #ifdef CONFIG_P2P struct wifidirect_info *pwdinfo = &(padapter->wdinfo); #endif //CONFIG_P2P //for debug u8 *dbgbuf = pframe; u8 dbgbufLen = 0, index = 0; DBG_871X("%s\n", __FUNCTION__); //#if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) // _enter_critical_bh(&pmlmepriv->bcn_update_lock, &irqL); //#endif //#if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; _rtw_memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, get_my_bssid(cur_network), ETH_ALEN); SetSeqNum(pwlanhdr, 0/*pmlmeext->mgnt_seq*/); //pmlmeext->mgnt_seq++; SetFrameSubType(pframe, WIFI_BEACON); pframe += sizeof(struct rtw_ieee80211_hdr_3addr); pktlen = sizeof (struct rtw_ieee80211_hdr_3addr); if( (pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) { //DBG_871X("ie len=%d\n", cur_network->IELength); #ifdef CONFIG_P2P // for P2P : Primary Device Type & Device Name u32 wpsielen=0, insert_len=0; u8 *wpsie=NULL; wpsie = rtw_get_wps_ie(cur_network->IEs+_FIXED_IE_LENGTH_, cur_network->IELength-_FIXED_IE_LENGTH_, NULL, &wpsielen); if(rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO) && wpsie && wpsielen>0) { uint wps_offset, remainder_ielen; u8 *premainder_ie, *pframe_wscie; wps_offset = (uint)(wpsie - cur_network->IEs); premainder_ie = wpsie + wpsielen; remainder_ielen = cur_network->IELength - wps_offset - wpsielen; #ifdef CONFIG_IOCTL_CFG80211 if(pwdinfo->driver_interface == DRIVER_CFG80211 ) { if(pmlmepriv->wps_beacon_ie && pmlmepriv->wps_beacon_ie_len>0) { _rtw_memcpy(pframe, cur_network->IEs, wps_offset); pframe += wps_offset; pktlen += wps_offset; _rtw_memcpy(pframe, pmlmepriv->wps_beacon_ie, pmlmepriv->wps_beacon_ie_len); pframe += pmlmepriv->wps_beacon_ie_len; pktlen += pmlmepriv->wps_beacon_ie_len; //copy remainder_ie to pframe _rtw_memcpy(pframe, premainder_ie, remainder_ielen); pframe += remainder_ielen; pktlen += remainder_ielen; } else { _rtw_memcpy(pframe, cur_network->IEs, cur_network->IELength); pframe += cur_network->IELength; pktlen += cur_network->IELength; } } else #endif //CONFIG_IOCTL_CFG80211 { pframe_wscie = pframe + wps_offset; _rtw_memcpy(pframe, cur_network->IEs, wps_offset+wpsielen); pframe += (wps_offset + wpsielen); pktlen += (wps_offset + wpsielen); //now pframe is end of wsc ie, insert Primary Device Type & Device Name // Primary Device Type // Type: *(u16*) ( pframe + insert_len) = cpu_to_be16( WPS_ATTR_PRIMARY_DEV_TYPE ); insert_len += 2; // Length: *(u16*) ( pframe + insert_len ) = cpu_to_be16( 0x0008 ); insert_len += 2; // Value: // Category ID *(u16*) ( pframe + insert_len ) = cpu_to_be16( WPS_PDT_CID_MULIT_MEDIA ); insert_len += 2; // OUI *(u32*) ( pframe + insert_len ) = cpu_to_be32( WPSOUI ); insert_len += 4; // Sub Category ID *(u16*) ( pframe + insert_len ) = cpu_to_be16( WPS_PDT_SCID_MEDIA_SERVER ); insert_len += 2; // Device Name // Type: *(u16*) ( pframe + insert_len ) = cpu_to_be16( WPS_ATTR_DEVICE_NAME ); insert_len += 2; // Length: *(u16*) ( pframe + insert_len ) = cpu_to_be16( pwdinfo->device_name_len ); insert_len += 2; // Value: _rtw_memcpy( pframe + insert_len, pwdinfo->device_name, pwdinfo->device_name_len ); insert_len += pwdinfo->device_name_len; //update wsc ie length *(pframe_wscie+1) = (wpsielen -2) + insert_len; //pframe move to end pframe+=insert_len; pktlen += insert_len; //copy remainder_ie to pframe _rtw_memcpy(pframe, premainder_ie, remainder_ielen); pframe += remainder_ielen; pktlen += remainder_ielen; } } else #endif //CONFIG_P2P { int len_diff; _rtw_memcpy(pframe, cur_network->IEs, cur_network->IELength); len_diff = update_hidden_ssid( pframe+_BEACON_IE_OFFSET_ , cur_network->IELength-_BEACON_IE_OFFSET_ , pmlmeinfo->hidden_ssid_mode ); pframe += (cur_network->IELength+len_diff); pktlen += (cur_network->IELength+len_diff); } #if 0 { u8 *wps_ie; uint wps_ielen; u8 sr = 0; wps_ie = rtw_get_wps_ie(pmgntframe->buf_addr+TXDESC_OFFSET+sizeof (struct rtw_ieee80211_hdr_3addr)+_BEACON_IE_OFFSET_, pattrib->pktlen-sizeof (struct rtw_ieee80211_hdr_3addr)-_BEACON_IE_OFFSET_, NULL, &wps_ielen); if (wps_ie && wps_ielen>0) { rtw_get_wps_attr_content(wps_ie, wps_ielen, WPS_ATTR_SELECTED_REGISTRAR, (u8*)(&sr), NULL); } if (sr != 0) set_fwstate(pmlmepriv, WIFI_UNDER_WPS); else _clr_fwstate_(pmlmepriv, WIFI_UNDER_WPS); } #endif #ifdef CONFIG_P2P if(rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO)) { u32 len; #ifdef CONFIG_IOCTL_CFG80211 if(pwdinfo->driver_interface == DRIVER_CFG80211 ) { len = pmlmepriv->p2p_beacon_ie_len; if(pmlmepriv->p2p_beacon_ie && len>0) _rtw_memcpy(pframe, pmlmepriv->p2p_beacon_ie, len); } else #endif //CONFIG_IOCTL_CFG80211 { len = build_beacon_p2p_ie(pwdinfo, pframe); } pframe += len; pktlen += len; #ifdef CONFIG_WFD #ifdef CONFIG_IOCTL_CFG80211 if(_TRUE == pwdinfo->wfd_info->wfd_enable) #endif //CONFIG_IOCTL_CFG80211 { len = build_beacon_wfd_ie( pwdinfo, pframe ); } #ifdef CONFIG_IOCTL_CFG80211 else { len = 0; if(pmlmepriv->wfd_beacon_ie && pmlmepriv->wfd_beacon_ie_len>0) { len = pmlmepriv->wfd_beacon_ie_len; _rtw_memcpy(pframe, pmlmepriv->wfd_beacon_ie, len); } } #endif //CONFIG_IOCTL_CFG80211 pframe += len; pktlen += len; #endif //CONFIG_WFD } #endif //CONFIG_P2P goto _issue_bcn; } //below for ad-hoc mode //timestamp will be inserted by hardware pframe += 8; pktlen += 8; // beacon interval: 2 bytes _rtw_memcpy(pframe, (unsigned char *)(rtw_get_beacon_interval_from_ie(cur_network->IEs)), 2); pframe += 2; pktlen += 2; // capability info: 2 bytes _rtw_memcpy(pframe, (unsigned char *)(rtw_get_capability_from_ie(cur_network->IEs)), 2); pframe += 2; pktlen += 2; // SSID pframe = rtw_set_ie(pframe, _SSID_IE_, cur_network->Ssid.SsidLength, cur_network->Ssid.Ssid, &pktlen); // supported rates... rate_len = rtw_get_rateset_len(cur_network->SupportedRates); pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, ((rate_len > 8)? 8: rate_len), cur_network->SupportedRates, &pktlen); // DS parameter set pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&(cur_network->Configuration.DSConfig), &pktlen); //if( (pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) { u8 erpinfo=0; u32 ATIMWindow; // IBSS Parameter Set... //ATIMWindow = cur->Configuration.ATIMWindow; ATIMWindow = 0; pframe = rtw_set_ie(pframe, _IBSS_PARA_IE_, 2, (unsigned char *)(&ATIMWindow), &pktlen); //ERP IE pframe = rtw_set_ie(pframe, _ERPINFO_IE_, 1, &erpinfo, &pktlen); } // EXTERNDED SUPPORTED RATE if (rate_len > 8) { pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_, (rate_len - 8), (cur_network->SupportedRates + 8), &pktlen); } //todo:HT for adhoc _issue_bcn: //#if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) // pmlmepriv->update_bcn = _FALSE; // // _exit_critical_bh(&pmlmepriv->bcn_update_lock, &irqL); //#endif //#if defined (CONFIG_AP_MODE) && defined (CONFIG_NATIVEAP_MLME) *pLength = pktlen; #if 0 // printf dbg msg dbgbufLen = pktlen; DBG_871X("======> DBG MSG FOR CONSTRAUCT P2P BEACON\n"); for(index=0;indexxmitpriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); //WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); u16 beacon_interval = 100; u16 capInfo = 0; struct wifidirect_info *pwdinfo = &(padapter->wdinfo); u8 wpsie[255] = { 0x00 }; u32 wpsielen = 0, p2pielen = 0; u32 pktlen; #ifdef CONFIG_WFD u32 wfdielen = 0; #endif //CONFIG_WFD #ifdef CONFIG_INTEL_WIDI u8 zero_array_check[L2SDTA_SERVICE_VE_LEN] = { 0x00 }; #endif //CONFIG_INTEL_WIDI //for debug u8 *dbgbuf = pframe; u8 dbgbufLen = 0, index = 0; DBG_871X("%s\n", __FUNCTION__); pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; mac = adapter_mac_addr(padapter); fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; //DA filled by FW _rtw_memset(pwlanhdr->addr1, 0, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, mac, ETH_ALEN); // Use the device address for BSSID field. _rtw_memcpy(pwlanhdr->addr3, mac, ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetFrameSubType(fctrl, WIFI_PROBERSP); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); pframe += pktlen; //timestamp will be inserted by hardware pframe += 8; pktlen += 8; // beacon interval: 2 bytes _rtw_memcpy(pframe, (unsigned char *) &beacon_interval, 2); pframe += 2; pktlen += 2; // capability info: 2 bytes // ESS and IBSS bits must be 0 (defined in the 3.1.2.1.1 of WiFi Direct Spec) capInfo |= cap_ShortPremble; capInfo |= cap_ShortSlot; _rtw_memcpy(pframe, (unsigned char *) &capInfo, 2); pframe += 2; pktlen += 2; // SSID pframe = rtw_set_ie(pframe, _SSID_IE_, 7, pwdinfo->p2p_wildcard_ssid, &pktlen); // supported rates... // Use the OFDM rate in the P2P probe response frame. ( 6(B), 9(B), 12, 18, 24, 36, 48, 54 ) pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, 8, pwdinfo->support_rate, &pktlen); // DS parameter set pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&pwdinfo->listen_channel, &pktlen); #ifdef CONFIG_IOCTL_CFG80211 if(pwdinfo->driver_interface == DRIVER_CFG80211 ) { if( pmlmepriv->wps_probe_resp_ie != NULL && pmlmepriv->p2p_probe_resp_ie != NULL ) { //WPS IE _rtw_memcpy(pframe, pmlmepriv->wps_probe_resp_ie, pmlmepriv->wps_probe_resp_ie_len); pktlen += pmlmepriv->wps_probe_resp_ie_len; pframe += pmlmepriv->wps_probe_resp_ie_len; //P2P IE _rtw_memcpy(pframe, pmlmepriv->p2p_probe_resp_ie, pmlmepriv->p2p_probe_resp_ie_len); pktlen += pmlmepriv->p2p_probe_resp_ie_len; pframe += pmlmepriv->p2p_probe_resp_ie_len; } } else #endif //CONFIG_IOCTL_CFG80211 { // Todo: WPS IE // Noted by Albert 20100907 // According to the WPS specification, all the WPS attribute is presented by Big Endian. wpsielen = 0; // WPS OUI *(u32*) ( wpsie ) = cpu_to_be32( WPSOUI ); wpsielen += 4; // WPS version // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_VER1 ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0001 ); wpsielen += 2; // Value: wpsie[wpsielen++] = WPS_VERSION_1; // Version 1.0 #ifdef CONFIG_INTEL_WIDI // Commented by Kurt // Appended WiDi info. only if we did issued_probereq_widi(), and then we saved ven. ext. in pmlmepriv->sa_ext. if( _rtw_memcmp(pmlmepriv->sa_ext, zero_array_check, L2SDTA_SERVICE_VE_LEN) == _FALSE || pmlmepriv->num_p2p_sdt != 0 ) { //Sec dev type *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_SEC_DEV_TYPE_LIST ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0008 ); wpsielen += 2; // Value: // Category ID *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_PDT_CID_DISPLAYS ); wpsielen += 2; // OUI *(u32*) ( wpsie + wpsielen ) = cpu_to_be32( INTEL_DEV_TYPE_OUI ); wpsielen += 4; *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_PDT_SCID_WIDI_CONSUMER_SINK ); wpsielen += 2; if( _rtw_memcmp(pmlmepriv->sa_ext, zero_array_check, L2SDTA_SERVICE_VE_LEN) == _FALSE ) { // Vendor Extension _rtw_memcpy( wpsie + wpsielen, pmlmepriv->sa_ext, L2SDTA_SERVICE_VE_LEN ); wpsielen += L2SDTA_SERVICE_VE_LEN; } } #endif //CONFIG_INTEL_WIDI // WiFi Simple Config State // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_SIMPLE_CONF_STATE ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0001 ); wpsielen += 2; // Value: wpsie[wpsielen++] = WPS_WSC_STATE_NOT_CONFIG; // Not Configured. // Response Type // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_RESP_TYPE ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0001 ); wpsielen += 2; // Value: wpsie[wpsielen++] = WPS_RESPONSE_TYPE_8021X; // UUID-E // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_UUID_E ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0010 ); wpsielen += 2; // Value: if (pwdinfo->external_uuid == 0) { _rtw_memset( wpsie + wpsielen, 0x0, 16 ); _rtw_memcpy(wpsie + wpsielen, mac, ETH_ALEN); } else { _rtw_memcpy( wpsie + wpsielen, pwdinfo->uuid, 0x10 ); } wpsielen += 0x10; // Manufacturer // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_MANUFACTURER ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0007 ); wpsielen += 2; // Value: _rtw_memcpy( wpsie + wpsielen, "Realtek", 7 ); wpsielen += 7; // Model Name // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_MODEL_NAME ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0006 ); wpsielen += 2; // Value: _rtw_memcpy( wpsie + wpsielen, "8192CU", 6 ); wpsielen += 6; // Model Number // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_MODEL_NUMBER ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0001 ); wpsielen += 2; // Value: wpsie[ wpsielen++ ] = 0x31; // character 1 // Serial Number // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_SERIAL_NUMBER ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( ETH_ALEN ); wpsielen += 2; // Value: _rtw_memcpy( wpsie + wpsielen, "123456" , ETH_ALEN ); wpsielen += ETH_ALEN; // Primary Device Type // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_PRIMARY_DEV_TYPE ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0008 ); wpsielen += 2; // Value: // Category ID *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_PDT_CID_MULIT_MEDIA ); wpsielen += 2; // OUI *(u32*) ( wpsie + wpsielen ) = cpu_to_be32( WPSOUI ); wpsielen += 4; // Sub Category ID *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_PDT_SCID_MEDIA_SERVER ); wpsielen += 2; // Device Name // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_DEVICE_NAME ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( pwdinfo->device_name_len ); wpsielen += 2; // Value: _rtw_memcpy( wpsie + wpsielen, pwdinfo->device_name, pwdinfo->device_name_len ); wpsielen += pwdinfo->device_name_len; // Config Method // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_CONF_METHOD ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0002 ); wpsielen += 2; // Value: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( pwdinfo->supported_wps_cm ); wpsielen += 2; pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, wpsielen, (unsigned char *) wpsie, &pktlen ); p2pielen = build_probe_resp_p2p_ie(pwdinfo, pframe); pframe += p2pielen; pktlen += p2pielen; } #ifdef CONFIG_WFD #ifdef CONFIG_IOCTL_CFG80211 if ( _TRUE == pwdinfo->wfd_info->wfd_enable ) #endif //CONFIG_IOCTL_CFG80211 { wfdielen = build_probe_resp_wfd_ie(pwdinfo, pframe, 0); pframe += wfdielen; pktlen += wfdielen; } #ifdef CONFIG_IOCTL_CFG80211 else if (pmlmepriv->wfd_probe_resp_ie != NULL && pmlmepriv->wfd_probe_resp_ie_len>0) { //WFD IE _rtw_memcpy(pframe, pmlmepriv->wfd_probe_resp_ie, pmlmepriv->wfd_probe_resp_ie_len); pktlen += pmlmepriv->wfd_probe_resp_ie_len; pframe += pmlmepriv->wfd_probe_resp_ie_len; } #endif //CONFIG_IOCTL_CFG80211 #endif //CONFIG_WFD *pLength = pktlen; #if 0 // printf dbg msg dbgbufLen = pktlen; DBG_871X("======> DBG MSG FOR CONSTRAUCT P2P Probe Rsp\n"); for(index=0;indexxmitpriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct wifidirect_info *pwdinfo = &( padapter->wdinfo); //WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); #ifdef CONFIG_WFD u32 wfdielen = 0; #endif //CONFIG_WFD //for debug u8 *dbgbuf = pframe; u8 dbgbufLen = 0, index = 0; DBG_871X( "%s\n", __FUNCTION__); pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; //RA, filled by FW _rtw_memset(pwlanhdr->addr1, 0, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, adapter_mac_addr(padapter), ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetFrameSubType(pframe, WIFI_ACTION); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); pframe += pktlen; pframe = rtw_set_fixed_ie(pframe, 1, &(category), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 1, &(action), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 4, (unsigned char *) &(p2poui), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 1, &(oui_subtype), &(pktlen)); //dialog token, filled by FW pframe = rtw_set_fixed_ie(pframe, 1, &(dialogToken), &(pktlen)); _rtw_memset( wpsie, 0x00, 255 ); wpsielen = 0; // WPS Section wpsielen = 0; // WPS OUI *(u32*) ( wpsie ) = cpu_to_be32( WPSOUI ); wpsielen += 4; // WPS version // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_VER1 ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0001 ); wpsielen += 2; // Value: wpsie[wpsielen++] = WPS_VERSION_1; // Version 1.0 // Device Password ID // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_DEVICE_PWID ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0002 ); wpsielen += 2; // Value: if ( wps_devicepassword_id == WPS_DPID_USER_SPEC ) { *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_DPID_REGISTRAR_SPEC ); } else if ( wps_devicepassword_id == WPS_DPID_REGISTRAR_SPEC ) { *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_DPID_USER_SPEC ); } else { *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_DPID_PBC ); } wpsielen += 2; pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, wpsielen, (unsigned char *) wpsie, &pktlen ); // P2P IE Section. // P2P OUI p2pielen = 0; p2pie[ p2pielen++ ] = 0x50; p2pie[ p2pielen++ ] = 0x6F; p2pie[ p2pielen++ ] = 0x9A; p2pie[ p2pielen++ ] = 0x09; // WFA P2P v1.0 // Commented by Albert 20100908 // According to the P2P Specification, the group negoitation response frame should contain 9 P2P attributes // 1. Status // 2. P2P Capability // 3. Group Owner Intent // 4. Configuration Timeout // 5. Operating Channel // 6. Intended P2P Interface Address // 7. Channel List // 8. Device Info // 9. Group ID ( Only GO ) // ToDo: // P2P Status // Type: p2pie[ p2pielen++ ] = P2P_ATTR_STATUS; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0001 ); p2pielen += 2; // Value, filled by FW p2pie[ p2pielen++ ] = 1; // P2P Capability // Type: