/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #define _RTW_SECURITY_C_ #include //=====WEP related===== #define CRC32_POLY 0x04c11db7 struct arc4context { u32 x; u32 y; u8 state[256]; }; static void arcfour_init(struct arc4context *parc4ctx, u8 * key,u32 key_len) { u32 t, u; u32 keyindex; u32 stateindex; u8 * state; u32 counter; _func_enter_; state = parc4ctx->state; parc4ctx->x = 0; parc4ctx->y = 0; for (counter = 0; counter < 256; counter++) state[counter] = (u8)counter; keyindex = 0; stateindex = 0; for (counter = 0; counter < 256; counter++) { t = state[counter]; stateindex = (stateindex + key[keyindex] + t) & 0xff; u = state[stateindex]; state[stateindex] = (u8)t; state[counter] = (u8)u; if (++keyindex >= key_len) keyindex = 0; } _func_exit_; } static u32 arcfour_byte( struct arc4context *parc4ctx) { u32 x; u32 y; u32 sx, sy; u8 * state; _func_enter_; state = parc4ctx->state; x = (parc4ctx->x + 1) & 0xff; sx = state[x]; y = (sx + parc4ctx->y) & 0xff; sy = state[y]; parc4ctx->x = x; parc4ctx->y = y; state[y] = (u8)sx; state[x] = (u8)sy; _func_exit_; return state[(sx + sy) & 0xff]; } static void arcfour_encrypt( struct arc4context *parc4ctx, u8 * dest, u8 * src, u32 len) { u32 i; _func_enter_; for (i = 0; i < len; i++) dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx); _func_exit_; } static sint bcrc32initialized = 0; static u32 crc32_table[256]; static u8 crc32_reverseBit( u8 data) { return( (u8)((data<<7)&0x80) | ((data<<5)&0x40) | ((data<<3)&0x20) | ((data<<1)&0x10) | ((data>>1)&0x08) | ((data>>3)&0x04) | ((data>>5)&0x02) | ((data>>7)&0x01) ); } static void crc32_init(void) { _func_enter_; if (bcrc32initialized == 1) goto exit; else{ sint i, j; u32 c; u8 *p=(u8 *)&c, *p1; u8 k; c = 0x12340000; for (i = 0; i < 256; ++i) { k = crc32_reverseBit((u8)i); for (c = ((u32)k) << 24, j = 8; j > 0; --j){ c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY : (c << 1); } p1 = (u8 *)&crc32_table[i]; p1[0] = crc32_reverseBit(p[3]); p1[1] = crc32_reverseBit(p[2]); p1[2] = crc32_reverseBit(p[1]); p1[3] = crc32_reverseBit(p[0]); } bcrc32initialized= 1; } exit: _func_exit_; } static u32 getcrc32(u8 *buf, sint len) { u8 *p; u32 crc; _func_enter_; if (bcrc32initialized == 0) crc32_init(); crc = 0xffffffff; /* preload shift register, per CRC-32 spec */ for (p = buf; len > 0; ++p, --len) { crc = crc32_table[ (crc ^ *p) & 0xff] ^ (crc >> 8); } _func_exit_; return ~crc; /* transmit complement, per CRC-32 spec */ } /* Need to consider the fragment situation */ void rtw_wep_encrypt(_adapter *padapter, u8 *pxmitframe) { // exclude ICV unsigned char crc[4]; struct arc4context mycontext; sint curfragnum,length; u32 keylength; u8 *pframe, *payload,*iv; //,*wepkey u8 wepkey[16]; u8 hw_hdr_offset=0; struct pkt_attrib *pattrib = &((struct xmit_frame*)pxmitframe)->attrib; struct security_priv *psecuritypriv=&padapter->securitypriv; struct xmit_priv *pxmitpriv=&padapter->xmitpriv; _func_enter_; if(((struct xmit_frame*)pxmitframe)->buf_addr==NULL) return; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame*)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET+EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame*)pxmitframe)->buf_addr + hw_hdr_offset; //start to encrypt each fragment if((pattrib->encrypt==_WEP40_)||(pattrib->encrypt==_WEP104_)) { keylength=psecuritypriv->dot11DefKeylen[psecuritypriv->dot11PrivacyKeyIndex]; for(curfragnum=0;curfragnumnr_frags;curfragnum++) { iv=pframe+pattrib->hdrlen; _rtw_memcpy(&wepkey[0], iv, 3); _rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0],keylength); payload=pframe+pattrib->iv_len+pattrib->hdrlen; if((curfragnum+1)==pattrib->nr_frags) { //the last fragment length=pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len- pattrib->icv_len; *((u32 *)crc)=cpu_to_le32(getcrc32(payload,length)); arcfour_init(&mycontext, wepkey,3+keylength); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload+length, crc, 4); } else { length=pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len ; *((u32 *)crc)=cpu_to_le32(getcrc32(payload,length)); arcfour_init(&mycontext, wepkey,3+keylength); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload+length, crc, 4); pframe+=pxmitpriv->frag_len; pframe=(u8 *)RND4((SIZE_PTR)(pframe)); } } } _func_exit_; } void rtw_wep_decrypt(_adapter *padapter, u8 *precvframe) { // exclude ICV u8 crc[4]; struct arc4context mycontext; sint length; u32 keylength; u8 *pframe, *payload,*iv,wepkey[16]; u8 keyindex; struct rx_pkt_attrib *prxattrib = &(((union recv_frame*)precvframe)->u.hdr.attrib); struct security_priv *psecuritypriv=&padapter->securitypriv; _func_enter_; pframe=(unsigned char *)((union recv_frame*)precvframe)->u.hdr.rx_data; //start to decrypt recvframe if((prxattrib->encrypt==_WEP40_)||(prxattrib->encrypt==_WEP104_)) { iv=pframe+prxattrib->hdrlen; //keyindex=(iv[3]&0x3); keyindex = prxattrib->key_index; keylength=psecuritypriv->dot11DefKeylen[keyindex]; _rtw_memcpy(&wepkey[0], iv, 3); //_rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[psecuritypriv->dot11PrivacyKeyIndex].skey[0],keylength); _rtw_memcpy(&wepkey[3], &psecuritypriv->dot11DefKey[keyindex].skey[0],keylength); length= ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len; payload=pframe+prxattrib->iv_len+prxattrib->hdrlen; //decrypt payload include icv arcfour_init(&mycontext, wepkey,3+keylength); arcfour_encrypt(&mycontext, payload, payload, length); //calculate icv and compare the icv *((u32 *)crc)=le32_to_cpu(getcrc32(payload,length-4)); if(crc[3]!