p2pie[ p2pielen++ ] = P2P_ATTR_CAPABILITY; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0002 ); p2pielen += 2; // Value: // Device Capability Bitmap, 1 byte if ( rtw_p2p_chk_role(pwdinfo, P2P_ROLE_CLIENT) ) { // Commented by Albert 2011/03/08 // According to the P2P specification // if the sending device will be client, the P2P Capability should be reserved of group negotation response frame p2pie[ p2pielen++ ] = 0; } else { // Be group owner or meet the error case p2pie[ p2pielen++ ] = DMP_P2P_DEVCAP_SUPPORT; } // Group Capability Bitmap, 1 byte if ( pwdinfo->persistent_supported ) { p2pie[ p2pielen++ ] = P2P_GRPCAP_CROSS_CONN | P2P_GRPCAP_PERSISTENT_GROUP; } else { p2pie[ p2pielen++ ] = P2P_GRPCAP_CROSS_CONN; } // Group Owner Intent // Type: p2pie[ p2pielen++ ] = P2P_ATTR_GO_INTENT; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0001 ); p2pielen += 2; // Value: if ( pwdinfo->peer_intent & 0x01 ) { // Peer's tie breaker bit is 1, our tie breaker bit should be 0 p2pie[ p2pielen++ ] = ( pwdinfo->intent << 1 ); } else { // Peer's tie breaker bit is 0, our tie breaker bit should be 1 p2pie[ p2pielen++ ] = ( ( pwdinfo->intent << 1 ) | BIT(0) ); } // Configuration Timeout // Type: p2pie[ p2pielen++ ] = P2P_ATTR_CONF_TIMEOUT; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0002 ); p2pielen += 2; // Value: p2pie[ p2pielen++ ] = 200; // 2 seconds needed to be the P2P GO p2pie[ p2pielen++ ] = 200; // 2 seconds needed to be the P2P Client // Operating Channel // Type: p2pie[ p2pielen++ ] = P2P_ATTR_OPERATING_CH; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0005 ); p2pielen += 2; // Value: // Country String p2pie[ p2pielen++ ] = 'X'; p2pie[ p2pielen++ ] = 'X'; // The third byte should be set to 0x04. // Described in the "Operating Channel Attribute" section. p2pie[ p2pielen++ ] = 0x04; // Operating Class if ( pwdinfo->operating_channel <= 14 ) { // Operating Class p2pie[ p2pielen++ ] = 0x51; } else if ( ( pwdinfo->operating_channel >= 36 ) && ( pwdinfo->operating_channel <= 48 ) ) { // Operating Class p2pie[ p2pielen++ ] = 0x73; } else { // Operating Class p2pie[ p2pielen++ ] = 0x7c; } // Channel Number p2pie[ p2pielen++ ] = pwdinfo->operating_channel; // operating channel number // Intended P2P Interface Address // Type: p2pie[ p2pielen++ ] = P2P_ATTR_INTENTED_IF_ADDR; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( ETH_ALEN ); p2pielen += 2; // Value: _rtw_memcpy(p2pie + p2pielen, adapter_mac_addr(padapter), ETH_ALEN); p2pielen += ETH_ALEN; // Channel List // Type: p2pie[ p2pielen++ ] = P2P_ATTR_CH_LIST; // Country String(3) // + ( Operating Class (1) + Number of Channels(1) ) * Operation Classes (?) // + number of channels in all classes len_channellist_attr = 3 + (1 + 1) * (u16)pmlmeext->channel_list.reg_classes + get_reg_classes_full_count(pmlmeext->channel_list); #ifdef CONFIG_CONCURRENT_MODE if ( check_buddy_fwstate(padapter, _FW_LINKED ) ) { *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 5 + 1 ); } else { *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( len_channellist_attr ); } #else *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( len_channellist_attr ); #endif p2pielen += 2; // Value: // Country String p2pie[ p2pielen++ ] = 'X'; p2pie[ p2pielen++ ] = 'X'; // The third byte should be set to 0x04. // Described in the "Operating Channel Attribute" section. p2pie[ p2pielen++ ] = 0x04; // Channel Entry List #ifdef CONFIG_CONCURRENT_MODE if ( check_buddy_fwstate(padapter, _FW_LINKED ) ) { _adapter *pbuddy_adapter = padapter->pbuddy_adapter; struct mlme_ext_priv *pbuddy_mlmeext = &pbuddy_adapter->mlmeextpriv; // Operating Class if ( pbuddy_mlmeext->cur_channel > 14 ) { if ( pbuddy_mlmeext->cur_channel >= 149 ) { p2pie[ p2pielen++ ] = 0x7c; } else { p2pie[ p2pielen++ ] = 0x73; } } else { p2pie[ p2pielen++ ] = 0x51; } // Number of Channels // Just support 1 channel and this channel is AP's channel p2pie[ p2pielen++ ] = 1; // Channel List p2pie[ p2pielen++ ] = pbuddy_mlmeext->cur_channel; } else { int i, j; for (j = 0; j < pmlmeext->channel_list.reg_classes; j++) { // Operating Class p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].reg_class; // Number of Channels p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channels; // Channel List for (i = 0; i < pmlmeext->channel_list.reg_class[j].channels; i++) { p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channel[i]; } } } #else // CONFIG_CONCURRENT_MODE { int i, j; for (j = 0; j < pmlmeext->channel_list.reg_classes; j++) { // Operating Class p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].reg_class; // Number of Channels p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channels; // Channel List for (i = 0; i < pmlmeext->channel_list.reg_class[j].channels; i++) { p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channel[i]; } } } #endif // CONFIG_CONCURRENT_MODE // Device Info // Type: p2pie[ p2pielen++ ] = P2P_ATTR_DEVICE_INFO; // Length: // 21 -> P2P Device Address (6bytes) + Config Methods (2bytes) + Primary Device Type (8bytes) // + NumofSecondDevType (1byte) + WPS Device Name ID field (2bytes) + WPS Device Name Len field (2bytes) *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 21 + pwdinfo->device_name_len ); p2pielen += 2; // Value: // P2P Device Address _rtw_memcpy(p2pie + p2pielen, adapter_mac_addr(padapter), ETH_ALEN); p2pielen += ETH_ALEN; // Config Method // This field should be big endian. Noted by P2P specification. *(u16*) ( p2pie + p2pielen ) = cpu_to_be16( pwdinfo->supported_wps_cm ); p2pielen += 2; // Primary Device Type // Category ID *(u16*) ( p2pie + p2pielen ) = cpu_to_be16( WPS_PDT_CID_MULIT_MEDIA ); p2pielen += 2; // OUI *(u32*) ( p2pie + p2pielen ) = cpu_to_be32( WPSOUI ); p2pielen += 4; // Sub Category ID *(u16*) ( p2pie + p2pielen ) = cpu_to_be16( WPS_PDT_SCID_MEDIA_SERVER ); p2pielen += 2; // Number of Secondary Device Types p2pie[ p2pielen++ ] = 0x00; // No Secondary Device Type List // Device Name // Type: *(u16*) ( p2pie + p2pielen ) = cpu_to_be16( WPS_ATTR_DEVICE_NAME ); p2pielen += 2; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_be16( pwdinfo->device_name_len ); p2pielen += 2; // Value: _rtw_memcpy( p2pie + p2pielen, pwdinfo->device_name , pwdinfo->device_name_len ); p2pielen += pwdinfo->device_name_len; if ( rtw_p2p_chk_role(pwdinfo, P2P_ROLE_GO) ) { // Group ID Attribute // Type: p2pie[ p2pielen++ ] = P2P_ATTR_GROUP_ID; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( ETH_ALEN + pwdinfo->nego_ssidlen ); p2pielen += 2; // Value: // p2P Device Address _rtw_memcpy( p2pie + p2pielen , pwdinfo->device_addr, ETH_ALEN ); p2pielen += ETH_ALEN; // SSID _rtw_memcpy( p2pie + p2pielen, pwdinfo->nego_ssid, pwdinfo->nego_ssidlen ); p2pielen += pwdinfo->nego_ssidlen; } pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, p2pielen, (unsigned char *) p2pie, &pktlen ); #ifdef CONFIG_WFD wfdielen = build_nego_resp_wfd_ie(pwdinfo, pframe); pframe += wfdielen; pktlen += wfdielen; #endif //CONFIG_WFD *pLength = pktlen; #if 0 // printf dbg msg dbgbufLen = pktlen; DBG_871X("======> DBG MSG FOR CONSTRAUCT Nego Rsp\n"); for(index=0;indexpbuddy_adapter; struct wifidirect_info *pbuddy_wdinfo = &pbuddy_adapter->wdinfo; struct mlme_priv *pbuddy_mlmepriv = &pbuddy_adapter->mlmepriv; struct mlme_ext_priv *pbuddy_mlmeext = &pbuddy_adapter->mlmeextpriv; #endif #ifdef CONFIG_WFD u32 wfdielen = 0; #endif //CONFIG_WFD //struct xmit_frame *pmgntframe; //struct pkt_attrib *pattrib; //unsigned char *pframe; struct rtw_ieee80211_hdr *pwlanhdr; unsigned short *fctrl; struct xmit_priv *pxmitpriv = &(padapter->xmitpriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct wifidirect_info *pwdinfo = &( padapter->wdinfo); //for debug u8 *dbgbuf = pframe; u8 dbgbufLen = 0, index = 0; DBG_871X( "%s\n", __FUNCTION__); pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; //RA fill by FW _rtw_memset(pwlanhdr->addr1, 0, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); //BSSID fill by FW _rtw_memset(pwlanhdr->addr3, 0, ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetFrameSubType(pframe, WIFI_ACTION); pframe += sizeof(struct rtw_ieee80211_hdr_3addr); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); pframe = rtw_set_fixed_ie(pframe, 1, &(category), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 1, &(action), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 4, (unsigned char *) &(p2poui), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 1, &(oui_subtype), &(pktlen)); //dialog token, filled by FW pframe = rtw_set_fixed_ie(pframe, 1, &(dialogToken), &(pktlen)); // P2P IE Section. // P2P OUI p2pielen = 0; p2pie[ p2pielen++ ] = 0x50; p2pie[ p2pielen++ ] = 0x6F; p2pie[ p2pielen++ ] = 0x9A; p2pie[ p2pielen++ ] = 0x09; // WFA P2P v1.0 // Commented by Albert 20101005 // According to the P2P Specification, the P2P Invitation response frame should contain 5 P2P attributes // 1. Status // 2. Configuration Timeout // 3. Operating Channel ( Only GO ) // 4. P2P Group BSSID ( Only GO ) // 5. Channel List // P2P Status // Type: p2pie[ p2pielen++ ] = P2P_ATTR_STATUS; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0001 ); p2pielen += 2; // Value: filled by FW, defult value is FAIL INFO UNAVAILABLE p2pie[ p2pielen++ ] = P2P_STATUS_FAIL_INFO_UNAVAILABLE; // Configuration Timeout // Type: p2pie[ p2pielen++ ] = P2P_ATTR_CONF_TIMEOUT; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0002 ); p2pielen += 2; // Value: p2pie[ p2pielen++ ] = 200; // 2 seconds needed to be the P2P GO p2pie[ p2pielen++ ] = 200; // 2 seconds needed to be the P2P Client // due to defult value is FAIL INFO UNAVAILABLE, so the following IE is not needed #if 0 if( status_code == P2P_STATUS_SUCCESS ) { if( rtw_p2p_chk_role( pwdinfo, P2P_ROLE_GO ) ) { // The P2P Invitation request frame asks this Wi-Fi device to be the P2P GO // In this case, the P2P Invitation response frame should carry the two more P2P attributes. // First one is operating channel attribute. // Second one is P2P Group BSSID attribute. // Operating Channel // Type: p2pie[ p2pielen++ ] = P2P_ATTR_OPERATING_CH; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 0x0005 ); p2pielen += 2; // Value: // Country String p2pie[ p2pielen++ ] = 'X'; p2pie[ p2pielen++ ] = 'X'; // The third byte should be set to 0x04. // Described in the "Operating Channel Attribute" section. p2pie[ p2pielen++ ] = 0x04; // Operating Class p2pie[ p2pielen++ ] = 0x51; // Copy from SD7 // Channel Number p2pie[ p2pielen++ ] = pwdinfo->operating_channel; // operating channel number // P2P Group BSSID // Type: p2pie[ p2pielen++ ] = P2P_ATTR_GROUP_BSSID; // Length: *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( ETH_ALEN ); p2pielen += 2; // Value: // P2P Device Address for GO _rtw_memcpy(p2pie + p2pielen, adapter_mac_addr(padapter), ETH_ALEN); p2pielen += ETH_ALEN; } // Channel List // Type: p2pie[ p2pielen++ ] = P2P_ATTR_CH_LIST; // Length: // Country String(3) // + ( Operating Class (1) + Number of Channels(1) ) * Operation Classes (?) // + number of channels in all classes len_channellist_attr = 3 + (1 + 1) * (u16)pmlmeext->channel_list.reg_classes + get_reg_classes_full_count(pmlmeext->channel_list); #ifdef CONFIG_CONCURRENT_MODE if ( check_buddy_fwstate(padapter, _FW_LINKED ) ) { *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( 5 + 1 ); } else { *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( len_channellist_attr ); } #else *(u16*) ( p2pie + p2pielen ) = cpu_to_le16( len_channellist_attr ); #endif p2pielen += 2; // Value: // Country String p2pie[ p2pielen++ ] = 'X'; p2pie[ p2pielen++ ] = 'X'; // The third byte should be set to 0x04. // Described in the "Operating Channel Attribute" section. p2pie[ p2pielen++ ] = 0x04; // Channel Entry List #ifdef CONFIG_CONCURRENT_MODE if ( check_buddy_fwstate(padapter, _FW_LINKED ) ) { _adapter *pbuddy_adapter = padapter->pbuddy_adapter; struct mlme_ext_priv *pbuddy_mlmeext = &pbuddy_adapter->mlmeextpriv; // Operating Class if ( pbuddy_mlmeext->cur_channel > 14 ) { if ( pbuddy_mlmeext->cur_channel >= 149 ) { p2pie[ p2pielen++ ] = 0x7c; } else { p2pie[ p2pielen++ ] = 0x73; } } else { p2pie[ p2pielen++ ] = 0x51; } // Number of Channels // Just support 1 channel and this channel is AP's channel p2pie[ p2pielen++ ] = 1; // Channel List p2pie[ p2pielen++ ] = pbuddy_mlmeext->cur_channel; } else { int i, j; for (j = 0; j < pmlmeext->channel_list.reg_classes; j++) { // Operating Class p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].reg_class; // Number of Channels p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channels; // Channel List for (i = 0; i < pmlmeext->channel_list.reg_class[j].channels; i++) { p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channel[i]; } } } #else // CONFIG_CONCURRENT_MODE { int i, j; for (j = 0; j < pmlmeext->channel_list.reg_classes; j++) { // Operating Class p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].reg_class; // Number of Channels p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channels; // Channel List for (i = 0; i < pmlmeext->channel_list.reg_class[j].channels; i++) { p2pie[p2pielen++] = pmlmeext->channel_list.reg_class[j].channel[i]; } } } #endif // CONFIG_CONCURRENT_MODE } #endif pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, p2pielen, (unsigned char *) p2pie, &pktlen ); #ifdef CONFIG_WFD wfdielen = build_invitation_resp_wfd_ie(pwdinfo, pframe); pframe += wfdielen; pktlen += wfdielen; #endif //CONFIG_WFD *pLength = pktlen; #if 0 // printf dbg msg dbgbufLen = pktlen; DBG_871X("======> DBG MSG FOR CONSTRAUCT Invite Rsp\n"); for(index=0;indexxmitpriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct wifidirect_info *pwdinfo = &( padapter->wdinfo); //for debug u8 *dbgbuf = pframe; u8 dbgbufLen = 0, index = 0; DBG_871X( "%s\n", __FUNCTION__); pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; //RA filled by FW _rtw_memset(pwlanhdr->addr1, 0, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, adapter_mac_addr(padapter), ETH_ALEN); SetSeqNum(pwlanhdr,0); SetFrameSubType(pframe, WIFI_ACTION); pframe += sizeof(struct rtw_ieee80211_hdr_3addr); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); pframe = rtw_set_fixed_ie(pframe, 1, &(category), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 1, &(action), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 4, (unsigned char *) &(p2poui), &(pktlen)); pframe = rtw_set_fixed_ie(pframe, 1, &(oui_subtype), &(pktlen)); //dialog token, filled by FW pframe = rtw_set_fixed_ie(pframe, 1, &(dialogToken), &(pktlen)); wpsielen = 0; // WPS OUI //*(u32*) ( wpsie ) = cpu_to_be32( WPSOUI ); RTW_PUT_BE32(wpsie, WPSOUI); wpsielen += 4; #if 0 // WPS version // Type: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_VER1 ); wpsielen += 2; // Length: *(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0001 ); wpsielen += 2; // Value: wpsie[wpsielen++] = WPS_VERSION_1; // Version 1.0 #endif // Config Method // Type: //*(u16*) ( wpsie + wpsielen ) = cpu_to_be16( WPS_ATTR_CONF_METHOD ); RTW_PUT_BE16(wpsie + wpsielen, WPS_ATTR_CONF_METHOD); wpsielen += 2; // Length: //*(u16*) ( wpsie + wpsielen ) = cpu_to_be16( 0x0002 ); RTW_PUT_BE16(wpsie + wpsielen, 0x0002); wpsielen += 2; // Value: filled by FW, default value is PBC //*(u16*) ( wpsie + wpsielen ) = cpu_to_be16( config_method ); RTW_PUT_BE16(wpsie + wpsielen, WPS_CM_PUSH_BUTTON); wpsielen += 2; pframe = rtw_set_ie(pframe, _VENDOR_SPECIFIC_IE_, wpsielen, (unsigned char *) wpsie, &pktlen ); #ifdef CONFIG_WFD wfdielen = build_provdisc_resp_wfd_ie(pwdinfo, pframe); pframe += wfdielen; pktlen += wfdielen; #endif //CONFIG_WFD *pLength = pktlen; // printf dbg msg #if 0 dbgbufLen = pktlen; DBG_871X("======> DBG MSG FOR CONSTRAUCT ProvisionDis Rsp\n"); for(index=0;indexHalFunc; u8 ret = _FAIL; DBG_871X("P2PRsvdPageLoc: P2PBeacon=%d P2PProbeRsp=%d NegoRsp=%d InviteRsp=%d PDRsp=%d\n", rsvdpageloc->LocP2PBeacon, rsvdpageloc->LocP2PProbeRsp, rsvdpageloc->LocNegoRsp, rsvdpageloc->LocInviteRsp, rsvdpageloc->LocPDRsp); SET_H2CCMD_RSVDPAGE_LOC_P2P_BCN(u1H2CP2PRsvdPageParm, rsvdpageloc->LocProbeRsp); SET_H2CCMD_RSVDPAGE_LOC_P2P_PROBE_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocPsPoll); SET_H2CCMD_RSVDPAGE_LOC_P2P_NEGO_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocNullData); SET_H2CCMD_RSVDPAGE_LOC_P2P_INVITE_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocQosNull); SET_H2CCMD_RSVDPAGE_LOC_P2P_PD_RSP(u1H2CP2PRsvdPageParm, rsvdpageloc->LocBTQosNull); //FillH2CCmd8723B(padapter, H2C_8723B_P2P_OFFLOAD_RSVD_PAGE, H2C_P2PRSVDPAGE_LOC_LEN, u1H2CP2PRsvdPageParm); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_P2P_OFFLOAD_RSVD_PAGE, H2C_P2PRSVDPAGE_LOC_LEN, u1H2CP2PRsvdPageParm); return ret; } u8 rtw_hal_set_p2p_wowlan_offload_cmd(_adapter* adapter) { u8 offload_cmd[H2C_P2P_OFFLOAD_LEN] = {0}; struct wifidirect_info *pwdinfo = &(adapter->wdinfo); struct P2P_WoWlan_Offload_t *p2p_wowlan_offload = (struct P2P_WoWlan_Offload_t *)offload_cmd; struct hal_ops *pHalFunc = &adapter->HalFunc; u8 ret = _FAIL; _rtw_memset(p2p_wowlan_offload,0 ,sizeof(struct P2P_WoWlan_Offload_t)); DBG_871X("%s\n",__func__); switch(pwdinfo->role) { case P2P_ROLE_DEVICE: DBG_871X("P2P_ROLE_DEVICE\n"); p2p_wowlan_offload->role = 0; break; case P2P_ROLE_CLIENT: DBG_871X("P2P_ROLE_CLIENT\n"); p2p_wowlan_offload->role = 1; break; case P2P_ROLE_GO: DBG_871X("P2P_ROLE_GO\n"); p2p_wowlan_offload->role = 2; break; default: DBG_871X("P2P_ROLE_DISABLE\n"); break; } p2p_wowlan_offload->Wps_Config[0] = pwdinfo->supported_wps_cm>>8; p2p_wowlan_offload->Wps_Config[1] = pwdinfo->supported_wps_cm; offload_cmd = (u8*)p2p_wowlan_offload; DBG_871X("p2p_wowlan_offload: %x:%x:%x\n",offload_cmd[0],offload_cmd[1],offload_cmd[2]); ret = rtw_hal_fill_h2c_cmd(adapter, H2C_P2P_OFFLOAD, H2C_P2P_OFFLOAD_LEN, offload_cmd); return ret; //FillH2CCmd8723B(adapter, H2C_8723B_P2P_OFFLOAD, sizeof(struct P2P_WoWlan_Offload_t), (u8 *)p2p_wowlan_offload); } #endif //CONFIG_P2P_WOWLAN static void rtw_hal_construct_beacon(_adapter *padapter, u8 *pframe, u32 *pLength) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u32 rate_len, pktlen; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; //DBG_871X("%s\n", __FUNCTION__); pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; _rtw_memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, get_my_bssid(cur_network), ETH_ALEN); SetSeqNum(pwlanhdr, 0/*pmlmeext->mgnt_seq*/); //pmlmeext->mgnt_seq++; SetFrameSubType(pframe, WIFI_BEACON); pframe += sizeof(struct rtw_ieee80211_hdr_3addr); pktlen = sizeof (struct rtw_ieee80211_hdr_3addr); //timestamp will be inserted by hardware pframe += 8; pktlen += 8; // beacon interval: 2 bytes _rtw_memcpy(pframe, (unsigned char *)(rtw_get_beacon_interval_from_ie(cur_network->IEs)), 2); pframe += 2; pktlen += 2; // capability info: 2 bytes _rtw_memcpy(pframe, (unsigned char *)(rtw_get_capability_from_ie(cur_network->IEs)), 2); pframe += 2; pktlen += 2; if( (pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE) { //DBG_871X("ie len=%d\n", cur_network->IELength); pktlen += cur_network->IELength - sizeof(NDIS_802_11_FIXED_IEs); _rtw_memcpy(pframe, cur_network->IEs+sizeof(NDIS_802_11_FIXED_IEs), pktlen); goto _ConstructBeacon; } //below for ad-hoc mode // SSID pframe = rtw_set_ie(pframe, _SSID_IE_, cur_network->Ssid.SsidLength, cur_network->Ssid.Ssid, &pktlen); // supported rates... rate_len = rtw_get_rateset_len(cur_network->SupportedRates); pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_, ((rate_len > 8)? 