=payload[length-1] || crc[2]!=payload[length-2] || crc[1]!=payload[length-3] || crc[0]!=payload[length-4]) { RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_wep_decrypt:icv error crc[3](%x)!=payload[length-1](%x) || crc[2](%x)!=payload[length-2](%x) || crc[1](%x)!=payload[length-3](%x) || crc[0](%x)!=payload[length-4](%x)\n", crc[3],payload[length-1],crc[2],payload[length-2],crc[1],payload[length-3],crc[0],payload[length-4])); } } _func_exit_; return; } //3 =====TKIP related===== static u32 secmicgetuint32( u8 * p ) // Convert from Byte[] to Us4Byte32 in a portable way { s32 i; u32 res = 0; _func_enter_; for( i=0; i<4; i++ ) { res |= ((u32)(*p++)) << (8*i); } _func_exit_; return res; } static void secmicputuint32( u8 * p, u32 val ) // Convert from Us4Byte32 to Byte[] in a portable way { long i; _func_enter_; for( i=0; i<4; i++ ) { *p++ = (u8) (val & 0xff); val >>= 8; } _func_exit_; } static void secmicclear(struct mic_data *pmicdata) { // Reset the state to the empty message. _func_enter_; pmicdata->L = pmicdata->K0; pmicdata->R = pmicdata->K1; pmicdata->nBytesInM = 0; pmicdata->M = 0; _func_exit_; } void rtw_secmicsetkey(struct mic_data *pmicdata, u8 * key ) { // Set the key _func_enter_; pmicdata->K0 = secmicgetuint32( key ); pmicdata->K1 = secmicgetuint32( key + 4 ); // and reset the message secmicclear(pmicdata); _func_exit_; } void rtw_secmicappendbyte(struct mic_data *pmicdata, u8 b ) { _func_enter_; // Append the byte to our word-sized buffer pmicdata->M |= ((unsigned long)b) << (8*pmicdata->nBytesInM); pmicdata->nBytesInM++; // Process the word if it is full. if( pmicdata->nBytesInM >= 4 ) { pmicdata->L ^= pmicdata->M; pmicdata->R ^= ROL32( pmicdata->L, 17 ); pmicdata->L += pmicdata->R; pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8); pmicdata->L += pmicdata->R; pmicdata->R ^= ROL32( pmicdata->L, 3 ); pmicdata->L += pmicdata->R; pmicdata->R ^= ROR32( pmicdata->L, 2 ); pmicdata->L += pmicdata->R; // Clear the buffer pmicdata->M = 0; pmicdata->nBytesInM = 0; } _func_exit_; } void rtw_secmicappend(struct mic_data *pmicdata, u8 * src, u32 nbytes ) { _func_enter_; // This is simple while( nbytes > 0 ) { rtw_secmicappendbyte(pmicdata, *src++ ); nbytes--; } _func_exit_; } void rtw_secgetmic(struct mic_data *pmicdata, u8 * dst ) { _func_enter_; // Append the minimum padding rtw_secmicappendbyte(pmicdata, 0x5a ); rtw_secmicappendbyte(pmicdata, 0 ); rtw_secmicappendbyte(pmicdata, 0 ); rtw_secmicappendbyte(pmicdata, 0 ); rtw_secmicappendbyte(pmicdata, 0 ); // and then zeroes until the length is a multiple of 4 while( pmicdata->nBytesInM != 0 ) { rtw_secmicappendbyte(pmicdata, 0 ); } // The appendByte function has already computed the result. secmicputuint32( dst, pmicdata->L ); secmicputuint32( dst+4, pmicdata->R ); // Reset to the empty message. secmicclear(pmicdata); _func_exit_; } void rtw_seccalctkipmic(u8 * key,u8 *header,u8 *data,u32 data_len,u8 *mic_code, u8 pri) { struct mic_data micdata; u8 priority[4]={0x0,0x0,0x0,0x0}; _func_enter_; rtw_secmicsetkey(&micdata, key); priority[0]=pri; /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ if(header[1]&1){ //ToDS==1 rtw_secmicappend(&micdata, &header[16], 6); //DA if(header[1]&2) //From Ds==1 rtw_secmicappend(&micdata, &header[24], 6); else rtw_secmicappend(&micdata, &header[10], 6); } else{ //ToDS==0 rtw_secmicappend(&micdata, &header[4], 6); //DA if(header[1]&2) //From Ds==1 rtw_secmicappend(&micdata, &header[16], 6); else rtw_secmicappend(&micdata, &header[10], 6); } rtw_secmicappend(&micdata, &priority[0], 4); rtw_secmicappend(&micdata, data, data_len); rtw_secgetmic(&micdata,mic_code); _func_exit_; } /* macros for extraction/creation of unsigned char/unsigned short values */ #define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15)) #define Lo8(v16) ((u8)( (v16) & 0x00FF)) #define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF)) #define Lo16(v32) ((u16)( (v32) & 0xFFFF)) #define Hi16(v32) ((u16)(((v32) >>16) & 0xFFFF)) #define Mk16(hi,lo) ((lo) ^ (((u16)(hi)) << 8)) /* select the Nth 16-bit word of the temporal key unsigned char array TK[] */ #define TK16(N) Mk16(tk[2*(N)+1],tk[2*(N)]) /* S-box lookup: 16 bits --> 16 bits */ #define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)]) /* fixed algorithm "parameters" */ #define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */ #define TA_SIZE 6 /* 48-bit transmitter address */ #define TK_SIZE 16 /* 128-bit temporal key */ #define P1K_SIZE 10 /* 80-bit Phase1 key */ #define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */ /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */ static const unsigned short Sbox1[2][256]= /* Sbox for hash (can be in ROM) */ { { 0xC6A5,0xF884,0xEE99,0xF68D,0xFF0D,0xD6BD,0xDEB1,0x9154, 0x6050,0x0203,0xCEA9,0x567D,0xE719,0xB562,0x4DE6,0xEC9A, 0x8F45,0x1F9D,0x8940,0xFA87,0xEF15,0xB2EB,0x8EC9,0xFB0B, 0x41EC,0xB367,0x5FFD,0x45EA,0x23BF,0x53F7,0xE496,0x9B5B, 0x75C2,0xE11C,0x3DAE,0x4C6A,0x6C5A,0x7E41,0xF502,0x834F, 0x685C,0x51F4,0xD134,0xF908,0xE293,0xAB73,0x6253,0x2A3F, 0x080C,0x9552,0x4665,0x9D5E,0x3028,0x37A1,0x0A0F,0x2FB5, 0x0E09,0x2436,0x1B9B,0xDF3D,0xCD26,0x4E69,0x7FCD,0xEA9F, 0x121B,0x1D9E,0x5874,0x342E,0x362D,0xDCB2,0xB4EE,0x5BFB, 