8: rate_len), cur_network->SupportedRates, &pktlen); // DS parameter set pframe = rtw_set_ie(pframe, _DSSET_IE_, 1, (unsigned char *)&(cur_network->Configuration.DSConfig), &pktlen); if( (pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) { u32 ATIMWindow; // IBSS Parameter Set... //ATIMWindow = cur->Configuration.ATIMWindow; ATIMWindow = 0; pframe = rtw_set_ie(pframe, _IBSS_PARA_IE_, 2, (unsigned char *)(&ATIMWindow), &pktlen); } //todo: ERP IE // EXTERNDED SUPPORTED RATE if (rate_len > 8) { pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_, (rate_len - 8), (cur_network->SupportedRates + 8), &pktlen); } //todo:HT for adhoc _ConstructBeacon: if ((pktlen + TXDESC_SIZE) > 512) { DBG_871X("beacon frame too large\n"); return; } *pLength = pktlen; //DBG_871X("%s bcn_sz=%d\n", __FUNCTION__, pktlen); } static void rtw_hal_construct_PSPoll(_adapter *padapter, u8 *pframe, u32 *pLength) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u32 pktlen; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); //DBG_871X("%s\n", __FUNCTION__); pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; // Frame control. fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; SetPwrMgt(fctrl); SetFrameSubType(pframe, WIFI_PSPOLL); // AID. SetDuration(pframe, (pmlmeinfo->aid | 0xc000)); // BSSID. _rtw_memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); // TA. _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); *pLength = 16; } static void rtw_hal_construct_NullFunctionData( PADAPTER padapter, u8 *pframe, u32 *pLength, u8 *StaAddr, u8 bQoS, u8 AC, u8 bEosp, u8 bForcePowerSave) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u32 pktlen; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct wlan_network *cur_network = &pmlmepriv->cur_network; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); //DBG_871X("%s:%d\n", __FUNCTION__, bForcePowerSave); pwlanhdr = (struct rtw_ieee80211_hdr*)pframe; fctrl = &pwlanhdr->frame_ctl; *(fctrl) = 0; if (bForcePowerSave) { SetPwrMgt(fctrl); } switch(cur_network->network.InfrastructureMode) { case Ndis802_11Infrastructure: SetToDs(fctrl); _rtw_memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, StaAddr, ETH_ALEN); break; case Ndis802_11APMode: SetFrDs(fctrl); _rtw_memcpy(pwlanhdr->addr1, StaAddr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, adapter_mac_addr(padapter), ETH_ALEN); break; case Ndis802_11IBSS: default: _rtw_memcpy(pwlanhdr->addr1, StaAddr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); break; } SetSeqNum(pwlanhdr, 0); if (bQoS == _TRUE) { struct rtw_ieee80211_hdr_3addr_qos *pwlanqoshdr; SetFrameSubType(pframe, WIFI_QOS_DATA_NULL); pwlanqoshdr = (struct rtw_ieee80211_hdr_3addr_qos*)pframe; SetPriority(&pwlanqoshdr->qc, AC); SetEOSP(&pwlanqoshdr->qc, bEosp); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr_qos); } else { SetFrameSubType(pframe, WIFI_DATA_NULL); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); } *pLength = pktlen; } void rtw_hal_construct_ProbeRsp(_adapter *padapter, u8 *pframe, u32 *pLength, u8 *StaAddr, BOOLEAN bHideSSID) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u8 *mac, *bssid; u32 pktlen; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); WLAN_BSSID_EX *cur_network = &(pmlmeinfo->network); /*DBG_871X("%s\n", __FUNCTION__);*/ pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; mac = adapter_mac_addr(padapter); bssid = cur_network->MacAddress; fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; _rtw_memcpy(pwlanhdr->addr1, StaAddr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, mac, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, bssid, ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetFrameSubType(fctrl, WIFI_PROBERSP); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); pframe += pktlen; if (cur_network->IELength > MAX_IE_SZ) return; _rtw_memcpy(pframe, cur_network->IEs, cur_network->IELength); pframe += cur_network->IELength; pktlen += cur_network->IELength; *pLength = pktlen; } #ifdef CONFIG_WOWLAN // // Description: // Construct the ARP response packet to support ARP offload. // static void rtw_hal_construct_ARPRsp( PADAPTER padapter, u8 *pframe, u32 *pLength, u8 *pIPAddress ) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u32 pktlen; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct wlan_network *cur_network = &pmlmepriv->cur_network; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct security_priv *psecuritypriv = &padapter->securitypriv; static u8 ARPLLCHeader[8] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x08, 0x06}; u8 *pARPRspPkt = pframe; //for TKIP Cal MIC u8 *payload = pframe; u8 EncryptionHeadOverhead = 0; //DBG_871X("%s:%d\n", __FUNCTION__, bForcePowerSave); pwlanhdr = (struct rtw_ieee80211_hdr*)pframe; fctrl = &pwlanhdr->frame_ctl; *(fctrl) = 0; //------------------------------------------------------------------------- // MAC Header. //------------------------------------------------------------------------- SetFrameType(fctrl, WIFI_DATA); //SetFrameSubType(fctrl, 0); SetToDs(fctrl); _rtw_memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetDuration(pwlanhdr, 0); //SET_80211_HDR_FRAME_CONTROL(pARPRspPkt, 0); //SET_80211_HDR_TYPE_AND_SUBTYPE(pARPRspPkt, Type_Data); //SET_80211_HDR_TO_DS(pARPRspPkt, 1); //SET_80211_HDR_ADDRESS1(pARPRspPkt, pMgntInfo->Bssid); //SET_80211_HDR_ADDRESS2(pARPRspPkt, Adapter->CurrentAddress); //SET_80211_HDR_ADDRESS3(pARPRspPkt, pMgntInfo->Bssid); //SET_80211_HDR_DURATION(pARPRspPkt, 0); //SET_80211_HDR_FRAGMENT_SEQUENCE(pARPRspPkt, 0); #ifdef CONFIG_WAPI_SUPPORT *pLength = sMacHdrLng; #else *pLength = 24; #endif switch (psecuritypriv->dot11PrivacyAlgrthm) { case _WEP40_: case _WEP104_: EncryptionHeadOverhead = 4; break; case _TKIP_: EncryptionHeadOverhead = 8; break; case _AES_: EncryptionHeadOverhead = 8; break; #ifdef CONFIG_WAPI_SUPPORT case _SMS4_: EncryptionHeadOverhead = 18; break; #endif default: EncryptionHeadOverhead = 0; } if(EncryptionHeadOverhead > 0) { _rtw_memset(&(pframe[*pLength]), 0,EncryptionHeadOverhead); *pLength += EncryptionHeadOverhead; //SET_80211_HDR_WEP(pARPRspPkt, 1); //Suggested by CCW. SetPrivacy(fctrl); } //------------------------------------------------------------------------- // Frame Body. //------------------------------------------------------------------------- pARPRspPkt = (u8*)(pframe+ *pLength); payload = pARPRspPkt; //Get Payload pointer // LLC header _rtw_memcpy(pARPRspPkt, ARPLLCHeader, 8); *pLength += 8; // ARP element pARPRspPkt += 8; SET_ARP_PKT_HW(pARPRspPkt, 0x0100); SET_ARP_PKT_PROTOCOL(pARPRspPkt, 0x0008); // IP protocol SET_ARP_PKT_HW_ADDR_LEN(pARPRspPkt, 6); SET_ARP_PKT_PROTOCOL_ADDR_LEN(pARPRspPkt, 4); SET_ARP_PKT_OPERATION(pARPRspPkt, 0x0200); // ARP response SET_ARP_PKT_SENDER_MAC_ADDR(pARPRspPkt, adapter_mac_addr(padapter)); SET_ARP_PKT_SENDER_IP_ADDR(pARPRspPkt, pIPAddress); #ifdef CONFIG_ARP_KEEP_ALIVE if (!is_zero_mac_addr(pmlmepriv->gw_mac_addr)) { SET_ARP_PKT_TARGET_MAC_ADDR(pARPRspPkt, pmlmepriv->gw_mac_addr); SET_ARP_PKT_TARGET_IP_ADDR(pARPRspPkt, pmlmepriv->gw_ip); } else #endif { SET_ARP_PKT_TARGET_MAC_ADDR(pARPRspPkt, get_my_bssid(&(pmlmeinfo->network))); SET_ARP_PKT_TARGET_IP_ADDR(pARPRspPkt, pIPAddress); DBG_871X("%s Target Mac Addr:" MAC_FMT "\n", __FUNCTION__, MAC_ARG(get_my_bssid(&(pmlmeinfo->network)))); DBG_871X("%s Target IP Addr" IP_FMT "\n", __FUNCTION__, IP_ARG(pIPAddress)); } *pLength += 28; if (psecuritypriv->dot11PrivacyAlgrthm == _TKIP_) { u8 mic[8]; struct mic_data micdata; struct sta_info *psta = NULL; u8 priority[4]={0x0,0x0,0x0,0x0}; u8 null_key[16]={0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0}; DBG_871X("%s(): Add MIC\n",__FUNCTION__); psta = rtw_get_stainfo(&padapter->stapriv, get_my_bssid(&(pmlmeinfo->network))); if (psta != NULL) { if(_rtw_memcmp(&psta->dot11tkiptxmickey.skey[0], null_key, 16)==_TRUE) { DBG_871X("%s(): STA dot11tkiptxmickey==0\n", __func__); } //start to calculate the mic code rtw_secmicsetkey(&micdata, &psta->dot11tkiptxmickey.skey[0]); } rtw_secmicappend(&micdata, pwlanhdr->addr3, 6); //DA rtw_secmicappend(&micdata, pwlanhdr->addr2, 6); //SA priority[0]=0; rtw_secmicappend(&micdata, &priority[0], 4); rtw_secmicappend(&micdata, payload, 36); //payload length = 8 + 28 rtw_secgetmic(&micdata,&(mic[0])); pARPRspPkt += 28; _rtw_memcpy(pARPRspPkt, &(mic[0]),8); *pLength += 8; } } #ifdef CONFIG_PNO_SUPPORT static void rtw_hal_construct_ProbeReq(_adapter *padapter, u8 *pframe, u32 *pLength, pno_ssid_t *ssid) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u32 pktlen; unsigned char *mac; unsigned char bssrate[NumRates]; struct xmit_priv *pxmitpriv = &(padapter->xmitpriv); struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); int bssrate_len = 0; u8 bc_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; pwlanhdr = (struct rtw_ieee80211_hdr *)pframe; mac = adapter_mac_addr(padapter); fctrl = &(pwlanhdr->frame_ctl); *(fctrl) = 0; _rtw_memcpy(pwlanhdr->addr1, bc_addr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, bc_addr, ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, mac, ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetFrameSubType(pframe, WIFI_PROBEREQ); pktlen = sizeof(struct rtw_ieee80211_hdr_3addr); pframe += pktlen; if (ssid == NULL) { pframe = rtw_set_ie(pframe, _SSID_IE_, 0, NULL, &pktlen); } else { //DBG_871X("%s len:%d\n", ssid->SSID, ssid->SSID_len); pframe = rtw_set_ie(pframe, _SSID_IE_, ssid->SSID_len, ssid->SSID, &pktlen); } get_rate_set(padapter, bssrate, &bssrate_len); if (bssrate_len > 8) { pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_ , 8, bssrate, &pktlen); pframe = rtw_set_ie(pframe, _EXT_SUPPORTEDRATES_IE_ , (bssrate_len - 8), (bssrate + 8), &pktlen); } else { pframe = rtw_set_ie(pframe, _SUPPORTEDRATES_IE_ , bssrate_len , bssrate, &pktlen); } *pLength = pktlen; } static void rtw_hal_construct_PNO_info(_adapter *padapter, u8 *pframe, u32*pLength) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 *pPnoInfoPkt = pframe; pPnoInfoPkt = (u8*)(pframe+ *pLength); _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_num, 1); *pLength+=1; pPnoInfoPkt += 1; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->hidden_ssid_num, 1); *pLength+=3; pPnoInfoPkt += 3; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->fast_scan_period, 1); *pLength+=4; pPnoInfoPkt += 4; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->fast_scan_iterations, 4); *pLength+=4; pPnoInfoPkt += 4; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->slow_scan_period, 4); *pLength+=4; pPnoInfoPkt += 4; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_length, MAX_PNO_LIST_COUNT); *pLength+=MAX_PNO_LIST_COUNT; pPnoInfoPkt += MAX_PNO_LIST_COUNT; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_cipher_info, MAX_PNO_LIST_COUNT); *pLength+=MAX_PNO_LIST_COUNT; pPnoInfoPkt += MAX_PNO_LIST_COUNT; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->ssid_channel_info, MAX_PNO_LIST_COUNT); *pLength+=MAX_PNO_LIST_COUNT; pPnoInfoPkt += MAX_PNO_LIST_COUNT; _rtw_memcpy(pPnoInfoPkt, &pwrctl->pnlo_info->loc_probe_req, MAX_HIDDEN_AP); *pLength+=MAX_HIDDEN_AP; pPnoInfoPkt += MAX_HIDDEN_AP; } static void rtw_hal_construct_ssid_list(_adapter *padapter, u8 *pframe, u32 *pLength) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 *pSSIDListPkt = pframe; int i; pSSIDListPkt = (u8*)(pframe+ *pLength); for(i = 0; i < pwrctl->pnlo_info->ssid_num ; i++) { _rtw_memcpy(pSSIDListPkt, &pwrctl->pno_ssid_list->node[i].SSID, pwrctl->pnlo_info->ssid_length[i]); *pLength += WLAN_SSID_MAXLEN; pSSIDListPkt += WLAN_SSID_MAXLEN; } } static void rtw_hal_construct_scan_info(_adapter *padapter, u8 *pframe, u32 *pLength) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter); u8 *pScanInfoPkt = pframe; int i; pScanInfoPkt = (u8*)(pframe+ *pLength); _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->channel_num, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_ch, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_bw, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_40_offset, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->orig_80_offset, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->periodScan, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->period_scan_time, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->enableRFE, 1); *pLength+=1; pScanInfoPkt += 1; _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->rfe_type, 8); *pLength+=8; pScanInfoPkt += 8; for(i = 0 ; i < MAX_SCAN_LIST_COUNT ; i ++) { _rtw_memcpy(pScanInfoPkt, &pwrctl->pscan_info->ssid_channel_info[i], 4); *pLength+=4; pScanInfoPkt += 4; } } #endif //CONFIG_PNO_SUPPORT #ifdef CONFIG_GTK_OL static void rtw_hal_construct_GTKRsp( PADAPTER padapter, u8 *pframe, u32 *pLength ) { struct rtw_ieee80211_hdr *pwlanhdr; u16 *fctrl; u32 pktlen; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct wlan_network *cur_network = &pmlmepriv->cur_network; struct mlme_ext_priv *pmlmeext = &(padapter->mlmeextpriv); struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); struct security_priv *psecuritypriv = &padapter->securitypriv; static u8 LLCHeader[8] = {0xAA, 0xAA, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8E}; static u8 GTKbody_a[11] ={0x01, 0x03, 0x00, 0x5F, 0x02, 0x03, 0x12, 0x00, 0x10, 0x42, 0x0B}; u8 *pGTKRspPkt = pframe; u8 EncryptionHeadOverhead = 0; //DBG_871X("%s:%d\n", __FUNCTION__, bForcePowerSave); pwlanhdr = (struct rtw_ieee80211_hdr*)pframe; fctrl = &pwlanhdr->frame_ctl; *(fctrl) = 0; //------------------------------------------------------------------------- // MAC Header. //------------------------------------------------------------------------- SetFrameType(fctrl, WIFI_DATA); //SetFrameSubType(fctrl, 0); SetToDs(fctrl); _rtw_memcpy(pwlanhdr->addr1, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr2, adapter_mac_addr(padapter), ETH_ALEN); _rtw_memcpy(pwlanhdr->addr3, get_my_bssid(&(pmlmeinfo->network)), ETH_ALEN); SetSeqNum(pwlanhdr, 0); SetDuration(pwlanhdr, 0); #ifdef CONFIG_WAPI_SUPPORT *pLength = sMacHdrLng; #else *pLength = 24; #endif //CONFIG_WAPI_SUPPORT //------------------------------------------------------------------------- // Security Header: leave space for it if necessary. //------------------------------------------------------------------------- switch (psecuritypriv->dot11PrivacyAlgrthm) { case _WEP40_: case _WEP104_: EncryptionHeadOverhead = 4; break; case _TKIP_: EncryptionHeadOverhead = 8; break; case _AES_: EncryptionHeadOverhead = 8; break; #ifdef CONFIG_WAPI_SUPPORT case _SMS4_: EncryptionHeadOverhead = 18; break; #endif //CONFIG_WAPI_SUPPORT default: EncryptionHeadOverhead = 0; } if (EncryptionHeadOverhead > 0) { _rtw_memset(&(pframe[*pLength]), 0,EncryptionHeadOverhead); *pLength += EncryptionHeadOverhead; //SET_80211_HDR_WEP(pGTKRspPkt, 1); //Suggested by CCW. //GTK's privacy bit is done by FW //SetPrivacy(fctrl); } //------------------------------------------------------------------------- // Frame Body. //------------------------------------------------------------------------- pGTKRspPkt = (u8*)(pframe+ *pLength); // LLC header _rtw_memcpy(pGTKRspPkt, LLCHeader, 8); *pLength += 8; // GTK element pGTKRspPkt += 8; //GTK frame body after LLC, part 1 _rtw_memcpy(pGTKRspPkt, GTKbody_a, 11); *pLength += 11; pGTKRspPkt += 11; //GTK frame body after LLC, part 2 _rtw_memset(&(pframe[*pLength]), 0, 88); *pLength += 88; pGTKRspPkt += 88; } #endif //CONFIG_GTK_OL void rtw_hal_set_wow_fw_rsvd_page(_adapter *adapter, u8 *pframe, u16 index, u8 tx_desc, u32 page_size, u8 *page_num, u32 *total_pkt_len, RSVDPAGE_LOC *rsvd_page_loc) { struct security_priv *psecuritypriv = &adapter->securitypriv; struct mlme_priv *pmlmepriv = &adapter->mlmepriv; struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); struct mlme_ext_priv *pmlmeext; struct mlme_ext_info *pmlmeinfo; u32 ARPLegnth = 0, GTKLegnth = 0, PNOLength = 0, ScanInfoLength = 0; u32 SSIDLegnth = 0, ProbeReqLength = 0; u8 CurtPktPageNum = 0; u8 currentip[4]; u8 cur_dot11txpn[8]; #ifdef CONFIG_GTK_OL struct sta_priv *pstapriv = &adapter->stapriv; struct sta_info * psta; u8 kek[RTW_KEK_LEN]; u8 kck[RTW_KCK_LEN]; #endif //CONFIG_GTK_OL #ifdef CONFIG_PNO_SUPPORT int pno_index; u8 ssid_num; #endif //CONFIG_PNO_SUPPORT pmlmeext = &adapter->mlmeextpriv; pmlmeinfo = &pmlmeext->mlmext_info; if (pwrctl->wowlan_pno_enable == _FALSE) { //ARP RSP * 1 page rtw_get_current_ip_address(adapter, currentip); rsvd_page_loc->LocArpRsp = *page_num; rtw_hal_construct_ARPRsp( adapter, &pframe[index], &ARPLegnth, currentip); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], ARPLegnth, _FALSE, _FALSE, _TRUE); CurtPktPageNum = (u8)PageNum(tx_desc + ARPLegnth, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //3 SEC IV * 1 page rtw_get_sec_iv(adapter, cur_dot11txpn, get_my_bssid(&pmlmeinfo->network)); rsvd_page_loc->LocRemoteCtrlInfo = *page_num; _rtw_memcpy(pframe+index-tx_desc, cur_dot11txpn, _AES_IV_LEN_); CurtPktPageNum = (u8)PageNum(_AES_IV_LEN_, page_size); *page_num += CurtPktPageNum; *total_pkt_len = index + _AES_IV_LEN_; #ifdef CONFIG_GTK_OL index += (CurtPktPageNum * page_size); //if the ap staion info. exists, get the kek, kck from staion info. psta = rtw_get_stainfo(pstapriv, get_bssid(pmlmepriv)); if (psta == NULL) { _rtw_memset(kek, 0, RTW_KEK_LEN); _rtw_memset(kck, 0, RTW_KCK_LEN); DBG_8192C("%s, KEK, KCK download rsvd page all zero \n", __func__); } else { _rtw_memcpy(kek, psta->kek, RTW_KEK_LEN); _rtw_memcpy(kck, psta->kck, RTW_KCK_LEN); } //3 KEK, KCK rsvd_page_loc->LocGTKInfo = *page_num; if (IS_HARDWARE_TYPE_8188E(adapter) || IS_HARDWARE_TYPE_8812(adapter)) { struct security_priv *psecpriv = NULL; psecpriv = &adapter->securitypriv; _rtw_memcpy(pframe+index-tx_desc, &psecpriv->dot11PrivacyAlgrthm, 1); _rtw_memcpy(pframe+index-tx_desc+1, &psecpriv->dot118021XGrpPrivacy, 1); _rtw_memcpy(pframe+index-tx_desc+2, kck, RTW_KCK_LEN); _rtw_memcpy(pframe+index-tx_desc+2+RTW_KCK_LEN, kek, RTW_KEK_LEN); CurtPktPageNum = (u8)PageNum(tx_desc + 2 + RTW_KCK_LEN + RTW_KEK_LEN, page_size); } else { _rtw_memcpy(pframe+index-tx_desc, kck, RTW_KCK_LEN); _rtw_memcpy(pframe+index-tx_desc+RTW_KCK_LEN, kek, RTW_KEK_LEN); CurtPktPageNum = (u8)PageNum(tx_desc + RTW_KCK_LEN + RTW_KEK_LEN, page_size); } #if 0 { int i; printk("\ntoFW KCK: "); for(i=0;i<16; i++) printk(" %02x ", kck[i]); printk("\ntoFW KEK: "); for(i=0;i<16; i++) printk(" %02x ", kek[i]); printk("\n"); } DBG_871X("%s(): HW_VAR_SET_TX_CMD: KEK KCK %p %d\n", __FUNCTION__, &pframe[index-tx_desc], (tx_desc + RTW_KCK_LEN + RTW_KEK_LEN)); #endif *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //3 GTK Response rsvd_page_loc->LocGTKRsp= *page_num; rtw_hal_construct_GTKRsp(adapter, &pframe[index], >KLegnth); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], GTKLegnth, _FALSE, _FALSE, _TRUE); #if 0 { int gj; printk("123GTK pkt=> \n"); for(gj=0; gj < GTKLegnth+tx_desc; gj++) { printk(" %02x ", pframe[index-tx_desc+gj]); if ((gj + 1)%16==0) printk("\n"); } printk(" <=end\n"); } DBG_871X("%s(): HW_VAR_SET_TX_CMD: GTK RSP %p %d\n", __FUNCTION__, &pframe[index-tx_desc], (tx_desc + GTKLegnth)); #endif CurtPktPageNum = (u8)PageNum(tx_desc + GTKLegnth, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //below page is empty for GTK extension memory //3(11) GTK EXT MEM rsvd_page_loc->LocGTKEXTMEM = *page_num; CurtPktPageNum = 2; *page_num += CurtPktPageNum; //extension memory for FW *total_pkt_len = index - tx_desc + (page_size * CurtPktPageNum); #endif //CONFIG_GTK_OL } else { #ifdef CONFIG_PNO_SUPPORT if (pwrctl->pno_in_resume == _FALSE && pwrctl->pno_inited == _TRUE) { //Broadcast Probe Request rsvd_page_loc->LocProbePacket = *page_num; DBG_871X("loc_probe_req: %d\n", rsvd_page_loc->LocProbePacket); rtw_hal_construct_ProbeReq( adapter, &pframe[index], &ProbeReqLength, NULL); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], ProbeReqLength, _FALSE, _FALSE, _FALSE); CurtPktPageNum = (u8)PageNum(tx_desc + ProbeReqLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //Hidden SSID Probe Request ssid_num = pwrctl->pnlo_info->hidden_ssid_num; for (pno_index = 0 ; pno_index < ssid_num ; pno_index++) { pwrctl->pnlo_info->loc_probe_req[pno_index] = *page_num; rtw_hal_construct_ProbeReq( adapter, &pframe[index], &ProbeReqLength, &pwrctl->pno_ssid_list->node[pno_index]); rtw_hal_fill_fake_txdesc(adapter, &pframe[index - tx_desc], ProbeReqLength, _FALSE, _FALSE, _FALSE); CurtPktPageNum = (u8)PageNum(tx_desc + ProbeReqLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); } //PNO INFO Page rsvd_page_loc->LocPNOInfo = *page_num; rtw_hal_construct_PNO_info(adapter, &pframe[index - tx_desc], &PNOLength); CurtPktPageNum = (u8)PageNum(PNOLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //SSID List Page rsvd_page_loc->LocSSIDInfo = *page_num; rtw_hal_construct_ssid_list(adapter, &pframe[index - tx_desc], &SSIDLegnth); CurtPktPageNum = (u8)PageNum(SSIDLegnth, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //Scan Info Page rsvd_page_loc->LocScanInfo = *page_num; rtw_hal_construct_scan_info(adapter, &pframe[index - tx_desc], &ScanInfoLength); CurtPktPageNum = (u8)PageNum(ScanInfoLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); *total_pkt_len = index + ScanInfoLength; } #endif //CONFIG_PNO_SUPPORT } } static void rtw_hal_gate_bb(_adapter *adapter, bool stop) { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter); u8 val8 = 0; u16 val16 = 0; if (stop) { /* Pause TX*/ pwrpriv->wowlan_txpause_status = rtw_read8(adapter, REG_TXPAUSE); rtw_write8(adapter, REG_TXPAUSE, 0xff); val8 = rtw_read8(adapter, REG_SYS_FUNC_EN); val8 &= ~BIT(0); rtw_write8(adapter, REG_SYS_FUNC_EN, val8); DBG_871X("%s: BB gated: 0x%02x, store TXPAUSE: %02x\n", __func__, rtw_read8(adapter, REG_SYS_FUNC_EN), pwrpriv->wowlan_txpause_status); } else { val8 = rtw_read8(adapter, REG_SYS_FUNC_EN); val8 |= BIT(0); rtw_write8(adapter, REG_SYS_FUNC_EN, val8); DBG_871X("%s: BB release: 0x%02x, recover TXPAUSE:%02x\n", __func__, rtw_read8(adapter, REG_SYS_FUNC_EN), pwrpriv->wowlan_txpause_status); /* release TX*/ rtw_write8(adapter, REG_TXPAUSE, pwrpriv->wowlan_txpause_status); } } static void rtw_hal_reset_mac_rx(_adapter *adapter) { u8 val8 = 0; /* Set REG_CR bit1, bit3, bit7 to 0*/ val8 = rtw_read8(adapter, REG_CR); val8 &= 0x75; rtw_write8(adapter, REG_CR, val8); val8 = rtw_read8(adapter, REG_CR); /* Set REG_CR bit1, bit3, bit7 to 1*/ val8 |= 0x8a; rtw_write8(adapter, REG_CR, val8); DBG_871X("0x%04x: %02x\n", REG_CR, rtw_read8(adapter, REG_CR)); } static void rtw_hal_set_wow_rxff_boundary(_adapter *adapter, bool wow_mode) { u8 val8 = 0; u16 rxff_bndy = 0; u32 rx_dma_buff_sz = 0; val8 = rtw_read8(adapter, REG_FIFOPAGE + 3); if (val8 != 0) DBG_871X("%s:[%04x]some PKTs in TXPKTBUF\n", __func__, (REG_FIFOPAGE + 3)); rtw_hal_reset_mac_rx(adapter); if (wow_mode) { rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ_WOW, (u8 *)&rx_dma_buff_sz); rxff_bndy = rx_dma_buff_sz - 1; rtw_write16(adapter, (REG_TRXFF_BNDY + 2), rxff_bndy); DBG_871X("%s: wow mode, 0x%04x: 0x%04x\n", __func__, REG_TRXFF_BNDY + 2, rtw_read16(adapter, (REG_TRXFF_BNDY+2))); } else { rtw_hal_get_def_var(adapter, HAL_DEF_RX_DMA_SZ, (u8 *)&rx_dma_buff_sz); rxff_bndy = rx_dma_buff_sz - 1; rtw_write16(adapter, (REG_TRXFF_BNDY + 2), rxff_bndy); DBG_871X("%s: normal mode, 0x%04x: 0x%04x\n", __func__, REG_TRXFF_BNDY + 2, rtw_read16(adapter, (REG_TRXFF_BNDY+2))); } } static int rtw_hal_set_pattern(_adapter *adapter, u8 *pattern, u8 len, u8 *mask) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); struct mlme_ext_priv *pmlmeext = NULL; struct mlme_ext_info *pmlmeinfo = NULL; struct rtl_wow_pattern wow_pattern; u8 mask_hw[MAX_WKFM_SIZE] = {0}; u8 content[MAX_WKFM_PATTERN_SIZE] = {0}; u8 broadcast_addr[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; u8 multicast_addr1[2] = {0x33, 0x33}; u8 multicast_addr2[3] = {0x01, 0x00, 0x5e}; u8 res = _FALSE, index = 0, mask_len = 0; u8 mac_addr[ETH_ALEN] = {0}; u16 count = 0; int i, j; if (pwrctl->wowlan_pattern_idx > MAX_WKFM_NUM) { DBG_871X("%s pattern_idx is more than MAX_FMC_NUM: %d\n", __func__, MAX_WKFM_NUM); return _FALSE; } pmlmeext = &adapter->mlmeextpriv; pmlmeinfo = &pmlmeext->mlmext_info; _rtw_memcpy(mac_addr, adapter_mac_addr(adapter), ETH_ALEN); _rtw_memset(&wow_pattern, 0, sizeof(struct rtl_wow_pattern)); mask_len = DIV_ROUND_UP(len, 8); /* 1. setup A1 table */ if (memcmp(pattern, broadcast_addr, ETH_ALEN) == 0) wow_pattern.type = PATTERN_BROADCAST; else if (memcmp(pattern, multicast_addr1, 2) == 0) wow_pattern.type = PATTERN_MULTICAST; else if (memcmp(pattern, multicast_addr2, 3) == 0) wow_pattern.type = PATTERN_MULTICAST; else if (memcmp(pattern, mac_addr, ETH_ALEN) == 0) wow_pattern.type = PATTERN_UNICAST; else wow_pattern.type = PATTERN_INVALID; /* translate mask from os to mask for hw */ /****************************************************************************** * pattern from OS uses 'ethenet frame', like this: | 6 | 6 | 2 | 20 | Variable | 4 | |--------+--------+------+-----------+------------+-----| | 802.3 Mac Header | IP Header | TCP Packet | FCS | | DA | SA | Type | * BUT, packet catched by our HW is in '802.11 frame', begin from LLC, | 24 or 30 | 6 | 2 | 20 | Variable | 4 | |-------------------+--------+------+-----------+------------+-----| | 802.11 MAC Header | LLC | IP Header | TCP Packet | FCS | | Others | Tpye | * Therefore, we need translate mask_from_OS to mask_to_hw. * We should left-shift mask by 6 bits, then set the new bit[0~5] = 0, * because new mask[0~5] means 'SA', but our HW packet begins from LLC, * bit[0~5] corresponds to first 6 Bytes in LLC, they just don't match. ******************************************************************************/ /* Shift 6 bits */ for (i = 0; i < mask_len - 1; i++) { mask_hw[i] = mask[i] >> 6; mask_hw[i] |= (mask[i + 1] & 0x3F) << 2; } mask_hw[i] = (mask[i] >> 6) & 0x3F; /* Set bit 0-5 to zero */ mask_hw[0] &= 0xC0; for (i = 0; i < (MAX_WKFM_SIZE/4); i++) { wow_pattern.mask[i] = mask_hw[i * 4]; wow_pattern.mask[i] |= (mask_hw[i * 4 + 1] << 8); wow_pattern.mask[i] |= (mask_hw[i * 4 + 2] << 16); wow_pattern.mask[i] |= (mask_hw[i * 4 + 3] << 24); } /* To get the wake up pattern from the mask. * We do not count first 12 bits which means * DA[6] and SA[6] in the pattern to match HW design. */ count = 0; for (i = 12; i < len; i++) { if ((mask[i / 8] >> (i % 8)) & 0x01) { content[count] = pattern[i]; count++; } } wow_pattern.crc = rtw_calc_crc(content, count); if (wow_pattern.crc != 0 && wow_pattern.type == PATTERN_INVALID) wow_pattern.type = PATTERN_VALID; index = rtw_read8(adapter, REG_WKFMCAM_NUM); if (!pwrctl->bInSuspend) index += 2; /* write pattern */ res = rtw_write_to_frame_mask(adapter, index, &wow_pattern); if (res == _TRUE) { pwrctl->wowlan_pattern_idx++; rtw_write8(adapter, REG_WKFMCAM_NUM, pwrctl->wowlan_pattern_idx); } else { DBG_871X("%s: ERROR write_to_frame_mask_cam fail\n", __func__); } return res; } static void rtw_hal_dl_pattern(_adapter *adapter, u8 clean_all) { struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter); int i = 0, total = 0; total = pwrpriv->wowlan_pattern_idx + 1; rtw_clean_pattern(adapter); if (!clean_all) { for (i = 0 ; i < total ; i++) { rtw_hal_set_pattern(adapter, pwrpriv->patterns[i].content, pwrpriv->patterns[i].len, pwrpriv->patterns[i].mask); } DBG_871X("pattern downloaded\n"); } else { for (i = 0 ; i < MAX_WKFM_NUM ; i++) { _rtw_memset(pwrpriv->patterns[i].content, '\0', sizeof(pwrpriv->patterns[i].content)); _rtw_memset(pwrpriv->patterns[i].mask, '\0', sizeof(pwrpriv->patterns[i].mask)); pwrpriv->patterns[i].len = 0; } DBG_871X("clean all pattern\n"); } } static void rtw_hal_wow_enable(_adapter *adapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); struct security_priv *psecuritypriv = &adapter->securitypriv; struct mlme_priv *pmlmepriv = &adapter->mlmepriv; struct hal_ops *pHalFunc = &adapter->HalFunc; struct sta_info *psta = NULL; int res; u16 media_status_rpt; DBG_871X_LEVEL(_drv_always_, "%s, WOWLAN_ENABLE\n", __func__); rtw_hal_gate_bb(adapter, _TRUE); #ifdef CONFIG_GTK_OL if (psecuritypriv->dot11PrivacyAlgrthm == _AES_) rtw_hal_fw_sync_cam_id(adapter); #endif if (IS_HARDWARE_TYPE_8723B(adapter)) rtw_hal_backup_rate(adapter); /* RX DMA stop */ if (IS_HARDWARE_TYPE_8188E(adapter)) rtw_hal_disable_tx_report(adapter); res = rtw_hal_pause_rx_dma(adapter); if (res == _FAIL) DBG_871X_LEVEL(_drv_always_, "[WARNING] pause RX DMA fail\n"); /* Reconfig RX_FF Boundary */ rtw_hal_set_wow_rxff_boundary(adapter, _TRUE); /* redownload pattern match */ if (pwrctl->wowlan_pattern) rtw_hal_dl_pattern(adapter, _FALSE); rtw_hal_set_wowlan_fw(adapter, _TRUE); media_status_rpt = RT_MEDIA_CONNECT; rtw_hal_set_hwreg(adapter, HW_VAR_H2C_FW_JOINBSSRPT, (u8 *)&media_status_rpt); if (!pwrctl->wowlan_pno_enable) { psta = rtw_get_stainfo(&adapter->stapriv, get_bssid(pmlmepriv)); media_status_rpt = (u16)((psta->mac_id<<8)|RT_MEDIA_CONNECT); if (psta != NULL) { rtw_hal_set_hwreg(adapter, HW_VAR_H2C_MEDIA_STATUS_RPT, (u8 *)&media_status_rpt); } } #if defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI) /* Enable CPWM2 only. */ res = rtw_hal_enable_cpwm2(adapter); if (res == _FAIL) DBG_871X_LEVEL(_drv_always_, "[WARNING] enable cpwm2 fail\n"); #endif #ifdef CONFIG_GPIO_WAKEUP rtw_hal_switch_gpio_wl_ctrl(adapter, WAKEUP_GPIO_IDX, _TRUE); #endif /* Set WOWLAN H2C command. */ DBG_871X_LEVEL(_drv_always_, "Set WOWLan cmd\n"); rtw_hal_set_fw_wow_related_cmd(adapter, 1); res = rtw_hal_check_wow_ctrl(adapter, _TRUE); if (res == _FALSE) DBG_871X("[Error]%s: set wowlan CMD fail!!\n", __func__); pwrctl->wowlan_wake_reason = rtw_read8(adapter, REG_WOWLAN_WAKE_REASON); DBG_871X_LEVEL(_drv_always_, "wowlan_wake_reason: 0x%02x\n", pwrctl->wowlan_wake_reason); #ifdef CONFIG_GTK_OL_DBG dump_sec_cam(RTW_DBGDUMP, adapter); #endif #ifdef CONFIG_USB_HCI if (adapter->intf_stop) /* free adapter's resource */ adapter->intf_stop(adapter); #ifdef CONFIG_CONCURRENT_MODE if (rtw_buddy_adapter_up(adapter)) /*free buddy adapter's resource*/ adapter->pbuddy_adapter->intf_stop(adapter->pbuddy_adapter); #endif /*CONFIG_CONCURRENT_MODE*/ /* Invoid SE0 reset signal during suspending*/ rtw_write8(adapter, REG_RSV_CTRL, 0x20); rtw_write8(adapter, REG_RSV_CTRL, 0x60); #endif /*CONFIG_USB_HCI*/ rtw_hal_gate_bb(adapter, _FALSE); } static void rtw_hal_wow_disable(_adapter *adapter) { struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(adapter); struct security_priv *psecuritypriv = &adapter->securitypriv; struct mlme_priv *pmlmepriv = &adapter->mlmepriv; struct hal_ops *pHalFunc = &adapter->HalFunc; struct sta_info *psta = NULL; int res; u16 media_status_rpt; u8 val8; DBG_871X_LEVEL(_drv_always_, "%s, WOWLAN_DISABLE\n", __func__); if (!pwrctl->wowlan_pno_enable) { psta = rtw_get_stainfo(&adapter->stapriv, get_bssid(pmlmepriv)); if (psta != NULL) { media_status_rpt = (u16)((psta->mac_id<<8)|RT_MEDIA_DISCONNECT); rtw_hal_set_hwreg(adapter, HW_VAR_H2C_MEDIA_STATUS_RPT, (u8 *)&media_status_rpt); } else { DBG_871X("%s: psta is null\n", __func__); } } if (0) { DBG_871X("0x630:0x%02x\n", rtw_read8(adapter, 0x630)); DBG_871X("0x631:0x%02x\n", rtw_read8(adapter, 0x631)); } pwrctl->wowlan_wake_reason = rtw_read8(adapter, REG_WOWLAN_WAKE_REASON); DBG_871X_LEVEL(_drv_always_, "wakeup_reason: 0x%02x\n", pwrctl->wowlan_wake_reason); rtw_hal_set_fw_wow_related_cmd(adapter, 0); res = rtw_hal_check_wow_ctrl(adapter, _FALSE); if (res == _FALSE) { DBG_871X("[Error]%s: disable WOW cmd fail\n!!", __func__); rtw_hal_force_enable_rxdma(adapter); } rtw_hal_gate_bb(adapter, _TRUE); res = rtw_hal_pause_rx_dma(adapter); if (res == _FAIL) DBG_871X_LEVEL(_drv_always_, "[WARNING] pause RX DMA fail\n"); /* clean pattern match */ if (pwrctl->wowlan_pattern) rtw_hal_dl_pattern(adapter, _TRUE); /* config RXFF boundary to original */ rtw_hal_set_wow_rxff_boundary(adapter, _FALSE); rtw_hal_release_rx_dma(adapter); if (IS_HARDWARE_TYPE_8188E(adapter)) rtw_hal_enable_tx_report(adapter); rtw_hal_update_tx_iv(adapter); #ifdef CONFIG_GTK_OL if (psecuritypriv->dot11PrivacyAlgrthm == _AES_) rtw_hal_update_gtk_offload_info(adapter); #endif /*CONFIG_GTK_OL*/ rtw_hal_set_wowlan_fw(adapter, _FALSE); #ifdef CONFIG_GPIO_WAKEUP val8 = (pwrctl->is_high_active == 0) ? 1 : 0; DBG_871X_LEVEL(_drv_always_, "Set Wake GPIO to default(%d).\n", val8); rtw_hal_set_output_gpio(adapter, WAKEUP_GPIO_IDX, val8); rtw_hal_switch_gpio_wl_ctrl(adapter, WAKEUP_GPIO_IDX, _FALSE); #endif if ((pwrctl->wowlan_wake_reason != FWDecisionDisconnect) && (pwrctl->wowlan_wake_reason != Rx_Pairwisekey) && (pwrctl->wowlan_wake_reason != Rx_DisAssoc) && (pwrctl->wowlan_wake_reason != Rx_DeAuth)) { media_status_rpt = RT_MEDIA_CONNECT; rtw_hal_set_hwreg(adapter, HW_VAR_H2C_FW_JOINBSSRPT, (u8 *)&media_status_rpt); if (psta != NULL) { media_status_rpt = (u16)((psta->mac_id<<8)|RT_MEDIA_CONNECT); rtw_hal_set_hwreg(adapter, HW_VAR_H2C_MEDIA_STATUS_RPT, (u8 *)&media_status_rpt); } } rtw_hal_gate_bb(adapter, _FALSE); } #endif /*CONFIG_WOWLAN*/ #ifdef CONFIG_P2P_WOWLAN void rtw_hal_set_p2p_wow_fw_rsvd_page(_adapter* adapter, u8 *pframe, u16 index, u8 tx_desc, u32 page_size, u8 *page_num, u32 *total_pkt_len, RSVDPAGE_LOC* rsvd_page_loc) { u32 P2PNegoRspLength = 0, P2PInviteRspLength = 0; u32 P2PPDRspLength = 0, P2PProbeRspLength = 0, P2PBCNLength = 0; u8 CurtPktPageNum = 0; /* P2P Beacon */ rsvd_page_loc->LocP2PBeacon = *page_num; rtw_hal_construct_P2PBeacon(adapter, &pframe[index], &P2PBCNLength); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], P2PBCNLength, _FALSE, _FALSE, _FALSE); #if 0 DBG_871X("%s(): HW_VAR_SET_TX_CMD: PROBE RSP %p %d\n", __FUNCTION__, &pframe[index-tx_desc], (P2PBCNLength+tx_desc)); #endif CurtPktPageNum = (u8)PageNum(tx_desc + P2PBCNLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); // P2P Probe rsp rsvd_page_loc->LocP2PProbeRsp = *page_num; rtw_hal_construct_P2PProbeRsp(adapter, &pframe[index], &P2PProbeRspLength); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], P2PProbeRspLength, _FALSE, _FALSE, _FALSE); //DBG_871X("%s(): HW_VAR_SET_TX_CMD: PROBE RSP %p %d\n", // __FUNCTION__, &pframe[index-tx_desc], (P2PProbeRspLength+tx_desc)); CurtPktPageNum = (u8)PageNum(tx_desc + P2PProbeRspLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //P2P nego rsp rsvd_page_loc->LocNegoRsp = *page_num; rtw_hal_construct_P2PNegoRsp(adapter, &pframe[index], &P2PNegoRspLength); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], P2PNegoRspLength, _FALSE, _FALSE, _FALSE); //DBG_871X("%s(): HW_VAR_SET_TX_CMD: QOS NULL DATA %p %d\n", // __FUNCTION__, &pframe[index-tx_desc], (NegoRspLength+tx_desc)); CurtPktPageNum = (u8)PageNum(tx_desc + P2PNegoRspLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //P2P invite rsp rsvd_page_loc->LocInviteRsp = *page_num; rtw_hal_construct_P2PInviteRsp(adapter, &pframe[index], &P2PInviteRspLength); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], P2PInviteRspLength, _FALSE, _FALSE, _FALSE); //DBG_871X("%s(): HW_VAR_SET_TX_CMD: QOS NULL DATA %p %d\n", //__FUNCTION__, &pframe[index-tx_desc], (InviteRspLength+tx_desc)); CurtPktPageNum = (u8)PageNum(tx_desc + P2PInviteRspLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); //P2P provision discovery rsp rsvd_page_loc->LocPDRsp = *page_num; rtw_hal_construct_P2PProvisionDisRsp( adapter, &pframe[index], &P2PPDRspLength); rtw_hal_fill_fake_txdesc(adapter, &pframe[index-tx_desc], P2PPDRspLength, _FALSE, _FALSE, _FALSE); //DBG_871X("%s(): HW_VAR_SET_TX_CMD: QOS NULL DATA %p %d\n", // __FUNCTION__, &pframe[index-tx_desc], (PDRspLength+tx_desc)); CurtPktPageNum = (u8)PageNum(tx_desc + P2PPDRspLength, page_size); *page_num += CurtPktPageNum; index += (CurtPktPageNum * page_size); *total_pkt_len = index + P2PPDRspLength; } #endif //CONFIG_P2P_WOWLAN /* * Description: Fill the reserved packets that FW will use to RSVD page. * Now we just send 4 types packet to rsvd page. * (1)Beacon, (2)Ps-poll, (3)Null data, (4)ProbeRsp. * Input: * finished - FALSE:At the first time we will send all the packets as a large packet to Hw, * so we need to set the packet length to total lengh. * TRUE: At the second time, we should send the first packet (default:beacon) * to Hw again and set the lengh in descriptor to the real beacon lengh. * 2009.10.15 by tynli. * * Page Size = 128: 8188e, 8723a/b, 8192c/d, * Page Size = 256: 8192e, 8821a * Page Size = 512: 8812a */ void rtw_hal_set_fw_rsvd_page(_adapter* adapter, bool finished) { PHAL_DATA_TYPE pHalData; struct xmit_frame *pcmdframe; struct pkt_attrib *pattrib; struct xmit_priv *pxmitpriv; struct mlme_ext_priv *pmlmeext; struct mlme_ext_info *pmlmeinfo; struct pwrctrl_priv *pwrctl; struct mlme_priv *pmlmepriv = &adapter->mlmepriv; struct hal_ops *pHalFunc = &adapter->HalFunc; u32 BeaconLength = 0, ProbeRspLength = 0, PSPollLength = 0; u32 NullDataLength = 0, QosNullLength = 0, BTQosNullLength = 0; u32 ProbeReqLength = 0, NullFunctionDataLength = 0; u8 TxDescLen = TXDESC_SIZE, TxDescOffset = TXDESC_OFFSET; u8 TotalPageNum = 0 , CurtPktPageNum = 0 , RsvdPageNum = 0; u8 *ReservedPagePacket; u16 BufIndex = 0; u32 TotalPacketLen = 0, MaxRsvdPageBufSize = 0, PageSize = 0; RSVDPAGE_LOC RsvdPageLoc; #ifdef DBG_CONFIG_ERROR_DETECT struct sreset_priv *psrtpriv; #endif /* DBG_CONFIG_ERROR_DETECT */ pHalData = GET_HAL_DATA(adapter); #ifdef DBG_CONFIG_ERROR_DETECT psrtpriv = &pHalData->srestpriv; #endif pxmitpriv = &adapter->xmitpriv; pmlmeext = &adapter->mlmeextpriv; pmlmeinfo = &pmlmeext->mlmext_info; pwrctl = adapter_to_pwrctl(adapter); rtw_hal_get_def_var(adapter, HAL_DEF_TX_PAGE_SIZE, (u8 *)&PageSize); if (PageSize == 0) { DBG_871X("[Error]: %s, PageSize is zero!!\n", __func__); return; } if (pwrctl->wowlan_mode == _TRUE || pwrctl->wowlan_ap_mode == _TRUE) RsvdPageNum = rtw_hal_get_txbuff_rsvd_page_num(adapter, _TRUE); else RsvdPageNum = rtw_hal_get_txbuff_rsvd_page_num(adapter, _FALSE); DBG_871X("%s PageSize: %d, RsvdPageNUm: %d\n",__func__, PageSize, RsvdPageNum); MaxRsvdPageBufSize = RsvdPageNum*PageSize; if (MaxRsvdPageBufSize > MAX_CMDBUF_SZ) { DBG_871X("%s MaxRsvdPageBufSize(%d) is larger than MAX_CMDBUF_SZ(%d)", __func__, MaxRsvdPageBufSize, MAX_CMDBUF_SZ); rtw_warn_on(1); return; } pcmdframe = rtw_alloc_cmdxmitframe(pxmitpriv); if (pcmdframe == NULL) { DBG_871X("%s: alloc ReservedPagePacket fail!\n", __FUNCTION__); return; } ReservedPagePacket = pcmdframe->buf_addr; _rtw_memset(&RsvdPageLoc, 0, sizeof(RSVDPAGE_LOC)); /* beacon * 2 pages */ BufIndex = TxDescOffset; rtw_hal_construct_beacon(adapter, &ReservedPagePacket[BufIndex], &BeaconLength); /* * When we count the first page size, we need to reserve description size for the RSVD * packet, it will be filled in front of the packet in TXPKTBUF. */ CurtPktPageNum = (u8)PageNum((TxDescLen + BeaconLength), PageSize); /* If we don't add 1 more page, ARP offload function will fail at 8723bs.*/ if (CurtPktPageNum == 1) CurtPktPageNum += 1; TotalPageNum += CurtPktPageNum; BufIndex += (CurtPktPageNum*PageSize); if (pwrctl->wowlan_ap_mode == _TRUE) { /* (4) probe response*/ RsvdPageLoc.LocProbeRsp = TotalPageNum; rtw_hal_construct_ProbeRsp( adapter, &ReservedPagePacket[BufIndex], &ProbeRspLength, get_my_bssid(&pmlmeinfo->network), _FALSE); rtw_hal_fill_fake_txdesc(adapter, &ReservedPagePacket[BufIndex-TxDescLen], ProbeRspLength, _FALSE, _FALSE, _FALSE); CurtPktPageNum = (u8)PageNum(TxDescLen + BeaconLength, PageSize); TotalPageNum += CurtPktPageNum; BufIndex += (CurtPktPageNum*PageSize); TotalPacketLen = BufIndex + ProbeRspLength; goto download_page; } /* ps-poll * 1 page */ RsvdPageLoc.LocPsPoll = TotalPageNum; DBG_871X("LocPsPoll: %d\n", RsvdPageLoc.LocPsPoll); rtw_hal_construct_PSPoll(adapter, &ReservedPagePacket[BufIndex], &PSPollLength); rtw_hal_fill_fake_txdesc(adapter, &ReservedPagePacket[BufIndex-TxDescLen], PSPollLength, _TRUE, _FALSE, _FALSE); CurtPktPageNum = (u8)PageNum((TxDescLen + PSPollLength), PageSize); TotalPageNum += CurtPktPageNum; BufIndex += (CurtPktPageNum*PageSize); #ifdef CONFIG_BT_COEXIST /* BT Qos null data * 1 page */ RsvdPageLoc.LocBTQosNull = TotalPageNum; DBG_871X("LocBTQosNull: %d\n", RsvdPageLoc.LocBTQosNull); rtw_hal_construct_NullFunctionData( adapter, &ReservedPagePacket[BufIndex], &BTQosNullLength, get_my_bssid(&pmlmeinfo->network), _TRUE, 0, 0, _FALSE); rtw_hal_fill_fake_txdesc(adapter, &ReservedPagePacket[BufIndex-TxDescLen], BTQosNullLength, _FALSE, _TRUE, _FALSE); CurtPktPageNum = (u8)PageNum(TxDescLen + BTQosNullLength, PageSize); TotalPageNum += CurtPktPageNum; BufIndex += (CurtPktPageNum*PageSize); #endif /* CONFIG_BT_COEXIT */ /* null data * 1 page */ RsvdPageLoc.LocNullData = TotalPageNum; DBG_871X("LocNullData: %d\n", RsvdPageLoc.LocNullData); rtw_hal_construct_NullFunctionData( adapter, &ReservedPagePacket[BufIndex], &NullDataLength, get_my_bssid(&pmlmeinfo->network), _FALSE, 0, 0, _FALSE); rtw_hal_fill_fake_txdesc(adapter, &ReservedPagePacket[BufIndex-TxDescLen], NullDataLength, _FALSE, _FALSE, _FALSE); CurtPktPageNum = (u8)PageNum(TxDescLen + NullDataLength, PageSize); TotalPageNum += CurtPktPageNum; BufIndex += (CurtPktPageNum*PageSize); //Qos null data * 1 page RsvdPageLoc.LocQosNull = TotalPageNum; DBG_871X("LocQosNull: %d\n", RsvdPageLoc.LocQosNull); rtw_hal_construct_NullFunctionData( adapter, &ReservedPagePacket[BufIndex], &QosNullLength, get_my_bssid(&pmlmeinfo->network), _TRUE, 0, 0, _FALSE); rtw_hal_fill_fake_txdesc(adapter, &ReservedPagePacket[BufIndex-TxDescLen], QosNullLength, _FALSE, _FALSE, _FALSE); CurtPktPageNum = (u8)PageNum(TxDescLen + QosNullLength, PageSize); TotalPageNum += CurtPktPageNum; BufIndex += (CurtPktPageNum*PageSize); TotalPacketLen = BufIndex + QosNullLength; #ifdef CONFIG_WOWLAN if (pwrctl->wowlan_mode == _TRUE && check_fwstate(pmlmepriv, _FW_LINKED) == _TRUE) { rtw_hal_set_wow_fw_rsvd_page(adapter, ReservedPagePacket, BufIndex, TxDescLen, PageSize, &TotalPageNum, &TotalPacketLen, &RsvdPageLoc); } #endif /* CONFIG_WOWLAN */ #ifdef CONFIG_P2P_WOWLAN if(_TRUE == pwrctl->wowlan_p2p_mode) { rtw_hal_set_p2p_wow_fw_rsvd_page(adapter, ReservedPagePacket, BufIndex, TxDescLen, PageSize, &TotalPageNum, &TotalPacketLen, &RsvdPageLoc); } #endif /* CONFIG_P2P_WOWLAN */ download_page: DBG_871X("%s BufIndex(%d), TxDescLen(%d), PageSize(%d)\n", __func__, BufIndex, TxDescLen, PageSize); DBG_871X("%s PageNum(%d), pktlen(%d)\n", __func__, TotalPageNum, TotalPacketLen); if (TotalPacketLen > MaxRsvdPageBufSize) { DBG_871X("%s(ERROR): rsvd page size is not enough!!TotalPacketLen %d, MaxRsvdPageBufSize %d\n", __FUNCTION__, TotalPacketLen,MaxRsvdPageBufSize); rtw_warn_on(1); goto error; } else { /* update attribute */ pattrib = &pcmdframe->attrib; update_mgntframe_attrib(adapter, pattrib); pattrib->qsel = QSLT_BEACON; pattrib->pktlen = TotalPacketLen - TxDescOffset; pattrib->last_txcmdsz = TotalPacketLen - TxDescOffset; #ifdef CONFIG_PCI_HCI dump_mgntframe(adapter, pcmdframe); #else dump_mgntframe_and_wait(adapter, pcmdframe, 100); #endif } DBG_871X("%s: Set RSVD page location to Fw ,TotalPacketLen(%d), TotalPageNum(%d)\n", __func__,TotalPacketLen,TotalPageNum); if(check_fwstate(pmlmepriv, _FW_LINKED) == _TRUE) { rtw_hal_set_FwRsvdPage_cmd(adapter, &RsvdPageLoc); if (pwrctl->wowlan_mode == _TRUE) rtw_hal_set_FwAoacRsvdPage_cmd(adapter, &RsvdPageLoc); #ifdef CONFIG_AP_WOWLAN if (pwrctl->wowlan_ap_mode == _TRUE) rtw_hal_set_ap_rsvdpage_loc_cmd(adapter, &RsvdPageLoc); #endif /* CONFIG_AP_WOWLAN */ } else if (pwrctl->wowlan_pno_enable) { #ifdef CONFIG_PNO_SUPPORT rtw_hal_set_FwAoacRsvdPage_cmd(adapter, &RsvdPageLoc); if(pwrctl->pno_in_resume) rtw_hal_set_scan_offload_info_cmd(adapter, &RsvdPageLoc, 0); else rtw_hal_set_scan_offload_info_cmd(adapter, &RsvdPageLoc, 1); #endif /* CONFIG_PNO_SUPPORT */ } #ifdef CONFIG_P2P_WOWLAN if(_TRUE == pwrctl->wowlan_p2p_mode) rtw_hal_set_FwP2PRsvdPage_cmd(adapter, &RsvdPageLoc); #endif /* CONFIG_P2P_WOWLAN */ return; error: rtw_free_xmitframe(pxmitpriv, pcmdframe); } void SetHwReg(_adapter *adapter, u8 variable, u8 *val) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); _func_enter_; switch (variable) { case HW_VAR_PORT_SWITCH: hw_var_port_switch(adapter); break; case HW_VAR_INIT_RTS_RATE: { u16 brate_cfg = *((u16*)val); u8 rate_index = 0; HAL_VERSION *hal_ver = &hal_data->VersionID; if (IS_8188E(*hal_ver)) { while (brate_cfg > 0x1) { brate_cfg = (brate_cfg >> 1); rate_index++; } rtw_write8(adapter, REG_INIRTS_RATE_SEL, rate_index); } else { rtw_warn_on(1); } } break; case HW_VAR_SEC_CFG: { #if defined(CONFIG_CONCURRENT_MODE) && !defined(DYNAMIC_CAMID_ALLOC) // enable tx enc and rx dec engine, and no key search for MC/BC rtw_write8(adapter, REG_SECCFG, SCR_NoSKMC|SCR_RxDecEnable|SCR_TxEncEnable); #elif defined(DYNAMIC_CAMID_ALLOC) u16 reg_scr_ori; u16 reg_scr; reg_scr = reg_scr_ori = rtw_read16(adapter, REG_SECCFG); reg_scr |= (SCR_CHK_KEYID|SCR_RxDecEnable|SCR_TxEncEnable); if (_rtw_camctl_chk_cap(adapter, SEC_CAP_CHK_BMC)) reg_scr |= SCR_CHK_BMC; if (_rtw_camctl_chk_flags(adapter, SEC_STATUS_STA_PK_GK_CONFLICT_DIS_BMC_SEARCH)) reg_scr |= SCR_NoSKMC; if (reg_scr != reg_scr_ori) rtw_write16(adapter, REG_SECCFG, reg_scr); #else rtw_write8(adapter, REG_SECCFG, *((u8*)val)); #endif } break; case HW_VAR_SEC_DK_CFG: { struct security_priv *sec = &adapter->securitypriv; u8 reg_scr = rtw_read8(adapter, REG_SECCFG); if (val) /* Enable default key related setting */ { reg_scr |= SCR_TXBCUSEDK; if (sec->dot11AuthAlgrthm != dot11AuthAlgrthm_8021X) reg_scr |= (SCR_RxUseDK|SCR_TxUseDK); } else /* Disable default key related setting */ { reg_scr &= ~(SCR_RXBCUSEDK|SCR_TXBCUSEDK|SCR_RxUseDK|SCR_TxUseDK); } rtw_write8(adapter, REG_SECCFG, reg_scr); } break; case HW_VAR_ASIX_IOT: // enable ASIX IOT function if (*((u8*)val) == _TRUE) { // 0xa2e[0]=0 (disable rake receiver) rtw_write8(adapter, rCCK0_FalseAlarmReport+2, rtw_read8(adapter, rCCK0_FalseAlarmReport+2) & ~(BIT0)); // 0xa1c=0xa0 (reset channel estimation if signal quality is bad) rtw_write8(adapter, rCCK0_DSPParameter2, 0xa0); } else { // restore reg:0xa2e, reg:0xa1c rtw_write8(adapter, rCCK0_FalseAlarmReport+2, rtw_read8(adapter, rCCK0_FalseAlarmReport+2)|(BIT0)); rtw_write8(adapter, rCCK0_DSPParameter2, 0x00); } break; #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN) case HW_VAR_WOWLAN: { struct wowlan_ioctl_param *poidparam; poidparam = (struct wowlan_ioctl_param *)val; switch (poidparam->subcode) { #ifdef CONFIG_WOWLAN case WOWLAN_PATTERN_CLEAN: rtw_hal_dl_pattern(adapter, _TRUE); break; case WOWLAN_ENABLE: rtw_hal_wow_enable(adapter); break; case WOWLAN_DISABLE: rtw_hal_wow_disable(adapter); break; #endif /*CONFIG_WOWLAN*/ #ifdef CONFIG_AP_WOWLAN case WOWLAN_AP_ENABLE: rtw_hal_ap_wow_enable(adapter); break; case WOWLAN_AP_DISABLE: rtw_hal_ap_wow_disable(adapter); break; #endif /*CONFIG_AP_WOWLAN*/ default: break; } } break; #endif /*defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)*/ default: if (0) DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" variable(%d) not defined!\n", FUNC_ADPT_ARG(adapter), variable); break; } _func_exit_; } void GetHwReg(_adapter *adapter, u8 variable, u8 *val) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); _func_enter_; switch (variable) { case HW_VAR_BASIC_RATE: *((u16*)val) = hal_data->BasicRateSet; break; case HW_VAR_RF_TYPE: *((u8*)val) = hal_data->rf_type; break; default: if (0) DBG_871X_LEVEL(_drv_always_, FUNC_ADPT_FMT" variable(%d) not defined!\n", FUNC_ADPT_ARG(adapter), variable); break; } _func_exit_; } u8 SetHalDefVar(_adapter *adapter, HAL_DEF_VARIABLE variable, void *value) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); u8 bResult = _SUCCESS; switch(variable) { case HAL_DEF_DBG_DUMP_RXPKT: hal_data->bDumpRxPkt = *((u8*)value); break; case HAL_DEF_DBG_DUMP_TXPKT: hal_data->bDumpTxPkt = *((u8*)value); break; case HAL_DEF_ANT_DETECT: hal_data->AntDetection = *((u8 *)value); break; case HAL_DEF_DBG_DIS_PWT: hal_data->bDisableTXPowerTraining = *((u8*)value); break; default: DBG_871X_LEVEL(_drv_always_, "%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __FUNCTION__, variable); bResult = _FAIL; break; } return bResult; } #ifdef CONFIG_BEAMFORMING u8 rtw_hal_query_txbfer_rf_num(_adapter *adapter) { struct registry_priv *pregistrypriv = &adapter->registrypriv; HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); if ((pregistrypriv->beamformer_rf_num) && (IS_HARDWARE_TYPE_8814AE(adapter) || IS_HARDWARE_TYPE_8814AU(adapter) || IS_HARDWARE_TYPE_8822BU(adapter))) return pregistrypriv->beamformer_rf_num; else if (IS_HARDWARE_TYPE_8814AE(adapter) /* #if defined(CONFIG_USB_HCI) || (IS_HARDWARE_TYPE_8814AU(adapter) && (pUsbModeMech->CurUsbMode == 2 || pUsbModeMech->HubUsbMode == 2)) //for USB3.0 #endif */ ) { /*BF cap provided by Yu Chen, Sean, 2015, 01 */ if (hal_data->rf_type == RF_3T3R) return 2; else if (hal_data->rf_type == RF_4T4R) return 3; else return 1; } else return 1; } u8 rtw_hal_query_txbfee_rf_num(_adapter *adapter) { struct registry_priv *pregistrypriv = &adapter->registrypriv; struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); if ((pregistrypriv->beamformee_rf_num) && (IS_HARDWARE_TYPE_8814AE(adapter) || IS_HARDWARE_TYPE_8814AU(adapter) || IS_HARDWARE_TYPE_8822BU(adapter))) return pregistrypriv->beamformee_rf_num; else if (IS_HARDWARE_TYPE_8814AE(adapter) || IS_HARDWARE_TYPE_8814AU(adapter)) { if (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_BROADCOM) return 2; else return 2;/*TODO: May be 3 in the future, by ChenYu. */ } else return 1; } #endif u8 GetHalDefVar(_adapter *adapter, HAL_DEF_VARIABLE variable, void *value) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); u8 bResult = _SUCCESS; switch(variable) { case HAL_DEF_UNDERCORATEDSMOOTHEDPWDB: { struct mlme_priv *pmlmepriv; struct sta_priv *pstapriv; struct sta_info *psta; pmlmepriv = &adapter->mlmepriv; pstapriv = &adapter->stapriv; psta = rtw_get_stainfo(pstapriv, pmlmepriv->cur_network.network.MacAddress); if (psta) { *((int*)value) = psta->rssi_stat.UndecoratedSmoothedPWDB; } } break; case HAL_DEF_DBG_DUMP_RXPKT: *((u8*)value) = hal_data->bDumpRxPkt; break; case HAL_DEF_DBG_DUMP_TXPKT: *((u8*)value) = hal_data->bDumpTxPkt; break; case HAL_DEF_ANT_DETECT: *((u8 *)value) = hal_data->AntDetection; break; case HAL_DEF_MACID_SLEEP: *(u8*)value = _FALSE; break; case HAL_DEF_TX_PAGE_SIZE: *(( u32*)value) = PAGE_SIZE_128; break; case HAL_DEF_DBG_DIS_PWT: *(u8*)value = hal_data->bDisableTXPowerTraining; break; #ifdef CONFIG_BEAMFORMING case HAL_DEF_BEAMFORMER_CAP: *(u8 *)value = rtw_hal_query_txbfer_rf_num(adapter); break; case HAL_DEF_BEAMFORMEE_CAP: *(u8 *)value = rtw_hal_query_txbfee_rf_num(adapter); break; #endif default: DBG_871X_LEVEL(_drv_always_, "%s: [WARNING] HAL_DEF_VARIABLE(%d) not defined!