0xA4F6,0x764D,0xB761,0x7DCE,0x527B,0xDD3E,0x5E71,0x1397, 0xA6F5,0xB968,0x0000,0xC12C,0x4060,0xE31F,0x79C8,0xB6ED, 0xD4BE,0x8D46,0x67D9,0x724B,0x94DE,0x98D4,0xB0E8,0x854A, 0xBB6B,0xC52A,0x4FE5,0xED16,0x86C5,0x9AD7,0x6655,0x1194, 0x8ACF,0xE910,0x0406,0xFE81,0xA0F0,0x7844,0x25BA,0x4BE3, 0xA2F3,0x5DFE,0x80C0,0x058A,0x3FAD,0x21BC,0x7048,0xF104, 0x63DF,0x77C1,0xAF75,0x4263,0x2030,0xE51A,0xFD0E,0xBF6D, 0x814C,0x1814,0x2635,0xC32F,0xBEE1,0x35A2,0x88CC,0x2E39, 0x9357,0x55F2,0xFC82,0x7A47,0xC8AC,0xBAE7,0x322B,0xE695, 0xC0A0,0x1998,0x9ED1,0xA37F,0x4466,0x547E,0x3BAB,0x0B83, 0x8CCA,0xC729,0x6BD3,0x283C,0xA779,0xBCE2,0x161D,0xAD76, 0xDB3B,0x6456,0x744E,0x141E,0x92DB,0x0C0A,0x486C,0xB8E4, 0x9F5D,0xBD6E,0x43EF,0xC4A6,0x39A8,0x31A4,0xD337,0xF28B, 0xD532,0x8B43,0x6E59,0xDAB7,0x018C,0xB164,0x9CD2,0x49E0, 0xD8B4,0xACFA,0xF307,0xCF25,0xCAAF,0xF48E,0x47E9,0x1018, 0x6FD5,0xF088,0x4A6F,0x5C72,0x3824,0x57F1,0x73C7,0x9751, 0xCB23,0xA17C,0xE89C,0x3E21,0x96DD,0x61DC,0x0D86,0x0F85, 0xE090,0x7C42,0x71C4,0xCCAA,0x90D8,0x0605,0xF701,0x1C12, 0xC2A3,0x6A5F,0xAEF9,0x69D0,0x1791,0x9958,0x3A27,0x27B9, 0xD938,0xEB13,0x2BB3,0x2233,0xD2BB,0xA970,0x0789,0x33A7, 0x2DB6,0x3C22,0x1592,0xC920,0x8749,0xAAFF,0x5078,0xA57A, 0x038F,0x59F8,0x0980,0x1A17,0x65DA,0xD731,0x84C6,0xD0B8, 0x82C3,0x29B0,0x5A77,0x1E11,0x7BCB,0xA8FC,0x6DD6,0x2C3A, }, { /* second half of table is unsigned char-reversed version of first! */ 0xA5C6,0x84F8,0x99EE,0x8DF6,0x0DFF,0xBDD6,0xB1DE,0x5491, 0x5060,0x0302,0xA9CE,0x7D56,0x19E7,0x62B5,0xE64D,0x9AEC, 0x458F,0x9D1F,0x4089,0x87FA,0x15EF,0xEBB2,0xC98E,0x0BFB, 0xEC41,0x67B3,0xFD5F,0xEA45,0xBF23,0xF753,0x96E4,0x5B9B, 0xC275,0x1CE1,0xAE3D,0x6A4C,0x5A6C,0x417E,0x02F5,0x4F83, 0x5C68,0xF451,0x34D1,0x08F9,0x93E2,0x73AB,0x5362,0x3F2A, 0x0C08,0x5295,0x6546,0x5E9D,0x2830,0xA137,0x0F0A,0xB52F, 0x090E,0x3624,0x9B1B,0x3DDF,0x26CD,0x694E,0xCD7F,0x9FEA, 0x1B12,0x9E1D,0x7458,0x2E34,0x2D36,0xB2DC,0xEEB4,0xFB5B, 0xF6A4,0x4D76,0x61B7,0xCE7D,0x7B52,0x3EDD,0x715E,0x9713, 0xF5A6,0x68B9,0x0000,0x2CC1,0x6040,0x1FE3,0xC879,0xEDB6, 0xBED4,0x468D,0xD967,0x4B72,0xDE94,0xD498,0xE8B0,0x4A85, 0x6BBB,0x2AC5,0xE54F,0x16ED,0xC586,0xD79A,0x5566,0x9411, 0xCF8A,0x10E9,0x0604,0x81FE,0xF0A0,0x4478,0xBA25,0xE34B, 0xF3A2,0xFE5D,0xC080,0x8A05,0xAD3F,0xBC21,0x4870,0x04F1, 0xDF63,0xC177,0x75AF,0x6342,0x3020,0x1AE5,0x0EFD,0x6DBF, 0x4C81,0x1418,0x3526,0x2FC3,0xE1BE,0xA235,0xCC88,0x392E, 0x5793,0xF255,0x82FC,0x477A,0xACC8,0xE7BA,0x2B32,0x95E6, 0xA0C0,0x9819,0xD19E,0x7FA3,0x6644,0x7E54,0xAB3B,0x830B, 0xCA8C,0x29C7,0xD36B,0x3C28,0x79A7,0xE2BC,0x1D16,0x76AD, 0x3BDB,0x5664,0x4E74,0x1E14,0xDB92,0x0A0C,0x6C48,0xE4B8, 0x5D9F,0x6EBD,0xEF43,0xA6C4,0xA839,0xA431,0x37D3,0x8BF2, 0x32D5,0x438B,0x596E,0xB7DA,0x8C01,0x64B1,0xD29C,0xE049, 0xB4D8,0xFAAC,0x07F3,0x25CF,0xAFCA,0x8EF4,0xE947,0x1810, 0xD56F,0x88F0,0x6F4A,0x725C,0x2438,0xF157,0xC773,0x5197, 0x23CB,0x7CA1,0x9CE8,0x213E,0xDD96,0xDC61,0x860D,0x850F, 0x90E0,0x427C,0xC471,0xAACC,0xD890,0x0506,0x01F7,0x121C, 0xA3C2,0x5F6A,0xF9AE,0xD069,0x9117,0x5899,0x273A,0xB927, 0x38D9,0x13EB,0xB32B,0x3322,0xBBD2,0x70A9,0x8907,0xA733, 0xB62D,0x223C,0x9215,0x20C9,0x4987,0xFFAA,0x7850,0x7AA5, 0x8F03,0xF859,0x8009,0x171A,0xDA65,0x31D7,0xC684,0xB8D0, 0xC382,0xB029,0x775A,0x111E,0xCB7B,0xFCA8,0xD66D,0x3A2C, } }; /* ********************************************************************** * Routine: Phase 1 -- generate P1K, given TA, TK, IV32 * * Inputs: * tk[] = temporal key [128 bits] * ta[] = transmitter's MAC address [ 48 bits] * iv32 = upper 32 bits of IV [ 32 bits] * Output: * p1k[] = Phase 1 key [ 80 bits] * * Note: * This function only needs to be called every 2**16 packets, * although in theory it could be called every packet. * ********************************************************************** */ static void phase1(u16 *p1k,const u8 *tk,const u8 *ta,u32 iv32) { sint i; _func_enter_; /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */ p1k[0] = Lo16(iv32); p1k[1] = Hi16(iv32); p1k[2] = Mk16(ta[1],ta[0]); /* use TA[] as little-endian */ p1k[3] = Mk16(ta[3],ta[2]); p1k[4] = Mk16(ta[5],ta[4]); /* Now compute an unbalanced Feistel cipher with 80-bit block */ /* size on the 80-bit block P1K[], using the 128-bit key TK[] */ for (i=0; i < PHASE1_LOOP_CNT ;i++) { /* Each add operation here is mod 2**16 */ p1k[0] += _S_(p1k[4] ^ TK16((i&1)+0)); p1k[1] += _S_(p1k[0] ^ TK16((i&1)+2)); p1k[2] += _S_(p1k[1] ^ TK16((i&1)+4)); p1k[3] += _S_(p1k[2] ^ TK16((i&1)+6)); p1k[4] += _S_(p1k[3] ^ TK16((i&1)+0)); p1k[4] += (unsigned short)i; /* avoid "slide attacks" */ } _func_exit_; } /* ********************************************************************** * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16 * * Inputs: * tk[] = Temporal key [128 bits] * p1k[] = Phase 1 output key [ 80 bits] * iv16 = low 16 bits of IV counter [ 16 bits] * Output: * rc4key[] = the key used to encrypt the packet [128 bits] * * Note: * The value {TA,IV32,IV16} for Phase1/Phase2 must be unique * across all packets using the same key TK value. Then, for a * given value of TK[], this TKIP48 construction guarantees that * the final RC4KEY value is unique across all packets. * * Suggested implementation optimization: if PPK[] is "overlaid" * appropriately on RC4KEY[], there is no need for the final * for loop below that copies the PPK[] result into RC4KEY[]. * ********************************************************************** */ static void phase2(u8 *rc4key,const u8 *tk,const u16 *p1k,u16 iv16) { sint i; u16 PPK[6]; /* temporary key for mixing */ _func_enter_; /* Note: all adds in the PPK[] equations below are mod 2**16 */ for (i=0;i<5;i++) PPK[i]=p1k[i]; /* first, copy P1K to PPK */ PPK[5] = p1k[4] +iv16; /* next, add in IV16 */ /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */ PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */ PPK[1] += _S_(PPK[0] ^ TK16(1)); PPK[2] += _S_(PPK[1] ^ TK16(2)); PPK[3] += _S_(PPK[2] ^ TK16(3)); PPK[4] += _S_(PPK[3] ^ TK16(4)); PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */ /* Final sweep: bijective, "linear". Rotates kill LSB correlations */ PPK[0] += RotR1(PPK[5] ^ TK16(6)); PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */ PPK[2] += RotR1(PPK[1]); PPK[3] += RotR1(PPK[2]); PPK[4] += RotR1(PPK[3]); PPK[5] += RotR1(PPK[4]); /* Note: At this point, for a given key TK[0..15], the 96-bit output */ /* value PPK[0..5] is guaranteed to be unique, as a function */ /* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */ /* is now a keyed permutation of {TA,IV32,IV16}. */ /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */ rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */ rc4key[1] =(Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */ rc4key[2] = Lo8(iv16); rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1); /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */ for (i=0;i<6;i++) { rc4key[4+2*i] = Lo8(PPK[i]); rc4key[5+2*i] = Hi8(PPK[i]); } _func_exit_; } //The hlen isn't include the IV u32 rtw_tkip_encrypt(_adapter *padapter, u8 *pxmitframe) { // exclude ICV u16 pnl; u32 pnh; u8 rc4key[16]; u8 ttkey[16]; u8 crc[4]; u8 hw_hdr_offset = 0; struct arc4context mycontext; sint curfragnum,length; u32 prwskeylen; u8 *pframe, *payload,*iv,*prwskey; union pn48 dot11txpn; //struct sta_info *stainfo; struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; struct security_priv *psecuritypriv=&padapter->securitypriv; struct xmit_priv *pxmitpriv=&padapter->xmitpriv; u32 res=_SUCCESS; _func_enter_; if(((struct xmit_frame*)pxmitframe)->buf_addr==NULL) return _FAIL; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame*)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET+EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame*)pxmitframe)->buf_addr + hw_hdr_offset; //4 start to encrypt each fragment if(pattrib->encrypt==_TKIP_){ /* if(pattrib->psta) { stainfo = pattrib->psta; } else { DBG_871X("%s, call rtw_get_stainfo()\n", __func__); stainfo=rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0] ); } */ //if (stainfo!=NULL) { /* if(!(stainfo->state &_FW_LINKED)) { DBG_871X("%s, psta->state(0x%x) != _FW_LINKED\n", __func__, stainfo->state); return _FAIL; } */ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_tkip_encrypt: stainfo!=NULL!!!\n")); if(IS_MCAST(pattrib->ra)) { prwskey=psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; } else { //prwskey=&stainfo->dot118021x_UncstKey.skey[0]; prwskey=pattrib->dot118021x_UncstKey.skey; } prwskeylen=16; for(curfragnum=0;curfragnumnr_frags;curfragnum++){ iv=pframe+pattrib->hdrlen; payload=pframe+pattrib->iv_len+pattrib->hdrlen; GET_TKIP_PN(iv, dot11txpn); pnl=(u16)(dot11txpn.val); pnh=(u32)(dot11txpn.val>>16); phase1((u16 *)&ttkey[0],prwskey,&pattrib->ta[0],pnh); phase2(&rc4key[0],prwskey,(u16 *)&ttkey[0],pnl); if((curfragnum+1)==pattrib->nr_frags){ //4 the last fragment length=pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len- pattrib->icv_len; RT_TRACE(_module_rtl871x_security_c_,_drv_info_,("pattrib->iv_len =%x, pattrib->icv_len =%x\n", pattrib->iv_len,pattrib->icv_len)); *((u32 *)crc)=cpu_to_le32(getcrc32(payload,length));/* modified by Amy*/ arcfour_init(&mycontext, rc4key,16); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload+length, crc, 4); } else{ length=pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len ; *((u32 *)crc)=cpu_to_le32(getcrc32(payload,length));/* modified by Amy*/ arcfour_init(&mycontext,rc4key,16); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload+length, crc, 4); pframe+=pxmitpriv->frag_len; pframe=(u8 *)RND4((SIZE_PTR)(pframe)); } } } /* else{ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_tkip_encrypt: stainfo==NULL!!!\n")); DBG_871X("%s, psta==NUL\n", __func__); res=_FAIL; } */ } _func_exit_; return res; } //The hlen isn't include the IV u32 rtw_tkip_decrypt(_adapter *padapter, u8 *precvframe) { // exclude ICV u16 pnl; u32 pnh; u8 rc4key[16]; u8 ttkey[16]; u8 crc[4]; struct arc4context mycontext; sint length; u32 prwskeylen; u8 *pframe, *payload,*iv,*prwskey; union pn48 dot11txpn; struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *)precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv=&padapter->securitypriv; // struct recv_priv *precvpriv=&padapter->recvpriv; u32 res=_SUCCESS; _func_enter_; pframe=(unsigned char *)((union recv_frame*)precvframe)->u.hdr.rx_data; //4 start to decrypt recvframe if(prxattrib->encrypt==_TKIP_){ stainfo=rtw_get_stainfo(&padapter->stapriv ,&prxattrib->ta[0] ); if (stainfo!=NULL){ if(IS_MCAST(prxattrib->ra)) { if(psecuritypriv->binstallGrpkey==_FALSE) { res=_FAIL; DBG_8192C("%s:rx bc/mc packets,but didn't install group key!!!!!!!!!!