\n", __FUNCTION__, variable); bResult = _FAIL; break; } return bResult; } void SetHalODMVar( PADAPTER Adapter, HAL_ODM_VARIABLE eVariable, PVOID pValue1, BOOLEAN bSet) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T podmpriv = &pHalData->odmpriv; //_irqL irqL; switch(eVariable){ case HAL_ODM_STA_INFO: { struct sta_info *psta = (struct sta_info *)pValue1; if(bSet){ DBG_8192C("### Set STA_(%d) info ###\n",psta->mac_id); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,psta); } else{ DBG_8192C("### Clean STA_(%d) info ###\n",psta->mac_id); //_enter_critical_bh(&pHalData->odm_stainfo_lock, &irqL); ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS,psta->mac_id,NULL); //_exit_critical_bh(&pHalData->odm_stainfo_lock, &irqL); } } break; case HAL_ODM_P2P_STATE: ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DIRECT,bSet); break; case HAL_ODM_WIFI_DISPLAY_STATE: ODM_CmnInfoUpdate(podmpriv,ODM_CMNINFO_WIFI_DISPLAY,bSet); break; case HAL_ODM_REGULATION: ODM_CmnInfoInit(podmpriv, ODM_CMNINFO_DOMAIN_CODE_2G, pHalData->Regulation2_4G); ODM_CmnInfoInit(podmpriv, ODM_CMNINFO_DOMAIN_CODE_5G, pHalData->Regulation5G); break; #if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR) case HAL_ODM_NOISE_MONITOR: { struct noise_info *pinfo = (struct noise_info *)pValue1; #ifdef DBG_NOISE_MONITOR DBG_8192C("### Noise monitor chan(%d)-bPauseDIG:%d,IGIValue:0x%02x,max_time:%d (ms) ###\n", pinfo->chan,pinfo->bPauseDIG,pinfo->IGIValue,pinfo->max_time); #endif pHalData->noise[pinfo->chan] = ODM_InbandNoise_Monitor(podmpriv,pinfo->bPauseDIG,pinfo->IGIValue,pinfo->max_time); DBG_871X("chan_%d, noise = %d (dBm)\n",pinfo->chan,pHalData->noise[pinfo->chan]); #ifdef DBG_NOISE_MONITOR DBG_871X("noise_a = %d, noise_b = %d noise_all:%d \n", podmpriv->noise_level.noise[ODM_RF_PATH_A], podmpriv->noise_level.noise[ODM_RF_PATH_B], podmpriv->noise_level.noise_all); #endif } break; #endif/*#ifdef CONFIG_BACKGROUND_NOISE_MONITOR*/ case HAL_ODM_INITIAL_GAIN: { u8 rx_gain = *((u8 *)(pValue1)); /*printk("rx_gain:%x\n",rx_gain);*/ if (rx_gain == 0xff) {/*restore rx gain*/ /*ODM_Write_DIG(podmpriv,pDigTable->BackupIGValue);*/ odm_PauseDIG(podmpriv, PHYDM_RESUME, PHYDM_PAUSE_LEVEL_0, rx_gain); } else { /*pDigTable->BackupIGValue = pDigTable->CurIGValue;*/ /*ODM_Write_DIG(podmpriv,rx_gain);*/ odm_PauseDIG(podmpriv, PHYDM_PAUSE, PHYDM_PAUSE_LEVEL_0, rx_gain); } } break; case HAL_ODM_FA_CNT_DUMP: if (*((u8 *)pValue1)) podmpriv->DebugComponents |= (ODM_COMP_DIG | ODM_COMP_FA_CNT); else podmpriv->DebugComponents &= ~(ODM_COMP_DIG | ODM_COMP_FA_CNT); break; case HAL_ODM_DBG_FLAG: ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_DBG_COMP, *((u8Byte *)pValue1)); break; case HAL_ODM_DBG_LEVEL: ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_DBG_LEVEL, *((u4Byte *)pValue1)); break; case HAL_ODM_RX_INFO_DUMP: { PFALSE_ALARM_STATISTICS FalseAlmCnt = (PFALSE_ALARM_STATISTICS)PhyDM_Get_Structure(podmpriv , PHYDM_FALSEALMCNT); pDIG_T pDM_DigTable = &podmpriv->DM_DigTable; DBG_871X("============ Rx Info dump ===================\n"); DBG_871X("bLinked = %d, RSSI_Min = %d(%%), CurrentIGI = 0x%x\n", podmpriv->bLinked, podmpriv->RSSI_Min, pDM_DigTable->CurIGValue); if (FalseAlmCnt) DBG_871X("Cnt_Cck_fail = %d, Cnt_Ofdm_fail = %d, Total False Alarm = %d\n", FalseAlmCnt->Cnt_Cck_fail, FalseAlmCnt->Cnt_Ofdm_fail, FalseAlmCnt->Cnt_all); if (podmpriv->bLinked) { DBG_871X("RxRate = %s, RSSI_A = %d(%%), RSSI_B = %d(%%)\n", HDATA_RATE(podmpriv->RxRate), podmpriv->RSSI_A, podmpriv->RSSI_B); #ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA rtw_dump_raw_rssi_info(Adapter); #endif } } break; #ifdef CONFIG_AUTO_CHNL_SEL_NHM case HAL_ODM_AUTO_CHNL_SEL: { ACS_OP acs_op = *(ACS_OP *)pValue1; rtw_phydm_func_set(Adapter, ODM_BB_NHM_CNT); if (ACS_INIT == acs_op) { #ifdef DBG_AUTO_CHNL_SEL_NHM DBG_871X("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: ACS_INIT\n", ADPT_ARG(Adapter)); #endif odm_AutoChannelSelectInit(podmpriv); } else if (ACS_RESET == acs_op) { /* Reset statistics for auto channel selection mechanism.*/ #ifdef DBG_AUTO_CHNL_SEL_NHM DBG_871X("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: ACS_RESET\n", ADPT_ARG(Adapter)); #endif odm_AutoChannelSelectReset(podmpriv); } else if (ACS_SELECT == acs_op) { /* Collect NHM measurement result after current channel */ #ifdef DBG_AUTO_CHNL_SEL_NHM DBG_871X("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: ACS_SELECT, CH(%d)\n", ADPT_ARG(Adapter), rtw_get_acs_channel(Adapter)); #endif odm_AutoChannelSelect(podmpriv, rtw_get_acs_channel(Adapter)); } else DBG_871X("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: Unexpected OP\n", ADPT_ARG(Adapter)); } break; #endif default: break; } } void GetHalODMVar( PADAPTER Adapter, HAL_ODM_VARIABLE eVariable, PVOID pValue1, PVOID pValue2) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T podmpriv = &pHalData->odmpriv; switch (eVariable) { #if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR) case HAL_ODM_NOISE_MONITOR: { u8 chan = *(u8 *)pValue1; *(s16 *)pValue2 = pHalData->noise[chan]; #ifdef DBG_NOISE_MONITOR DBG_8192C("### Noise monitor chan(%d)-noise:%d (dBm) ###\n", chan, pHalData->noise[chan]); #endif } break; #endif/*#ifdef CONFIG_BACKGROUND_NOISE_MONITOR*/ case HAL_ODM_DBG_FLAG: *((u8Byte *)pValue1) = podmpriv->DebugComponents; break; case HAL_ODM_DBG_LEVEL: *((u4Byte *)pValue1) = podmpriv->DebugLevel; break; #ifdef CONFIG_AUTO_CHNL_SEL_NHM case HAL_ODM_AUTO_CHNL_SEL: { #ifdef DBG_AUTO_CHNL_SEL_NHM DBG_871X("[ACS-"ADPT_FMT"] HAL_ODM_AUTO_CHNL_SEL: GET_BEST_CHAN\n", ADPT_ARG(Adapter)); #endif /* Retrieve better channel from NHM mechanism */ if (IsSupported24G(Adapter->registrypriv.wireless_mode)) *((u8 *)(pValue1)) = ODM_GetAutoChannelSelectResult(podmpriv, BAND_ON_2_4G); if (IsSupported5G(Adapter->registrypriv.wireless_mode)) *((u8 *)(pValue2)) = ODM_GetAutoChannelSelectResult(podmpriv, BAND_ON_5G); } break; #endif default: break; } } u32 rtw_phydm_ability_ops(_adapter *adapter, HAL_PHYDM_OPS ops, u32 ability) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); PDM_ODM_T podmpriv = &pHalData->odmpriv; u32 result = 0; switch (ops) { case HAL_PHYDM_DIS_ALL_FUNC: podmpriv->SupportAbility = DYNAMIC_FUNC_DISABLE; break; case HAL_PHYDM_FUNC_SET: podmpriv->SupportAbility |= ability; break; case HAL_PHYDM_FUNC_CLR: podmpriv->SupportAbility &= ~(ability); break; case HAL_PHYDM_ABILITY_BK: /* dm flag backup*/ podmpriv->BK_SupportAbility = podmpriv->SupportAbility; break; case HAL_PHYDM_ABILITY_RESTORE: /* restore dm flag */ podmpriv->SupportAbility = podmpriv->BK_SupportAbility; break; case HAL_PHYDM_ABILITY_SET: podmpriv->SupportAbility = ability; break; case HAL_PHYDM_ABILITY_GET: result = podmpriv->SupportAbility; break; } return result; } BOOLEAN eqNByte( u8* str1, u8* str2, u32 num ) { if(num==0) return _FALSE; while(num>0) { num--; if(str1[num]!=str2[num]) return _FALSE; } return _TRUE; } // // Description: // Return TRUE if chTmp is represent for hex digit and // FALSE otherwise. // // BOOLEAN IsHexDigit( IN char chTmp ) { if( (chTmp >= '0' && chTmp <= '9') || (chTmp >= 'a' && chTmp <= 'f') || (chTmp >= 'A' && chTmp <= 'F') ) { return _TRUE; } else { return _FALSE; } } // // Description: // Translate a character to hex digit. // u32 MapCharToHexDigit( IN char chTmp ) { if(chTmp >= '0' && chTmp <= '9') return (chTmp - '0'); else if(chTmp >= 'a' && chTmp <= 'f') return (10 + (chTmp - 'a')); else if(chTmp >= 'A' && chTmp <= 'F') return (10 + (chTmp - 'A')); else return 0; } // // Description: // Parse hex number from the string pucStr. // BOOLEAN GetHexValueFromString( IN char* szStr, IN OUT u32* pu4bVal, IN OUT u32* pu4bMove ) { char* szScan = szStr; // Check input parameter. if(szStr == NULL || pu4bVal == NULL || pu4bMove == NULL) { DBG_871X("GetHexValueFromString(): Invalid inpur argumetns! szStr: %p, pu4bVal: %p, pu4bMove: %p\n", szStr, pu4bVal, pu4bMove); return _FALSE; } // Initialize output. *pu4bMove = 0; *pu4bVal = 0; // Skip leading space. while( *szScan != '\0' && (*szScan == ' ' || *szScan == '\t') ) { szScan++; (*pu4bMove)++; } // Skip leading '0x' or '0X'. if(*szScan == '0' && (*(szScan+1) == 'x' || *(szScan+1) == 'X')) { szScan += 2; (*pu4bMove) += 2; } // Check if szScan is now pointer to a character for hex digit, // if not, it means this is not a valid hex number. if(!IsHexDigit(*szScan)) { return _FALSE; } // Parse each digit. do { (*pu4bVal) <<= 4; *pu4bVal += MapCharToHexDigit(*szScan); szScan++; (*pu4bMove)++; } while(IsHexDigit(*szScan)); return _TRUE; } BOOLEAN GetFractionValueFromString( IN char* szStr, IN OUT u8* pInteger, IN OUT u8* pFraction, IN OUT u32* pu4bMove ) { char *szScan = szStr; // Initialize output. *pu4bMove = 0; *pInteger = 0; *pFraction = 0; // Skip leading space. while ( *szScan != '\0' && (*szScan == ' ' || *szScan == '\t') ) { ++szScan; ++(*pu4bMove); } // Parse each digit. do { (*pInteger) *= 10; *pInteger += ( *szScan - '0' ); ++szScan; ++(*pu4bMove); if ( *szScan == '.' ) { ++szScan; ++(*pu4bMove); if ( *szScan < '0' || *szScan > '9' ) return _FALSE; else { *pFraction = *szScan - '0'; ++szScan; ++(*pu4bMove); return _TRUE; } } } while(*szScan >= '0' && *szScan <= '9'); return _TRUE; } // // Description: // Return TRUE if szStr is comment out with leading "//". // BOOLEAN IsCommentString( IN char *szStr ) { if(*szStr == '/' && *(szStr+1) == '/') { return _TRUE; } else { return _FALSE; } } BOOLEAN GetU1ByteIntegerFromStringInDecimal( IN char* Str, IN OUT u8* pInt ) { u16 i = 0; *pInt = 0; while ( Str[i] != '\0' ) { if ( Str[i] >= '0' && Str[i] <= '9' ) { *pInt *= 10; *pInt += ( Str[i] - '0' ); } else { return _FALSE; } ++i; } return _TRUE; } // <20121004, Kordan> For example, // ParseQualifiedString(inString, 0, outString, '[', ']') gets "Kordan" from a string "Hello [Kordan]". // If RightQualifier does not exist, it will hang on in the while loop BOOLEAN ParseQualifiedString( IN char* In, IN OUT u32* Start, OUT char* Out, IN char LeftQualifier, IN char RightQualifier ) { u32 i = 0, j = 0; char c = In[(*Start)++]; if (c != LeftQualifier) return _FALSE; i = (*Start); while ((c = In[(*Start)++]) != RightQualifier) ; // find ']' j = (*Start) - 2; strncpy((char *)Out, (const char*)(In+i), j-i+1); return _TRUE; } BOOLEAN isAllSpaceOrTab( u8* data, u8 size ) { u8 cnt = 0, NumOfSpaceAndTab = 0; while( size > cnt ) { if ( data[cnt] == ' ' || data[cnt] == '\t' || data[cnt] == '\0' ) ++NumOfSpaceAndTab; ++cnt; } return size == NumOfSpaceAndTab; } void rtw_hal_check_rxfifo_full(_adapter *adapter) { struct dvobj_priv *psdpriv = adapter->dvobj; struct debug_priv *pdbgpriv = &psdpriv->drv_dbg; HAL_DATA_TYPE *pHalData = GET_HAL_DATA(adapter); int save_cnt=_FALSE; //switch counter to RX fifo if (IS_8188E(pHalData->VersionID) || IS_8188F(pHalData->VersionID) || IS_8812_SERIES(pHalData->VersionID) || IS_8821_SERIES(pHalData->VersionID) || IS_8723B_SERIES(pHalData->VersionID) || IS_8192E(pHalData->VersionID) || IS_8703B_SERIES(pHalData->VersionID)) { rtw_write8(adapter, REG_RXERR_RPT+3, rtw_read8(adapter, REG_RXERR_RPT+3)|0xa0); save_cnt = _TRUE; } else { //todo: other chips } if (save_cnt) { pdbgpriv->dbg_rx_fifo_last_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow; pdbgpriv->dbg_rx_fifo_curr_overflow = rtw_read16(adapter, REG_RXERR_RPT); pdbgpriv->dbg_rx_fifo_diff_overflow = pdbgpriv->dbg_rx_fifo_curr_overflow-pdbgpriv->dbg_rx_fifo_last_overflow; } else { /* special value to indicate no implementation */ pdbgpriv->dbg_rx_fifo_last_overflow = 1; pdbgpriv->dbg_rx_fifo_curr_overflow = 1; pdbgpriv->dbg_rx_fifo_diff_overflow = 1; } } void linked_info_dump(_adapter *padapter,u8 benable) { struct pwrctrl_priv *pwrctrlpriv = adapter_to_pwrctl(padapter); if(padapter->bLinkInfoDump == benable) return; DBG_871X("%s %s \n",__FUNCTION__,(benable)?"enable":"disable"); if(benable){ #ifdef CONFIG_LPS pwrctrlpriv->org_power_mgnt = pwrctrlpriv->power_mgnt;//keep org value rtw_pm_set_lps(padapter,PS_MODE_ACTIVE); #endif #ifdef CONFIG_IPS pwrctrlpriv->ips_org_mode = pwrctrlpriv->ips_mode;//keep org value rtw_pm_set_ips(padapter,IPS_NONE); #endif } else{ #ifdef CONFIG_IPS rtw_pm_set_ips(padapter, pwrctrlpriv->ips_org_mode); #endif // CONFIG_IPS #ifdef CONFIG_LPS rtw_pm_set_lps(padapter, pwrctrlpriv->org_power_mgnt ); #endif // CONFIG_LPS } padapter->bLinkInfoDump = benable ; } #ifdef DBG_RX_SIGNAL_DISPLAY_RAW_DATA void rtw_get_raw_rssi_info(void *sel, _adapter *padapter) { u8 isCCKrate,rf_path; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info; DBG_871X_SEL_NL(sel,"RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n", HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all); isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M)?TRUE :FALSE; if(isCCKrate) psample_pkt_rssi->mimo_signal_strength[0] = psample_pkt_rssi->pwdball; for(rf_path = 0;rf_pathNumTotalRFPath;rf_path++) { DBG_871X_SEL_NL(sel, "RF_PATH_%d=>signal_strength:%d(%%),signal_quality:%d(%%)\n" , rf_path, psample_pkt_rssi->mimo_signal_strength[rf_path], psample_pkt_rssi->mimo_signal_quality[rf_path]); if(!isCCKrate){ DBG_871X_SEL_NL(sel,"\trx_ofdm_pwr:%d(dBm),rx_ofdm_snr:%d(dB)\n", psample_pkt_rssi->ofdm_pwr[rf_path],psample_pkt_rssi->ofdm_snr[rf_path]); } } } void rtw_dump_raw_rssi_info(_adapter *padapter) { u8 isCCKrate,rf_path; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info; DBG_871X("============ RAW Rx Info dump ===================\n"); DBG_871X("RxRate = %s, PWDBALL = %d(%%), rx_pwr_all = %d(dBm)\n", HDATA_RATE(psample_pkt_rssi->data_rate), psample_pkt_rssi->pwdball, psample_pkt_rssi->pwr_all); isCCKrate = (psample_pkt_rssi->data_rate <= DESC_RATE11M)?TRUE :FALSE; if(isCCKrate) psample_pkt_rssi->mimo_signal_strength[0] = psample_pkt_rssi->pwdball; for(rf_path = 0;rf_pathNumTotalRFPath;rf_path++) { DBG_871X("RF_PATH_%d=>signal_strength:%d(%%),signal_quality:%d(%%)" , rf_path, psample_pkt_rssi->mimo_signal_strength[rf_path], psample_pkt_rssi->mimo_signal_quality[rf_path]); if(!isCCKrate){ printk(",rx_ofdm_pwr:%d(dBm),rx_ofdm_snr:%d(dB)\n", psample_pkt_rssi->ofdm_pwr[rf_path],psample_pkt_rssi->ofdm_snr[rf_path]); }else{ printk("\n"); } } } void rtw_store_phy_info(_adapter *padapter, union recv_frame *prframe) { u8 isCCKrate,rf_path; PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); struct rx_pkt_attrib *pattrib = &prframe->u.hdr.attrib; PODM_PHY_INFO_T pPhyInfo = (PODM_PHY_INFO_T)(&pattrib->phy_info); struct rx_raw_rssi *psample_pkt_rssi = &padapter->recvpriv.raw_rssi_info; psample_pkt_rssi->data_rate = pattrib->data_rate; isCCKrate = (pattrib->data_rate <= DESC_RATE11M)?TRUE :FALSE; psample_pkt_rssi->pwdball = pPhyInfo->RxPWDBAll; psample_pkt_rssi->pwr_all = pPhyInfo->RecvSignalPower; for(rf_path = 0;rf_pathNumTotalRFPath;rf_path++) { psample_pkt_rssi->mimo_signal_strength[rf_path] = pPhyInfo->RxMIMOSignalStrength[rf_path]; psample_pkt_rssi->mimo_signal_quality[rf_path] = pPhyInfo->RxMIMOSignalQuality[rf_path]; if(!isCCKrate){ psample_pkt_rssi->ofdm_pwr[rf_path] = pPhyInfo->RxPwr[rf_path]; psample_pkt_rssi->ofdm_snr[rf_path] = pPhyInfo->RxSNR[rf_path]; } } } #endif int check_phy_efuse_tx_power_info_valid(PADAPTER padapter) { PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter); u8* pContent = pHalData->efuse_eeprom_data; int index = 0; u16 tx_index_offset = 0x0000; switch (rtw_get_chip_type(padapter)) { case RTL8723B: tx_index_offset = EEPROM_TX_PWR_INX_8723B; break; case RTL8703B: tx_index_offset = EEPROM_TX_PWR_INX_8703B; break; case RTL8188E: tx_index_offset = EEPROM_TX_PWR_INX_88E; break; case RTL8188F: tx_index_offset = EEPROM_TX_PWR_INX_8188F; break; case RTL8192E: tx_index_offset = EEPROM_TX_PWR_INX_8192E; break; case RTL8821: tx_index_offset = EEPROM_TX_PWR_INX_8821; break; case RTL8812: tx_index_offset = EEPROM_TX_PWR_INX_8812; break; case RTL8814A: tx_index_offset = EEPROM_TX_PWR_INX_8814; break; default: tx_index_offset = 0x0010; break; } /* TODO: chacking length by ICs */ for (index = 0 ; index < 11 ; index++) { if (pContent[tx_index_offset + index] == 0xFF) return _FALSE; } return _TRUE; } int hal_efuse_macaddr_offset(_adapter *adapter) { u8 interface_type = 0; int addr_offset = -1; interface_type = rtw_get_intf_type(adapter); switch (rtw_get_chip_type(adapter)) { #ifdef CONFIG_RTL8723B case RTL8723B: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8723BU; else if (interface_type == RTW_SDIO) addr_offset = EEPROM_MAC_ADDR_8723BS; else if (interface_type == RTW_PCIE) addr_offset = EEPROM_MAC_ADDR_8723BE; break; #endif #ifdef CONFIG_RTL8703B case RTL8703B: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8703BU; else if (interface_type == RTW_SDIO) addr_offset = EEPROM_MAC_ADDR_8703BS; break; #endif #ifdef CONFIG_RTL8188E case RTL8188E: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_88EU; else if (interface_type == RTW_SDIO) addr_offset = EEPROM_MAC_ADDR_88ES; else if (interface_type == RTW_PCIE) addr_offset = EEPROM_MAC_ADDR_88EE; break; #endif #ifdef CONFIG_RTL8188F case RTL8188F: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8188FU; else if (interface_type == RTW_SDIO) addr_offset = EEPROM_MAC_ADDR_8188FS; break; #endif #ifdef CONFIG_RTL8812A case RTL8812: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8812AU; else if (interface_type == RTW_PCIE) addr_offset = EEPROM_MAC_ADDR_8812AE; break; #endif #ifdef CONFIG_RTL8821A case RTL8821: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8821AU; else if (interface_type == RTW_SDIO) addr_offset = EEPROM_MAC_ADDR_8821AS; else if (interface_type == RTW_PCIE) addr_offset = EEPROM_MAC_ADDR_8821AE; break; #endif #ifdef CONFIG_RTL8192E case RTL8192E: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8192EU; else if (interface_type == RTW_SDIO) addr_offset = EEPROM_MAC_ADDR_8192ES; else if (interface_type == RTW_PCIE) addr_offset = EEPROM_MAC_ADDR_8192EE; break; #endif #ifdef CONFIG_RTL8814A case RTL8814A: if (interface_type == RTW_USB) addr_offset = EEPROM_MAC_ADDR_8814AU; else if (interface_type == RTW_PCIE) addr_offset = EEPROM_MAC_ADDR_8814AE; break; #endif } if (addr_offset == -1) { DBG_871X_LEVEL(_drv_err_, "%s: unknown combination - chip_type:%u, interface:%u\n" , __func__, rtw_get_chip_type(adapter), rtw_get_intf_type(adapter)); } return addr_offset; } int Hal_GetPhyEfuseMACAddr(PADAPTER padapter, u8 *mac_addr) { int ret = _FAIL; int addr_offset; addr_offset = hal_efuse_macaddr_offset(padapter); if (addr_offset == -1) goto exit; ret = rtw_efuse_map_read(padapter, addr_offset, ETH_ALEN, mac_addr); exit: return ret; } #ifdef CONFIG_EFUSE_CONFIG_FILE u32 Hal_readPGDataFromConfigFile(PADAPTER padapter) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter); u32 ret; ret = rtw_read_efuse_from_file(EFUSE_MAP_PATH, hal_data->efuse_eeprom_data); hal_data->efuse_file_status = ((ret == _FAIL) ? EFUSE_FILE_FAILED : EFUSE_FILE_LOADED); return ret; } u32 Hal_ReadMACAddrFromFile(PADAPTER padapter, u8 *mac_addr) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter); u32 ret = _FAIL; if (rtw_read_macaddr_from_file(WIFIMAC_PATH, mac_addr) == _SUCCESS && rtw_check_invalid_mac_address(mac_addr, _TRUE) == _FALSE ) { hal_data->macaddr_file_status = MACADDR_FILE_LOADED; ret = _SUCCESS; } else { hal_data->macaddr_file_status = MACADDR_FILE_FAILED; } return ret; } #endif /* CONFIG_EFUSE_CONFIG_FILE */ int hal_config_macaddr(_adapter *adapter, bool autoload_fail) { HAL_DATA_TYPE *hal_data = GET_HAL_DATA(adapter); u8 addr[ETH_ALEN]; int addr_offset = hal_efuse_macaddr_offset(adapter); u8 *hw_addr = NULL; int ret = _SUCCESS; if (autoload_fail) goto bypass_hw_pg; if (addr_offset != -1) hw_addr = &hal_data->efuse_eeprom_data[addr_offset]; #ifdef CONFIG_EFUSE_CONFIG_FILE /* if the hw_addr is written by efuse file, set to NULL */ if (hal_data->efuse_file_status == EFUSE_FILE_LOADED) hw_addr = NULL; #endif if (!hw_addr) { /* try getting hw pg data */ if (Hal_GetPhyEfuseMACAddr(adapter, addr) == _SUCCESS) hw_addr = addr; } /* check hw pg data */ if (hw_addr && rtw_check_invalid_mac_address(hw_addr, _TRUE) == _FALSE) { _rtw_memcpy(hal_data->EEPROMMACAddr, hw_addr, ETH_ALEN); goto exit; } bypass_hw_pg: #ifdef CONFIG_EFUSE_CONFIG_FILE /* check wifi mac file */ if (Hal_ReadMACAddrFromFile(adapter, addr) == _SUCCESS) { _rtw_memcpy(hal_data->EEPROMMACAddr, addr, ETH_ALEN); goto exit; } #endif _rtw_memset(hal_data->EEPROMMACAddr, 0, ETH_ALEN); ret = _FAIL; exit: return ret; } #ifdef CONFIG_RF_GAIN_OFFSET u32 Array_kfreemap[] = { 0x08,0xe, 0x06,0xc, 0x04,0xa, 0x02,0x8, 0x00,0x6, 0x03,0x4, 0x05,0x2, 0x07,0x0, 0x09,0x0, 0x0c,0x0, }; void rtw_bb_rf_gain_offset(_adapter *padapter) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); struct registry_priv *registry_par = &padapter->registrypriv; struct kfree_data_t *kfree_data = &pHalData->kfree_data; u8 value = pHalData->EEPROMRFGainOffset; u8 tmp = 0x3e; u32 res, i = 0; u4Byte ArrayLen = sizeof(Array_kfreemap)/sizeof(u32); pu4Byte Array = Array_kfreemap; u4Byte v1 = 0, v2 = 0, GainValue = 0, target = 0; if (registry_par->RegRfKFreeEnable == 2) { DBG_871X("Registry kfree default force disable.\n"); return; } #if defined(CONFIG_RTL8723B) if (value & BIT4 || (registry_par->RegRfKFreeEnable == 1)) { DBG_871X("Offset RF Gain.\n"); DBG_871X("Offset RF Gain. pHalData->EEPROMRFGainVal=0x%x\n",pHalData->EEPROMRFGainVal); if(pHalData->EEPROMRFGainVal != 0xff){ if(pHalData->ant_path == ODM_RF_PATH_A) { GainValue=(pHalData->EEPROMRFGainVal & 0x0f); } else { GainValue=(pHalData->EEPROMRFGainVal & 0xf0)>>4; } DBG_871X("Ant PATH_%d GainValue Offset = 0x%x\n",(pHalData->ant_path == ODM_RF_PATH_A) ? (ODM_RF_PATH_A) : (ODM_RF_PATH_B),GainValue); for (i = 0; i < ArrayLen; i += 2 ) { //DBG_871X("ArrayLen in =%d ,Array 1 =0x%x ,Array2 =0x%x \n",i,Array[i],Array[i]+1); v1 = Array[i]; v2 = Array[i+1]; if ( v1 == GainValue ) { DBG_871X("Offset RF Gain. got v1 =0x%x ,v2 =0x%x \n",v1,v2); target=v2; break; } } DBG_871X("pHalData->EEPROMRFGainVal=0x%x ,Gain offset Target Value=0x%x\n",pHalData->EEPROMRFGainVal,target); res = rtw_hal_read_rfreg(padapter, RF_PATH_A, 0x7f, 0xffffffff); DBG_871X("Offset RF Gain. before reg 0x7f=0x%08x\n",res); PHY_SetRFReg(padapter, RF_PATH_A, REG_RF_BB_GAIN_OFFSET, BIT18|BIT17|BIT16|BIT15, target); res = rtw_hal_read_rfreg(padapter, RF_PATH_A, 0x7f, 0xffffffff); DBG_871X("Offset RF Gain. After reg 0x7f=0x%08x\n",res); }else { DBG_871X("Offset RF Gain. pHalData->EEPROMRFGainVal=0x%x != 0xff, didn't run Kfree\n",pHalData->EEPROMRFGainVal); } } else { DBG_871X("Using the default RF gain.\n"); } #elif defined(CONFIG_RTL8188E) if (value & BIT4 || (registry_par->RegRfKFreeEnable == 1)) { DBG_871X("8188ES Offset RF Gain.\n"); DBG_871X("8188ES Offset RF Gain. EEPROMRFGainVal=0x%x\n", pHalData->EEPROMRFGainVal); if (pHalData->EEPROMRFGainVal != 0xff) { res = rtw_hal_read_rfreg(padapter, RF_PATH_A, REG_RF_BB_GAIN_OFFSET, 0xffffffff); DBG_871X("Offset RF Gain. reg 0x55=0x%x\n",res); res &= 0xfff87fff; res |= (pHalData->EEPROMRFGainVal & 0x0f) << 15; DBG_871X("Offset RF Gain. res=0x%x\n",res); rtw_hal_write_rfreg(padapter, RF_PATH_A, REG_RF_BB_GAIN_OFFSET, RF_GAIN_OFFSET_MASK, res); } else { DBG_871X("Offset RF Gain. EEPROMRFGainVal=0x%x == 0xff, didn't run Kfree\n", pHalData->EEPROMRFGainVal); } } else { DBG_871X("Using the default RF gain.\n"); } #else /* TODO: call this when channel switch */ if (kfree_data->flag & KFREE_FLAG_ON) rtw_rf_apply_tx_gain_offset(padapter, 6); /* input ch6 to select BB_GAIN_2G */ #endif } #endif //CONFIG_RF_GAIN_OFFSET bool kfree_data_is_bb_gain_empty(struct kfree_data_t *data) { #ifdef CONFIG_RF_GAIN_OFFSET int i, j; for (i = 0; i < BB_GAIN_NUM; i++) for (j = 0; j < RF_PATH_MAX; j++) if (data->bb_gain[i][j] != 0) return 0; #endif return 1; } #ifdef CONFIG_USB_RX_AGGREGATION void rtw_set_usb_agg_by_mode(_adapter *padapter, u8 cur_wireless_mode) { HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); if(cur_wireless_mode < WIRELESS_11_24N && cur_wireless_mode > 0) //ABG mode { #ifdef CONFIG_PREALLOC_RX_SKB_BUFFER u32 remainder = 0; u8 quotient = 0; remainder = MAX_RECVBUF_SZ % (4*1024); quotient = (u8)(MAX_RECVBUF_SZ >> 12); if (quotient > 5) { pHalData->RegAcUsbDmaSize = 0x6; pHalData->RegAcUsbDmaTime = 0x10; } else { if (remainder >= 2048) { pHalData->RegAcUsbDmaSize = quotient; pHalData->RegAcUsbDmaTime = 0x10; } else { pHalData->RegAcUsbDmaSize = (quotient-1); pHalData->RegAcUsbDmaTime = 0x10; } } #else /* !CONFIG_PREALLOC_RX_SKB_BUFFER */ if(0x6 != pHalData->RegAcUsbDmaSize || 0x10 !=pHalData->RegAcUsbDmaTime) { pHalData->RegAcUsbDmaSize = 0x6; pHalData->RegAcUsbDmaTime = 0x10; rtw_write16(padapter, REG_RXDMA_AGG_PG_TH, pHalData->RegAcUsbDmaSize | (pHalData->RegAcUsbDmaTime<<8)); } #endif /* CONFIG_PREALLOC_RX_SKB_BUFFER */ } else if(cur_wireless_mode >= WIRELESS_11_24N && cur_wireless_mode <= WIRELESS_MODE_MAX)//N AC mode { #ifdef CONFIG_PREALLOC_RX_SKB_BUFFER u32 remainder = 0; u8 quotient = 0; remainder = MAX_RECVBUF_SZ % (4*1024); quotient = (u8)(MAX_RECVBUF_SZ >> 12); if (quotient > 5) { pHalData->RegAcUsbDmaSize = 0x5; pHalData->RegAcUsbDmaTime = 0x20; } else { if (remainder >= 2048) { pHalData->RegAcUsbDmaSize = quotient; pHalData->RegAcUsbDmaTime = 0x10; } else { pHalData->RegAcUsbDmaSize = (quotient-1); pHalData->RegAcUsbDmaTime = 0x10; } } #else /* !CONFIG_PREALLOC_RX_SKB_BUFFER */ if(0x5 != pHalData->RegAcUsbDmaSize || 0x20 !=pHalData->RegAcUsbDmaTime) { pHalData->RegAcUsbDmaSize = 0x5; pHalData->RegAcUsbDmaTime = 0x20; rtw_write16(padapter, REG_RXDMA_AGG_PG_TH, pHalData->RegAcUsbDmaSize | (pHalData->RegAcUsbDmaTime<<8)); } #endif /* CONFIG_PREALLOC_RX_SKB_BUFFER */ } else { /* DBG_871X("%s: Unknow wireless mode(0x%x)\n",__func__,padapter->mlmeextpriv.cur_wireless_mode); */ } } #endif //CONFIG_USB_RX_AGGREGATION //To avoid RX affect TX throughput void dm_DynamicUsbTxAgg(_adapter *padapter, u8 from_timer) { struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter); struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); struct mlme_ext_priv *pmlmeextpriv = &(padapter->mlmeextpriv); HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); u8 cur_wireless_mode = pmlmeextpriv->cur_wireless_mode; #ifdef CONFIG_CONCURRENT_MODE struct mlme_ext_priv *pbuddymlmeextpriv = &(padapter->pbuddy_adapter->mlmeextpriv); #endif //CONFIG_CONCURRENT_MODE #ifdef CONFIG_USB_RX_AGGREGATION if(IS_HARDWARE_TYPE_8821U(padapter) )//|| IS_HARDWARE_TYPE_8192EU(padapter)) { //This AGG_PH_TH only for UsbRxAggMode == USB_RX_AGG_USB if((pHalData->UsbRxAggMode == USB_RX_AGG_USB) && (check_fwstate(pmlmepriv, _FW_LINKED)== _TRUE)) { if(pdvobjpriv->traffic_stat.cur_tx_tp > 2 && pdvobjpriv->traffic_stat.cur_rx_tp < 30) rtw_write16(padapter , REG_RXDMA_AGG_PG_TH , 0x1010); else if (pdvobjpriv->traffic_stat.last_tx_bytes > 220000 && pdvobjpriv->traffic_stat.cur_rx_tp < 30) rtw_write16(padapter , REG_RXDMA_AGG_PG_TH , 0x1006); else rtw_write16(padapter, REG_RXDMA_AGG_PG_TH,0x2005); //dmc agg th 20K //DBG_871X("TX_TP=%u, RX_TP=%u \n", pdvobjpriv->traffic_stat.cur_tx_tp, pdvobjpriv->traffic_stat.cur_rx_tp); } } else if(IS_HARDWARE_TYPE_8812(padapter)) { #ifdef CONFIG_CONCURRENT_MODE if(rtw_linked_check(padapter) == _TRUE && rtw_linked_check(padapter->pbuddy_adapter) == _TRUE) { if(pbuddymlmeextpriv->cur_wireless_mode >= pmlmeextpriv->cur_wireless_mode) cur_wireless_mode = pbuddymlmeextpriv->cur_wireless_mode; else cur_wireless_mode = pmlmeextpriv->cur_wireless_mode; rtw_set_usb_agg_by_mode(padapter,cur_wireless_mode); } else if (rtw_linked_check(padapter) == _TRUE && rtw_linked_check(padapter->pbuddy_adapter) == _FALSE) { rtw_set_usb_agg_by_mode(padapter,cur_wireless_mode); } #else //!CONFIG_CONCURRENT_MODE rtw_set_usb_agg_by_mode(padapter,cur_wireless_mode); #endif //CONFIG_CONCURRENT_MODE } #endif } //bus-agg check for SoftAP mode inline u8 rtw_hal_busagg_qsel_check(_adapter *padapter,u8 pre_qsel,u8 next_qsel) { struct mlme_priv *pmlmepriv = &(padapter->mlmepriv); u8 chk_rst = _SUCCESS; if(check_fwstate(pmlmepriv, WIFI_AP_STATE) != _TRUE) return chk_rst; //if((pre_qsel == 0xFF)||(next_qsel== 0xFF)) // return chk_rst; if( ((pre_qsel == QSLT_HIGH)||((next_qsel== QSLT_HIGH))) && (pre_qsel != next_qsel )){ //DBG_871X("### bus-agg break cause of qsel misatch, pre_qsel=0x%02x,next_qsel=0x%02x ###\n", // pre_qsel,next_qsel); chk_rst = _FAIL; } return chk_rst; } /* * Description: * dump_TX_FIFO: This is only used to dump TX_FIFO for debug WoW mode offload * contant. * * Input: * adapter: adapter pointer. * page_num: The max. page number that user want to dump. * page_size: page size of each page. eg. 128 bytes, 256 bytes, 512byte. */ void dump_TX_FIFO(_adapter* padapter, u8 page_num, u16 page_size){ int i; u8 val = 0; u8 base = 0; u32 addr = 0; u32 count = (page_size / 8); if (page_num <= 0) { DBG_871X("!!%s: incorrect input page_num paramter!\n", __func__); return; } if (page_size < 128 || page_size > 512) { DBG_871X("!!%s: incorrect input page_size paramter!\n", __func__); return; } DBG_871X("+%s+\n", __func__); val = rtw_read8(padapter, 0x106); rtw_write8(padapter, 0x106, 0x69); DBG_871X("0x106: 0x%02x\n", val); base = rtw_read8(padapter, 0x209); DBG_871X("0x209: 0x%02x\n", base); addr = ((base) * page_size)/8; for (i = 0 ; i < page_num * count ; i+=2) { rtw_write32(padapter, 0x140, addr + i); printk(" %08x %08x ", rtw_read32(padapter, 0x144), rtw_read32(padapter, 0x148)); rtw_write32(padapter, 0x140, addr + i + 1); printk(" %08x %08x \n", rtw_read32(padapter, 0x144), rtw_read32(padapter, 0x148)); } } #ifdef CONFIG_GPIO_API u8 rtw_hal_get_gpio(_adapter* adapter, u8 gpio_num) { u8 value; u8 direction; struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapter); rtw_ps_deny(adapter, PS_DENY_IOCTL); DBG_871X("rf_pwrstate=0x%02x\n", pwrpriv->rf_pwrstate); LeaveAllPowerSaveModeDirect(adapter); /* Read GPIO Direction */ direction = (rtw_read8(adapter,REG_GPIO_PIN_CTRL + 2) & BIT(gpio_num)) >> gpio_num; /* According the direction to read register value */ if( direction ) value = (rtw_read8(adapter, REG_GPIO_PIN_CTRL + 1)& BIT(gpio_num)) >> gpio_num; else value = (rtw_read8(adapter, REG_GPIO_PIN_CTRL)& BIT(gpio_num)) >> gpio_num; rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL); DBG_871X("%s direction=%d value=%d\n",__FUNCTION__,direction,value); return value; } int rtw_hal_set_gpio_output_value(_adapter* adapter, u8 gpio_num, bool isHigh) { u8 direction = 0; u8 res = -1; if (IS_HARDWARE_TYPE_8188E(adapter)){ /* Check GPIO is 4~7 */ if( gpio_num > 7 || gpio_num < 4) { DBG_871X("%s The gpio number does not included 4~7.\n",__FUNCTION__); return -1; } } rtw_ps_deny(adapter, PS_DENY_IOCTL); LeaveAllPowerSaveModeDirect(adapter); /* Read GPIO direction */ direction = (rtw_read8(adapter,REG_GPIO_PIN_CTRL + 2) & BIT(gpio_num)) >> gpio_num; /* If GPIO is output direction, setting value. */ if( direction ) { if(isHigh) rtw_write8(adapter, REG_GPIO_PIN_CTRL + 1, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 1) | BIT(gpio_num)); else rtw_write8(adapter, REG_GPIO_PIN_CTRL + 1, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 1) & ~BIT(gpio_num)); DBG_871X("%s Set gpio %x[%d]=%d\n",__FUNCTION__,REG_GPIO_PIN_CTRL+1,gpio_num,isHigh ); res = 0; } else { DBG_871X("%s The gpio is input,not be set!\n",__FUNCTION__); res = -1; } rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL); return res; } int rtw_hal_config_gpio(_adapter* adapter, u8 gpio_num, bool isOutput) { if (IS_HARDWARE_TYPE_8188E(adapter)){ if( gpio_num > 7 || gpio_num < 4) { DBG_871X("%s The gpio number does not included 4~7.\n",__FUNCTION__); return -1; } } DBG_871X("%s gpio_num =%d direction=%d\n",__FUNCTION__,gpio_num,isOutput); rtw_ps_deny(adapter, PS_DENY_IOCTL); LeaveAllPowerSaveModeDirect(adapter); if( isOutput ) { rtw_write8(adapter, REG_GPIO_PIN_CTRL + 2, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 2) | BIT(gpio_num)); } else { rtw_write8(adapter, REG_GPIO_PIN_CTRL + 2, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 2) & ~BIT(gpio_num)); } rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL); return 0; } int rtw_hal_register_gpio_interrupt(_adapter* adapter, int gpio_num, void(*callback)(u8 level)) { u8 value; u8 direction; PHAL_DATA_TYPE phal = GET_HAL_DATA(adapter); if (IS_HARDWARE_TYPE_8188E(adapter)){ if(gpio_num > 7 || gpio_num < 4) { DBG_871X_LEVEL(_drv_always_, "%s The gpio number does not included 4~7.\n",__FUNCTION__); return -1; } } rtw_ps_deny(adapter, PS_DENY_IOCTL); LeaveAllPowerSaveModeDirect(adapter); /* Read GPIO direction */ direction = (rtw_read8(adapter,REG_GPIO_PIN_CTRL + 2) & BIT(gpio_num)) >> gpio_num; if(direction){ DBG_871X_LEVEL(_drv_always_, "%s Can't register output gpio as interrupt.\n",__FUNCTION__); return -1; } /* Config GPIO Mode */ rtw_write8(adapter, REG_GPIO_PIN_CTRL + 3, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 3) | BIT(gpio_num)); /* Register GPIO interrupt handler*/ adapter->gpiointpriv.callback[gpio_num] = callback; /* Set GPIO interrupt mode, 0:positive edge, 1:negative edge */ value = rtw_read8(adapter, REG_GPIO_PIN_CTRL) & BIT(gpio_num); adapter->gpiointpriv.interrupt_mode = rtw_read8(adapter, REG_HSIMR + 2)^value; rtw_write8(adapter, REG_GPIO_INTM, adapter->gpiointpriv.interrupt_mode); /* Enable GPIO interrupt */ adapter->gpiointpriv.interrupt_enable_mask = rtw_read8(adapter, REG_HSIMR + 2) | BIT(gpio_num); rtw_write8(adapter, REG_HSIMR + 2, adapter->gpiointpriv.interrupt_enable_mask); rtw_hal_update_hisr_hsisr_ind(adapter, 1); rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL); return 0; } int rtw_hal_disable_gpio_interrupt(_adapter* adapter, int gpio_num) { u8 value; u8 direction; PHAL_DATA_TYPE phal = GET_HAL_DATA(adapter); if (IS_HARDWARE_TYPE_8188E(adapter)){ if(gpio_num > 7 || gpio_num < 4) { DBG_871X("%s The gpio number does not included 4~7.\n",__FUNCTION__); return -1; } } rtw_ps_deny(adapter, PS_DENY_IOCTL); LeaveAllPowerSaveModeDirect(adapter); /* Config GPIO Mode */ rtw_write8(adapter, REG_GPIO_PIN_CTRL + 3, rtw_read8(adapter, REG_GPIO_PIN_CTRL + 3) &~ BIT(gpio_num)); /* Unregister GPIO interrupt handler*/ adapter->gpiointpriv.callback[gpio_num] = NULL; /* Reset GPIO interrupt mode, 0:positive edge, 1:negative edge */ adapter->gpiointpriv.interrupt_mode = rtw_read8(adapter, REG_GPIO_INTM) &~ BIT(gpio_num); rtw_write8(adapter, REG_GPIO_INTM, 0x00); /* Disable GPIO interrupt */ adapter->gpiointpriv.interrupt_enable_mask = rtw_read8(adapter, REG_HSIMR + 2) &~ BIT(gpio_num); rtw_write8(adapter, REG_HSIMR + 2, adapter->gpiointpriv.interrupt_enable_mask); if(!adapter->gpiointpriv.interrupt_enable_mask) rtw_hal_update_hisr_hsisr_ind(adapter, 0); rtw_ps_deny_cancel(adapter, PS_DENY_IOCTL); return 0; } #endif void rtw_dump_mac_rx_counters(_adapter* padapter,struct dbg_rx_counter *rx_counter) { u32 mac_cck_ok=0, mac_ofdm_ok=0, mac_ht_ok=0, mac_vht_ok=0; u32 mac_cck_err=0, mac_ofdm_err=0, mac_ht_err=0, mac_vht_err=0; u32 mac_cck_fa=0, mac_ofdm_fa=0, mac_ht_fa=0; u32 DropPacket=0; if(!rx_counter){ rtw_warn_on(1); return; } PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x3); mac_cck_ok = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x0); mac_ofdm_ok = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x6); mac_ht_ok = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] mac_vht_ok = 0; if (IS_HARDWARE_TYPE_JAGUAR(padapter) || IS_HARDWARE_TYPE_JAGUAR2(padapter)) { PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x0); PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT26, 0x1); mac_vht_ok = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] } PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x4); mac_cck_err = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x1); mac_ofdm_err = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x7); mac_ht_err = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] mac_vht_err = 0; if (IS_HARDWARE_TYPE_JAGUAR(padapter) || IS_HARDWARE_TYPE_JAGUAR2(padapter)) { PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x1); PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT26, 0x1); mac_vht_err = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] } PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x5); mac_cck_fa = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x2); mac_ofdm_fa = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT28|BIT29|BIT30|BIT31, 0x9); mac_ht_fa = PHY_QueryMacReg(padapter, REG_RXERR_RPT, bMaskLWord);// [15:0] //Mac_DropPacket rtw_write32(padapter, REG_RXERR_RPT, (rtw_read32(padapter, REG_RXERR_RPT)& 0x0FFFFFFF)| Mac_DropPacket); DropPacket = rtw_read32(padapter, REG_RXERR_RPT)& 0x0000FFFF; rx_counter->rx_pkt_ok = mac_cck_ok+mac_ofdm_ok+mac_ht_ok+mac_vht_ok; rx_counter->rx_pkt_crc_error = mac_cck_err+mac_ofdm_err+mac_ht_err+mac_vht_err; rx_counter->rx_cck_fa = mac_cck_fa; rx_counter->rx_ofdm_fa = mac_ofdm_fa; rx_counter->rx_ht_fa = mac_ht_fa; rx_counter->rx_pkt_drop = DropPacket; } void rtw_reset_mac_rx_counters(_adapter* padapter) { if (IS_HARDWARE_TYPE_8703B(padapter) || IS_HARDWARE_TYPE_8188F(padapter)) PHY_SetMacReg(padapter, 0x608, BIT19, 0x1); /* If no packet rx, MaxRx clock be gating ,BIT_DISGCLK bit19 set 1 for fix*/ //reset mac counter PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT27, 0x1); PHY_SetMacReg(padapter, REG_RXERR_RPT, BIT27, 0x0); } void rtw_dump_phy_rx_counters(_adapter* padapter,struct dbg_rx_counter *rx_counter) { u32 cckok=0,cckcrc=0,ofdmok=0,ofdmcrc=0,htok=0,htcrc=0,OFDM_FA=0,CCK_FA=0,vht_ok=0,vht_err=0; if(!rx_counter){ rtw_warn_on(1); return; } if (IS_HARDWARE_TYPE_JAGUAR(padapter) || IS_HARDWARE_TYPE_JAGUAR2(padapter)){ cckok = PHY_QueryBBReg(padapter, 0xF04, 0x3FFF); // [13:0] ofdmok = PHY_QueryBBReg(padapter, 0xF14, 0x3FFF); // [13:0] htok = PHY_QueryBBReg(padapter, 0xF10, 0x3FFF); // [13:0] vht_ok = PHY_QueryBBReg(padapter, 0xF0C, 0x3FFF); // [13:0] cckcrc = PHY_QueryBBReg(padapter, 0xF04, 0x3FFF0000); // [29:16] ofdmcrc = PHY_QueryBBReg(padapter, 0xF14, 0x3FFF0000); // [29:16] htcrc = PHY_QueryBBReg(padapter, 0xF10, 0x3FFF0000); // [29:16] vht_err = PHY_QueryBBReg(padapter, 0xF0C, 0x3FFF0000); // [29:16] CCK_FA = PHY_QueryBBReg(padapter, 0xA5C, bMaskLWord); OFDM_FA = PHY_QueryBBReg(padapter, 0xF48, bMaskLWord); } else { cckok = PHY_QueryBBReg(padapter, 0xF88, bMaskDWord); ofdmok = PHY_QueryBBReg(padapter, 0xF94, bMaskLWord); htok = PHY_QueryBBReg(padapter, 0xF90, bMaskLWord); vht_ok = 0; cckcrc = PHY_QueryBBReg(padapter, 0xF84, bMaskDWord); ofdmcrc = PHY_QueryBBReg(padapter, 0xF94, bMaskHWord); htcrc = PHY_QueryBBReg(padapter, 0xF90, bMaskHWord); vht_err = 0; OFDM_FA = PHY_QueryBBReg(padapter, 0xCF0, bMaskLWord) + PHY_QueryBBReg(padapter, 0xCF2, bMaskLWord) + PHY_QueryBBReg(padapter, 0xDA2, bMaskLWord) + PHY_QueryBBReg(padapter, 0xDA4, bMaskLWord) + PHY_QueryBBReg(padapter, 0xDA6, bMaskLWord) + PHY_QueryBBReg(padapter, 0xDA8, bMaskLWord); CCK_FA=(rtw_read8(padapter, 0xA5B )<<8 ) | (rtw_read8(padapter, 0xA5C)); } rx_counter->rx_pkt_ok = cckok+ofdmok+htok+vht_ok; rx_counter->rx_pkt_crc_error = cckcrc+ofdmcrc+htcrc+vht_err; rx_counter->rx_ofdm_fa = OFDM_FA; rx_counter->rx_cck_fa = CCK_FA; } void rtw_reset_phy_rx_counters(_adapter* padapter) { //reset phy counter if (IS_HARDWARE_TYPE_JAGUAR(padapter) || IS_HARDWARE_TYPE_JAGUAR2(padapter)) { PHY_SetBBReg(padapter, 0xB58, BIT0, 0x1); PHY_SetBBReg(padapter, 0xB58, BIT0, 0x0); PHY_SetBBReg(padapter, 0x9A4, BIT17, 0x1);//reset OFDA FA counter PHY_SetBBReg(padapter, 0x9A4, BIT17, 0x0); PHY_SetBBReg(padapter, 0xA2C, BIT15, 0x0);//reset CCK FA counter PHY_SetBBReg(padapter, 0xA2C, BIT15, 0x1); } else { PHY_SetBBReg(padapter, 0xF14, BIT16, 0x1); rtw_msleep_os(10); PHY_SetBBReg(padapter, 0xF14, BIT16, 0x0); PHY_SetBBReg(padapter, 0xD00, BIT27, 0x1);//reset OFDA FA counter PHY_SetBBReg(padapter, 0xC0C, BIT31, 0x1);//reset OFDA FA counter PHY_SetBBReg(padapter, 0xD00, BIT27, 0x0); PHY_SetBBReg(padapter, 0xC0C, BIT31, 0x0); PHY_SetBBReg(padapter, 0xA2C, BIT15, 0x0);//reset CCK FA counter PHY_SetBBReg(padapter, 0xA2C, BIT15, 0x1); } } #ifdef DBG_RX_COUNTER_DUMP void rtw_dump_drv_rx_counters(_adapter* padapter,struct dbg_rx_counter *rx_counter) { struct recv_priv *precvpriv = &padapter->recvpriv; if(!rx_counter){ rtw_warn_on(1); return; } rx_counter->rx_pkt_ok = padapter->drv_rx_cnt_ok; rx_counter->rx_pkt_crc_error = padapter->drv_rx_cnt_crcerror; rx_counter->rx_pkt_drop = precvpriv->rx_drop - padapter->drv_rx_cnt_drop; } void rtw_reset_drv_rx_counters(_adapter* padapter) { struct recv_priv *precvpriv = &padapter->recvpriv; padapter->drv_rx_cnt_ok = 0; padapter->drv_rx_cnt_crcerror = 0; padapter->drv_rx_cnt_drop = precvpriv->rx_drop; } void rtw_dump_phy_rxcnts_preprocess(_adapter* padapter,u8 rx_cnt_mode) { u8 initialgain; HAL_DATA_TYPE *hal_data = GET_HAL_DATA(padapter); DM_ODM_T *odm = &(hal_data->odmpriv); DIG_T *pDigTable = &odm->DM_DigTable; if((!(padapter->dump_rx_cnt_mode& DUMP_PHY_RX_COUNTER)) && (rx_cnt_mode & DUMP_PHY_RX_COUNTER)) { initialgain = pDigTable->CurIGValue; DBG_871X("%s CurIGValue:0x%02x\n",__FUNCTION__,initialgain); rtw_hal_set_odm_var(padapter, HAL_ODM_INITIAL_GAIN, &initialgain, _FALSE); /*disable dynamic functions, such as high power, DIG*/ rtw_phydm_ability_backup(padapter); rtw_phydm_func_clr(padapter, (ODM_BB_DIG|ODM_BB_FA_CNT)); } else if((padapter->dump_rx_cnt_mode& DUMP_PHY_RX_COUNTER) &&(!(rx_cnt_mode & DUMP_PHY_RX_COUNTER ))) { //turn on phy-dynamic functions rtw_phydm_ability_restore(padapter); initialgain = 0xff; //restore RX GAIN rtw_hal_set_odm_var(padapter, HAL_ODM_INITIAL_GAIN, &initialgain, _FALSE); } } void rtw_dump_rx_counters(_adapter* padapter) { struct dbg_rx_counter rx_counter; if( padapter->dump_rx_cnt_mode & DUMP_DRV_RX_COUNTER ){ _rtw_memset(&rx_counter,0,sizeof(struct dbg_rx_counter)); rtw_dump_drv_rx_counters(padapter,&rx_counter); DBG_871X( "Drv Received packet OK:%d CRC error:%d Drop Packets: %d\n", rx_counter.rx_pkt_ok,rx_counter.rx_pkt_crc_error,rx_counter.rx_pkt_drop); rtw_reset_drv_rx_counters(padapter); } if( padapter->dump_rx_cnt_mode & DUMP_MAC_RX_COUNTER ){ _rtw_memset(&rx_counter,0,sizeof(struct dbg_rx_counter)); rtw_dump_mac_rx_counters(padapter,&rx_counter); DBG_871X( "Mac Received packet OK:%d CRC error:%d FA Counter: %d Drop Packets: %d\n", rx_counter.rx_pkt_ok,rx_counter.rx_pkt_crc_error, rx_counter.rx_cck_fa+rx_counter.rx_ofdm_fa+rx_counter.rx_ht_fa, rx_counter.rx_pkt_drop); rtw_reset_mac_rx_counters(padapter); } if(padapter->dump_rx_cnt_mode & DUMP_PHY_RX_COUNTER ){ _rtw_memset(&rx_counter,0,sizeof(struct dbg_rx_counter)); rtw_dump_phy_rx_counters(padapter,&rx_counter); //DBG_871X("%s: OFDM_FA =%d\n", __FUNCTION__, rx_counter.rx_ofdm_fa); //DBG_871X("%s: CCK_FA =%d\n", __FUNCTION__, rx_counter.rx_cck_fa); DBG_871X("Phy Received packet OK:%d CRC error:%d FA Counter: %d\n",rx_counter.rx_pkt_ok,rx_counter.rx_pkt_crc_error, rx_counter.rx_ofdm_fa+rx_counter.rx_cck_fa); rtw_reset_phy_rx_counters(padapter); } } #endif void rtw_get_noise(_adapter* padapter) { #if defined(CONFIG_SIGNAL_DISPLAY_DBM) && defined(CONFIG_BACKGROUND_NOISE_MONITOR) struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct noise_info info; if(rtw_linked_check(padapter)){ info.bPauseDIG = _TRUE; info.IGIValue = 0x1e; info.max_time = 100;//ms info.chan = pmlmeext->cur_channel ;//rtw_get_oper_ch(padapter); rtw_ps_deny(padapter, PS_DENY_IOCTL); LeaveAllPowerSaveModeDirect(padapter); rtw_hal_set_odm_var(padapter, HAL_ODM_NOISE_MONITOR,&info, _FALSE); //ODM_InbandNoise_Monitor(podmpriv,_TRUE,0x20,100); rtw_ps_deny_cancel(padapter, PS_DENY_IOCTL); rtw_hal_get_odm_var(padapter, HAL_ODM_NOISE_MONITOR,&(info.chan), &(padapter->recvpriv.noise)); #ifdef DBG_NOISE_MONITOR DBG_871X("chan:%d,noise_level:%d\n",info.chan,padapter->recvpriv.noise); #endif } #endif } #ifdef CONFIG_FW_C2H_DEBUG /* C2H RX package original is 128. if enable CONFIG_FW_C2H_DEBUG, it should increase to 256. C2H FW debug message: without aggregate: {C2H_CmdID,Seq,SubID,Len,Content[0~n]} Content[0~n]={'a','b','c',...,'z','\n'} with aggregate: {C2H_CmdID,Seq,SubID,Len,Content[0~n]} Content[0~n]={'a','b','c',...,'z','\n',Extend C2H pkt 2...} Extend C2H pkt 2={C2H CmdID,Seq,SubID,Len,Content = {'a','b','c',...,'z','\n'}} Author: Isaac */ void Debug_FwC2H(PADAPTER padapter, u8 *pdata, u8 len) { int i = 0; int cnt = 0, total_length = 0; u8 buf[128] = {0}; u8 more_data = _FALSE; u8 *nextdata = NULL; u8 test = 0; u8 data_len; u8 seq_no; nextdata = pdata; do { data_len = *(nextdata + 1); seq_no = *(nextdata + 2); for (i = 0 ; i < data_len - 2 ; i++) { cnt += sprintf((buf+cnt), "%c", nextdata[3 + i]); if (nextdata[3 + i] == 0x0a && nextdata[4 + i] == 0xff) more_data = _TRUE; else if (nextdata[3 + i] == 0x0a && nextdata[4 + i] != 0xff) more_data = _FALSE; } DBG_871X("[RTKFW, SEQ=%d]: %s", seq_no, buf); data_len += 3; total_length += data_len; if (more_data == _TRUE) { _rtw_memset(buf, '\0', 128); cnt = 0; nextdata = (pdata + total_length); } } while (more_data == _TRUE); } #endif /*CONFIG_FW_C2H_DEBUG*/ void update_IOT_info(_adapter *padapter) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info); switch (pmlmeinfo->assoc_AP_vendor) { case HT_IOT_PEER_MARVELL: pmlmeinfo->turboMode_cts2self = 1; pmlmeinfo->turboMode_rtsen = 0; break; case HT_IOT_PEER_RALINK: pmlmeinfo->turboMode_cts2self = 0; pmlmeinfo->turboMode_rtsen = 1; //disable high power rtw_phydm_func_clr(padapter, ODM_BB_DYNAMIC_TXPWR); break; case HT_IOT_PEER_REALTEK: //rtw_write16(padapter, 0x4cc, 0xffff); //rtw_write16(padapter, 0x546, 0x01c0); //disable high power rtw_phydm_func_clr(padapter, ODM_BB_DYNAMIC_TXPWR); break; default: pmlmeinfo->turboMode_cts2self = 0; pmlmeinfo->turboMode_rtsen = 1; break; } } #ifdef CONFIG_AUTO_CHNL_SEL_NHM void rtw_acs_start(_adapter *padapter, bool bStart) { if (_TRUE == bStart) { ACS_OP acs_op = ACS_INIT; rtw_hal_set_odm_var(padapter, HAL_ODM_AUTO_CHNL_SEL, &acs_op, _TRUE); rtw_set_acs_channel(padapter, 0); SET_ACS_STATE(padapter, ACS_ENABLE); } else { SET_ACS_STATE(padapter, ACS_DISABLE); #ifdef DBG_AUTO_CHNL_SEL_NHM if (1) { u8 best_24g_ch = 0; u8 best_5g_ch = 0; rtw_hal_get_odm_var(padapter, HAL_ODM_AUTO_CHNL_SEL, &(best_24g_ch), &(best_5g_ch)); DBG_871X("[ACS-"ADPT_FMT"] Best 2.4G CH:%u\n", ADPT_ARG(padapter), best_24g_ch); DBG_871X("[ACS-"ADPT_FMT"] Best 5G CH:%u\n", ADPT_ARG(padapter), best_5g_ch); } #endif } } #endif /* TODO: merge with phydm, see odm_SetCrystalCap() */ void hal_set_crystal_cap(_adapter *adapter, u8 crystal_cap) { crystal_cap = crystal_cap & 0x3F; switch (rtw_get_chip_type(adapter)) { #if defined(CONFIG_RTL8188E) || defined(CONFIG_RTL8188F) case RTL8188E: case RTL8188F: /* write 0x24[16:11] = 0x24[22:17] = CrystalCap */ PHY_SetBBReg(adapter, REG_AFE_XTAL_CTRL, 0x007FF800, (crystal_cap | (crystal_cap << 6))); break; #endif #if defined(CONFIG_RTL8812A) case RTL8812: /* write 0x2C[30:25] = 0x2C[24:19] = CrystalCap */ PHY_SetBBReg(adapter, REG_MAC_PHY_CTRL, 0x7FF80000, (crystal_cap | (crystal_cap << 6))); break; #endif #if defined(CONFIG_RTL8723B) || defined(CONFIG_RTL8703B) || defined(CONFIG_RTL8821A) || defined(CONFIG_RTL8192E) case RTL8723B: case RTL8703B: case RTL8821: case RTL8192E: /* write 0x2C[23:18] = 0x2C[17:12] = CrystalCap */ PHY_SetBBReg(adapter, REG_MAC_PHY_CTRL, 0x00FFF000, (crystal_cap | (crystal_cap << 6))); break; #endif #if defined(CONFIG_RTL8814A) case RTL8814A: /* write 0x2C[26:21] = 0x2C[20:15] = CrystalCap*/ PHY_SetBBReg(adapter, REG_MAC_PHY_CTRL, 0x07FF8000, (crystal_cap | (crystal_cap << 6))); break; #endif #if defined(CONFIG_RTL8821B) || defined(CONFIG_RTL8822B) case RTL8821B: case RTL8822B: /* write 0x28[6:1] = 0x24[30:25] = CrystalCap */ crystal_cap = crystal_cap & 0x3F; PHY_SetBBReg(adapter, REG_AFE_XTAL_CTRL, 0x7E000000, crystal_cap); PHY_SetBBReg(adapter, REG_AFE_PLL_CTRL, 0x7E, crystal_cap); break; #endif default: rtw_warn_on(1); } } int hal_spec_init(_adapter *adapter) { u8 interface_type = 0; int ret = _SUCCESS; interface_type = rtw_get_intf_type(adapter); switch (rtw_get_chip_type(adapter)) { #ifdef CONFIG_RTL8723B case RTL8723B: init_hal_spec_8723b(adapter); break; #endif #ifdef CONFIG_RTL8703B case RTL8703B: init_hal_spec_8703b(adapter); break; #endif #ifdef CONFIG_RTL8188E case RTL8188E: init_hal_spec_8188e(adapter); break; #endif #ifdef CONFIG_RTL8188F case RTL8188F: init_hal_spec_8188f(adapter); break; #endif #ifdef CONFIG_RTL8812A case RTL8812: init_hal_spec_8812a(adapter); break; #endif #ifdef CONFIG_RTL8821A case RTL8821: init_hal_spec_8821a(adapter); break; #endif #ifdef CONFIG_RTL8192E case RTL8192E: init_hal_spec_8192e(adapter); break; #endif #ifdef CONFIG_RTL8814A case RTL8814A: init_hal_spec_8814a(adapter); break; #endif default: DBG_871X_LEVEL(_drv_err_, "%s: unknown chip_type:%u\n" , __func__, rtw_get_chip_type(adapter)); ret = _FAIL; break; } return ret; } static const char * const _band_cap_str[] = { /* BIT0 */"2G", /* BIT1 */"5G", }; static const char * const _bw_cap_str[] = { /* BIT0 */"5M", /* BIT1 */"10M", /* BIT2 */"20M", /* BIT3 */"40M", /* BIT4 */"80M", /* BIT5 */"160M", /* BIT6 */"80_80M", }; static const char * const _wl_func_str[] = { /* BIT0 */"P2P", /* BIT1 */"MIRACAST", /* BIT2 */"TDLS", /* BIT3 */"FTM", }; void dump_hal_spec(void *sel, _adapter *adapter) { struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter); int i; DBG_871X_SEL_NL(sel, "macid_num:%u\n", hal_spec->macid_num); DBG_871X_SEL_NL(sel, "sec_cap:0x%02x\n", hal_spec->sec_cap); DBG_871X_SEL_NL(sel, "sec_cam_ent_num:%u\n", hal_spec->sec_cam_ent_num); DBG_871X_SEL_NL(sel, "nss_num:%u\n", hal_spec->nss_num); DBG_871X_SEL_NL(sel, "band_cap:"); for (i = 0; i < BAND_CAP_BIT_NUM; i++) { if (((hal_spec->band_cap) >> i) & BIT0 && _band_cap_str[i]) DBG_871X_SEL(sel, "%s ", _band_cap_str[i]); } DBG_871X_SEL(sel, "\n"); DBG_871X_SEL_NL(sel, "bw_cap:"); for (i = 0; i < BW_CAP_BIT_NUM; i++) { if (((hal_spec->bw_cap) >> i) & BIT0 && _bw_cap_str[i]) DBG_871X_SEL(sel, "%s ", _bw_cap_str[i]); } DBG_871X_SEL(sel, "\n"); DBG_871X_SEL_NL(sel, "wl_func:"); for (i = 0; i < WL_FUNC_BIT_NUM; i++) { if (((hal_spec->wl_func) >> i) & BIT0 && _wl_func_str[i]) DBG_871X_SEL(sel, "%s ", _wl_func_str[i]); } DBG_871X_SEL(sel, "\n"); } inline bool hal_chk_band_cap(_adapter *adapter, u8 cap) { return (GET_HAL_SPEC(adapter)->band_cap & cap); } inline bool hal_chk_bw_cap(_adapter *adapter, u8 cap) { return (GET_HAL_SPEC(adapter)->bw_cap & cap); } inline bool hal_chk_wl_func(_adapter *adapter, u8 func) { return (GET_HAL_SPEC(adapter)->wl_func & func); } inline bool hal_is_band_support(_adapter *adapter, u8 band) { return (GET_HAL_SPEC(adapter)->band_cap & band_to_band_cap(band)); } inline bool hal_is_bw_support(_adapter *adapter, u8 bw) { return (GET_HAL_SPEC(adapter)->bw_cap & ch_width_to_bw_cap(bw)); } /* * hal_largest_bw - starting from in_bw, get largest bw supported by HAL * @adapter: * @in_bw: starting bw, value of CHANNEL_WIDTH * * Returns: value of CHANNEL_WIDTH */ u8 hal_largest_bw(_adapter *adapter, u8 in_bw) { for (; in_bw > CHANNEL_WIDTH_20; in_bw--) { if (hal_is_bw_support(adapter, in_bw)) break; } if (!hal_is_bw_support(adapter, in_bw)) rtw_warn_on(1); return in_bw; }