\n",__FUNCTION__); goto exit; } //DBG_871X("rx bc/mc packets, to perform sw rtw_tkip_decrypt\n"); //prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; prwskeylen=16; } else { RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_tkip_decrypt: stainfo!=NULL!!!\n")); prwskey=&stainfo->dot118021x_UncstKey.skey[0]; prwskeylen=16; } iv=pframe+prxattrib->hdrlen; payload=pframe+prxattrib->iv_len+prxattrib->hdrlen; length= ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len; GET_TKIP_PN(iv, dot11txpn); pnl=(u16)(dot11txpn.val); pnh=(u32)(dot11txpn.val>>16); phase1((u16 *)&ttkey[0],prwskey,&prxattrib->ta[0],pnh); phase2(&rc4key[0],prwskey,(unsigned short *)&ttkey[0],pnl); //4 decrypt payload include icv arcfour_init(&mycontext, rc4key,16); arcfour_encrypt(&mycontext, payload, payload, length); *((u32 *)crc)=le32_to_cpu(getcrc32(payload,length-4)); if(crc[3]!=payload[length-1] || crc[2]!=payload[length-2] || crc[1]!=payload[length-3] || crc[0]!=payload[length-4]) { RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_wep_decrypt:icv error crc[3](%x)!=payload[length-1](%x) || crc[2](%x)!=payload[length-2](%x) || crc[1](%x)!=payload[length-3](%x) || crc[0](%x)!=payload[length-4](%x)\n", crc[3],payload[length-1],crc[2],payload[length-2],crc[1],payload[length-3],crc[0],payload[length-4])); res=_FAIL; } } else{ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_tkip_decrypt: stainfo==NULL!!!\n")); res=_FAIL; } } _func_exit_; exit: return res; } //3 =====AES related===== #define MAX_MSG_SIZE 2048 /*****************************/ /******** SBOX Table *********/ /*****************************/ static u8 sbox_table[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; /*****************************/ /**** Function Prototypes ****/ /*****************************/ static void bitwise_xor(u8 *ina, u8 *inb, u8 *out); static void construct_mic_iv( u8 *mic_header1, sint qc_exists, sint a4_exists, u8 *mpdu, uint payload_length, u8 * pn_vector); static void construct_mic_header1( u8 *mic_header1, sint header_length, u8 *mpdu); static void construct_mic_header2( u8 *mic_header2, u8 *mpdu, sint a4_exists, sint qc_exists); static void construct_ctr_preload( u8 *ctr_preload, sint a4_exists, sint qc_exists, u8 *mpdu, u8 *pn_vector, sint c); static void xor_128(u8 *a, u8 *b, u8 *out); static void xor_32(u8 *a, u8 *b, u8 *out); static u8 sbox(u8 a); static void next_key(u8 *key, sint round); static void byte_sub(u8 *in, u8 *out); static void shift_row(u8 *in, u8 *out); static void mix_column(u8 *in, u8 *out); #ifndef PLATFORM_FREEBSD static void add_round_key( u8 *shiftrow_in, u8 *mcol_in, u8 *block_in, sint round, u8 *out); #endif //PLATFORM_FREEBSD static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext); /****************************************/ /* aes128k128d() */ /* Performs a 128 bit AES encrypt with */ /* 128 bit data. */ /****************************************/ static void xor_128(u8 *a, u8 *b, u8 *out) { sint i; _func_enter_; for (i=0;i<16; i++) { out[i] = a[i] ^ b[i]; } _func_exit_; } static void xor_32(u8 *a, u8 *b, u8 *out) { sint i; _func_enter_; for (i=0;i<4; i++) { out[i] = a[i] ^ b[i]; } _func_exit_; } static u8 sbox(u8 a) { return sbox_table[(sint)a]; } static void next_key(u8 *key, sint round) { u8 rcon; u8 sbox_key[4]; u8 rcon_table[12] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x36, 0x36 }; _func_enter_; sbox_key[0] = sbox(key[13]); sbox_key[1] = sbox(key[14]); sbox_key[2] = sbox(key[15]); sbox_key[3] = sbox(key[12]); rcon = rcon_table[round]; xor_32(&key[0], sbox_key, &key[0]); key[0] = key[0] ^ rcon; xor_32(&key[4], &key[0], &key[4]); xor_32(&key[8], &key[4], &key[8]); xor_32(&key[12], &key[8], &key[12]); _func_exit_; } static void byte_sub(u8 *in, u8 *out) { sint i; _func_enter_; for (i=0; i< 16; i++) { out[i] = sbox(in[i]); } _func_exit_; } static void shift_row(u8 *in, u8 *out) { _func_enter_; out[0] = in[0]; out[1] = in[5]; out[2] = in[10]; out[3] = in[15]; out[4] = in[4]; out[5] = in[9]; out[6] = in[14]; out[7] = in[3]; out[8] = in[8]; out[9] = in[13]; out[10] = in[2]; out[11] = in[7]; out[12] = in[12]; out[13] = in[1]; out[14] = in[6]; out[15] = in[11]; _func_exit_; } static void mix_column(u8 *in, u8 *out) { sint i; u8 add1b[4]; u8 add1bf7[4]; u8 rotl[4]; u8 swap_halfs[4]; u8 andf7[4]; u8 rotr[4]; u8 temp[4]; u8 tempb[4]; _func_enter_; for (i=0 ; i<4; i++) { if ((in[i] & 0x80)== 0x80) add1b[i] = 0x1b; else add1b[i] = 0x00; } swap_halfs[0] = in[2]; /* Swap halfs */ swap_halfs[1] = in[3]; swap_halfs[2] = in[0]; swap_halfs[3] = in[1]; rotl[0] = in[3]; /* Rotate left 8 bits */ rotl[1] = in[0]; rotl[2] = in[1]; rotl[3] = in[2]; andf7[0] = in[0] & 0x7f; andf7[1] = in[1] & 0x7f; andf7[2] = in[2] & 0x7f; andf7[3] = in[3] & 0x7f; for (i = 3; i>0; i--) /* logical shift left 1 bit */ { andf7[i] = andf7[i] << 1; if ((andf7[i-1] & 0x80) == 0x80) { andf7[i] = (andf7[i] | 0x01); } } andf7[0] = andf7[0] << 1; andf7[0] = andf7[0] & 0xfe; xor_32(add1b, andf7, add1bf7); xor_32(in, add1bf7, rotr); temp[0] = rotr[0]; /* Rotate right 8 bits */ rotr[0] = rotr[1]; rotr[1] = rotr[2]; rotr[2] = rotr[3]; rotr[3] = temp[0]; xor_32(add1bf7, rotr, temp); xor_32(swap_halfs, rotl,tempb); xor_32(temp, tempb, out); _func_exit_; } static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext) { sint round; sint i; u8 intermediatea[16]; u8 intermediateb[16]; u8 round_key[16]; _func_enter_; for(i=0; i<16; i++) round_key[i] = key[i]; for (round = 0; round < 11; round++) { if (round == 0) { xor_128(round_key, data, ciphertext); next_key(round_key, round); } else if (round == 10) { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); xor_128(intermediateb, round_key, ciphertext); } else /* 1 - 9 */ { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); mix_column(&intermediateb[0], &intermediatea[0]); mix_column(&intermediateb[4], &intermediatea[4]); mix_column(&intermediateb[8], &intermediatea[8]); mix_column(&intermediateb[12], &intermediatea[12]); xor_128(intermediatea, round_key, ciphertext); next_key(round_key, round); } } _func_exit_; } /************************************************/ /* construct_mic_iv() */ /* Builds the MIC IV from header fields and PN */ /************************************************/ static void construct_mic_iv( u8 *mic_iv, sint qc_exists, sint a4_exists, u8 *mpdu, uint payload_length, u8 *pn_vector ) { sint i; _func_enter_; mic_iv[0] = 0x59; if (qc_exists && a4_exists) mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */ if (qc_exists && !a4_exists) mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */ if (!qc_exists) mic_iv[1] = 0x00; for (i = 2; i < 8; i++) mic_iv[i] = mpdu[i + 8]; /* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */ #ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[i - 8]; /* mic_iv[8:13] = PN[0:5] */ #else for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */ #endif mic_iv[14] = (unsigned char) (payload_length / 256); mic_iv[15] = (unsigned char) (payload_length % 256); _func_exit_; } /************************************************/ /* construct_mic_header1() */ /* Builds the first MIC header block from */ /* header fields. */ /************************************************/ static void construct_mic_header1( u8 *mic_header1, sint header_length, u8 *mpdu ) { _func_enter_; mic_header1[0] = (u8)((header_length - 2) / 256); mic_header1[1] = (u8)((header_length - 2) % 256); mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */ mic_header1[3] = mpdu[1] & 0xc7; /* Mute retry, more data and pwr mgt bits */ mic_header1[4] = mpdu[4]; /* A1 */ mic_header1[5] = mpdu[5]; mic_header1[6] = mpdu[6]; mic_header1[7] = mpdu[7]; mic_header1[8] = mpdu[8]; mic_header1[9] = mpdu[9]; mic_header1[10] = mpdu[10]; /* A2 */ mic_header1[11] = mpdu[11]; mic_header1[12] = mpdu[12]; mic_header1[13] = mpdu[13]; mic_header1[14] = mpdu[14]; mic_header1[15] = mpdu[15]; _func_exit_; } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ static void construct_mic_header2( u8 *mic_header2, u8 *mpdu, sint a4_exists, sint qc_exists ) { sint i; _func_enter_; for (i = 0; i<16; i++) mic_header2[i]=0x00; mic_header2[0] = mpdu[16]; /* A3 */ mic_header2[1] = mpdu[17]; mic_header2[2] = mpdu[18]; mic_header2[3] = mpdu[19]; mic_header2[4] = mpdu[20]; mic_header2[5] = mpdu[21]; //mic_header2[6] = mpdu[22] & 0xf0; /* SC */ mic_header2[6] = 0x00; mic_header2[7] = 0x00; /* mpdu[23]; */ if (!qc_exists && a4_exists) { for (i=0;i<6;i++) mic_header2[8+i] = mpdu[24+i]; /* A4 */ } if (qc_exists && !a4_exists) { mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */ mic_header2[9] = mpdu[25] & 0x00; } if (qc_exists && a4_exists) { for (i=0;i<6;i++) mic_header2[8+i] = mpdu[24+i]; /* A4 */ mic_header2[14] = mpdu[30] & 0x0f; mic_header2[15] = mpdu[31] & 0x00; } _func_exit_; } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ static void construct_ctr_preload( u8 *ctr_preload, sint a4_exists, sint qc_exists, u8 *mpdu, u8 *pn_vector, sint c ) { sint i = 0; _func_enter_; for (i=0; i<16; i++) ctr_preload[i] = 0x00; i = 0; ctr_preload[0] = 0x01; /* flag */ if (qc_exists && a4_exists) ctr_preload[1] = mpdu[30] & 0x0f; /* QoC_Control */ if (qc_exists && !a4_exists) ctr_preload[1] = mpdu[24] & 0x0f; for (i = 2; i < 8; i++) ctr_preload[i] = mpdu[i + 8]; /* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */ #ifdef CONSISTENT_PN_ORDER for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[i - 8]; /* ctr_preload[8:13] = PN[0:5] */ #else for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[13 - i]; /* ctr_preload[8:13] = PN[5:0] */ #endif ctr_preload[14] = (unsigned char) (c / 256); /* Ctr */ ctr_preload[15] = (unsigned char) (c % 256); _func_exit_; } /************************************/ /* bitwise_xor() */ /* A 128 bit, bitwise exclusive or */ /************************************/ static void bitwise_xor(u8 *ina, u8 *inb, u8 *out) { sint i; _func_enter_; for (i=0; i<16; i++) { out[i] = ina[i] ^ inb[i]; } _func_exit_; } static sint aes_cipher(u8 *key, uint hdrlen, u8 *pframe, uint plen) { // /*static*/ unsigned char message[MAX_MSG_SIZE]; uint qc_exists, a4_exists, i, j, payload_remainder, num_blocks, payload_index; u8 pn_vector[6]; u8 mic_iv[16]; u8 mic_header1[16]; u8 mic_header2[16]; u8 ctr_preload[16]; /* Intermediate Buffers */ u8 chain_buffer[16]; u8 aes_out[16]; u8 padded_buffer[16]; u8 mic[8]; // uint offset = 0; uint frtype = GetFrameType(pframe); uint frsubtype = GetFrameSubType(pframe); _func_enter_; frsubtype=frsubtype>>4; _rtw_memset((void *)mic_iv, 0, 16); _rtw_memset((void *)mic_header1, 0, 16); _rtw_memset((void *)mic_header2, 0, 16); _rtw_memset((void *)ctr_preload, 0, 16); _rtw_memset((void *)chain_buffer, 0, 16); _rtw_memset((void *)aes_out, 0, 16); _rtw_memset((void *)padded_buffer, 0, 16); if ((hdrlen == WLAN_HDR_A3_LEN )||(hdrlen == WLAN_HDR_A3_QOS_LEN)) a4_exists = 0; else a4_exists = 1; if ( (frtype == WIFI_DATA_CFACK) || (frtype == WIFI_DATA_CFPOLL)|| (frtype == WIFI_DATA_CFACKPOLL)) { qc_exists = 1; if(hdrlen != WLAN_HDR_A3_QOS_LEN){ hdrlen += 2; } } else if ( (frsubtype == 0x08) || (frsubtype == 0x09)|| (frsubtype == 0x0a)|| (frsubtype == 0x0b)) { if(hdrlen != WLAN_HDR_A3_QOS_LEN){ hdrlen += 2; } qc_exists = 1; } else qc_exists = 0; pn_vector[0]=pframe[hdrlen]; pn_vector[1]=pframe[hdrlen+1]; pn_vector[2]=pframe[hdrlen+4]; pn_vector[3]=pframe[hdrlen+5]; pn_vector[4]=pframe[hdrlen+6]; pn_vector[5]=pframe[hdrlen+7]; construct_mic_iv( mic_iv, qc_exists, a4_exists, pframe, //message, plen, pn_vector ); construct_mic_header1( mic_header1, hdrlen, pframe //message ); construct_mic_header2( mic_header2, pframe, //message, a4_exists, qc_exists ); payload_remainder = plen % 16; num_blocks = plen / 16; /* Find start of payload */ payload_index = (hdrlen + 8); /* Calculate MIC */ aes128k128d(key, mic_iv, aes_out); bitwise_xor(aes_out, mic_header1, chain_buffer); aes128k128d(key, chain_buffer, aes_out); bitwise_xor(aes_out, mic_header2, chain_buffer); aes128k128d(key, chain_buffer, aes_out); for (i = 0; i < num_blocks; i++) { bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);//bitwise_xor(aes_out, &message[payload_index], chain_buffer); payload_index += 16; aes128k128d(key, chain_buffer, aes_out); } /* Add on the final payload block if it needs padding */ if (payload_remainder > 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = pframe[payload_index++];//padded_buffer[j] = message[payload_index++]; } bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0 ; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) pframe[payload_index+j] = mic[j]; //message[payload_index+j] = mic[j]; payload_index = hdrlen + 8; for (i=0; i< num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, //message, pn_vector, i+1); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer);//bitwise_xor(aes_out, &message[payload_index], chain_buffer); for (j=0; j<16;j++) pframe[payload_index++] = chain_buffer[j];//for (j=0; j<16;j++) message[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) /* If there is a short final block, then pad it,*/ { /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, //message, pn_vector, num_blocks+1); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = pframe[payload_index+j];//padded_buffer[j] = message[payload_index+j]; } aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j=0; jattrib; struct security_priv *psecuritypriv=&padapter->securitypriv; struct xmit_priv *pxmitpriv=&padapter->xmitpriv; // uint offset = 0; u32 res=_SUCCESS; _func_enter_; if(((struct xmit_frame*)pxmitframe)->buf_addr==NULL) return _FAIL; #ifdef CONFIG_USB_TX_AGGREGATION hw_hdr_offset = TXDESC_SIZE + (((struct xmit_frame*)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ); #else #ifdef CONFIG_TX_EARLY_MODE hw_hdr_offset = TXDESC_OFFSET+EARLY_MODE_INFO_SIZE; #else hw_hdr_offset = TXDESC_OFFSET; #endif #endif pframe = ((struct xmit_frame*)pxmitframe)->buf_addr + hw_hdr_offset; //4 start to encrypt each fragment if((pattrib->encrypt==_AES_)){ /* if(pattrib->psta) { stainfo = pattrib->psta; } else { DBG_871X("%s, call rtw_get_stainfo()\n", __func__); stainfo=rtw_get_stainfo(&padapter->stapriv ,&pattrib->ra[0] ); } */ //if (stainfo!=NULL) { /* if(!(stainfo->state &_FW_LINKED)) { DBG_871X("%s, psta->state(0x%x) != _FW_LINKED\n", __func__, stainfo->state); return _FAIL; } */ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_aes_encrypt: stainfo!=NULL!!!\n")); if(IS_MCAST(pattrib->ra)) { prwskey=psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; } else { //prwskey=&stainfo->dot118021x_UncstKey.skey[0]; prwskey=pattrib->dot118021x_UncstKey.skey; } #ifdef CONFIG_TDLS //swencryption { struct sta_info *ptdls_sta; ptdls_sta=rtw_get_stainfo(&padapter->stapriv ,&pattrib->dst[0] ); if((ptdls_sta != NULL) && (ptdls_sta->tdls_sta_state & TDLS_LINKED_STATE) ) { DBG_871X("[%s] for tdls link\n", __FUNCTION__); prwskey=&ptdls_sta->tpk.tk[0]; } } #endif //CONFIG_TDLS prwskeylen=16; for(curfragnum=0;curfragnumnr_frags;curfragnum++){ if((curfragnum+1)==pattrib->nr_frags){ //4 the last fragment length=pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len- pattrib->icv_len; aes_cipher(prwskey,pattrib->hdrlen,pframe, length); } else{ length=pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len ; aes_cipher(prwskey,pattrib->hdrlen,pframe, length); pframe+=pxmitpriv->frag_len; pframe=(u8*)RND4((SIZE_PTR)(pframe)); } } } /* else{ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_aes_encrypt: stainfo==NULL!!!\n")); DBG_871X("%s, psta==NUL\n", __func__); res=_FAIL; } */ } _func_exit_; return res; } static sint aes_decipher(u8 *key, uint hdrlen, u8 *pframe, uint plen) { static u8 message[MAX_MSG_SIZE]; uint qc_exists, a4_exists, i, j, payload_remainder, num_blocks, payload_index; sint res = _SUCCESS; u8 pn_vector[6]; u8 mic_iv[16]; u8 mic_header1[16]; u8 mic_header2[16]; u8 ctr_preload[16]; /* Intermediate Buffers */ u8 chain_buffer[16]; u8 aes_out[16]; u8 padded_buffer[16]; u8 mic[8]; // uint offset = 0; uint frtype = GetFrameType(pframe); uint frsubtype = GetFrameSubType(pframe); _func_enter_; frsubtype=frsubtype>>4; _rtw_memset((void *)mic_iv, 0, 16); _rtw_memset((void *)mic_header1, 0, 16); _rtw_memset((void *)mic_header2, 0, 16); _rtw_memset((void *)ctr_preload, 0, 16); _rtw_memset((void *)chain_buffer, 0, 16); _rtw_memset((void *)aes_out, 0, 16); _rtw_memset((void *)padded_buffer, 0, 16); //start to decrypt the payload num_blocks = (plen-8) / 16; //(plen including llc, payload_length and mic ) payload_remainder = (plen-8) % 16; pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen+1]; pn_vector[2] = pframe[hdrlen+4]; pn_vector[3] = pframe[hdrlen+5]; pn_vector[4] = pframe[hdrlen+6]; pn_vector[5] = pframe[hdrlen+7]; if ((hdrlen == WLAN_HDR_A3_LEN )||(hdrlen == WLAN_HDR_A3_QOS_LEN)) a4_exists = 0; else a4_exists = 1; if ( (frtype == WIFI_DATA_CFACK) || (frtype == WIFI_DATA_CFPOLL)|| (frtype == WIFI_DATA_CFACKPOLL)) { qc_exists = 1; if(hdrlen != WLAN_HDR_A3_QOS_LEN){ hdrlen += 2; } } else if ( (frsubtype == 0x08) || (frsubtype == 0x09)|| (frsubtype == 0x0a)|| (frsubtype == 0x0b)) { if(hdrlen != WLAN_HDR_A3_QOS_LEN){ hdrlen += 2; } qc_exists = 1; } else qc_exists = 0; // now, decrypt pframe with hdrlen offset and plen long payload_index = hdrlen + 8; // 8 is for extiv for (i=0; i< num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, pn_vector, i+1 ); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); for (j=0; j<16;j++) pframe[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) /* If there is a short final block, then pad it,*/ { /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, pframe, pn_vector, num_blocks+1 ); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = pframe[payload_index+j]; } aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j=0; j 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = message[payload_index++]; } bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0 ; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) message[payload_index+j] = mic[j]; payload_index = hdrlen + 8; for (i=0; i< num_blocks; i++) { construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, i+1); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &message[payload_index], chain_buffer); for (j=0; j<16;j++) message[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) /* If there is a short final block, then pad it,*/ { /* encrypt it and copy the unpadded part back */ construct_ctr_preload( ctr_preload, a4_exists, qc_exists, message, pn_vector, num_blocks+1); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) { padded_buffer[j] = message[payload_index+j]; } aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j=0; ju.hdr.attrib; struct security_priv *psecuritypriv=&padapter->securitypriv; // struct recv_priv *precvpriv=&padapter->recvpriv; u32 res=_SUCCESS; _func_enter_; pframe=(unsigned char *)((union recv_frame*)precvframe)->u.hdr.rx_data; //4 start to encrypt each fragment if((prxattrib->encrypt==_AES_)){ stainfo=rtw_get_stainfo(&padapter->stapriv ,&prxattrib->ta[0] ); if (stainfo!=NULL){ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_aes_decrypt: stainfo!=NULL!!!\n")); if(IS_MCAST(prxattrib->ra)) { //in concurrent we should use sw descrypt in group key, so we remove this message //DBG_871X("rx bc/mc packets, to perform sw rtw_aes_decrypt\n"); //prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey; if(psecuritypriv->binstallGrpkey==_FALSE) { res=_FAIL; DBG_8192C("%s:rx bc/mc packets,but didn't install group key!!!!!!!!!!\n",__FUNCTION__); goto exit; } prwskey = psecuritypriv->dot118021XGrpKey[prxattrib->key_index].skey; if(psecuritypriv->dot118021XGrpKeyid != prxattrib->key_index) { DBG_871X("not match packet_index=%d, install_index=%d \n" , prxattrib->key_index, psecuritypriv->dot118021XGrpKeyid); res=_FAIL; goto exit; } } else { prwskey=&stainfo->dot118021x_UncstKey.skey[0]; } length= ((union recv_frame *)precvframe)->u.hdr.len-prxattrib->hdrlen-prxattrib->iv_len; res= aes_decipher(prwskey,prxattrib->hdrlen,pframe, length); } else{ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("rtw_aes_encrypt: stainfo==NULL!!!\n")); res=_FAIL; } } _func_exit_; exit: return res; } #ifndef PLATFORM_FREEBSD /* compress 512-bits */ static int sha256_compress(struct sha256_state *md, unsigned char *buf) { u32 S[8], W[64], t0, t1; u32 t; int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = md->state[i]; } /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) W[i] = WPA_GET_BE32(buf + (4 * i)); /* fill W[16..63] */ for (i = 16; i < 64; i++) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; for (i = 0; i < 64; ++i) { RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i); t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; } /* feedback */ for (i = 0; i < 8; i++) { md->state[i] = md->state[i] + S[i]; } return 0; } /* Initialize the hash state */ static void sha256_init(struct sha256_state *md) { md->curlen = 0; md->length = 0; md->state[0] = 0x6A09E667UL; md->state[1] = 0xBB67AE85UL; md->state[2] = 0x3C6EF372UL; md->state[3] = 0xA54FF53AUL; md->state[4] = 0x510E527FUL; md->state[5] = 0x9B05688CUL; md->state[6] = 0x1F83D9ABUL; md->state[7] = 0x5BE0CD19UL; } /** Process a block of memory though the hash @param md The hash state @param in The data to hash @param inlen The length of the data (octets) @return CRYPT_OK if successful */ static int sha256_process(struct sha256_state *md, unsigned char *in, unsigned long inlen) { unsigned long n; #define block_size 64 if (md->curlen > sizeof(md->buf)) return -1; while (inlen > 0) { if (md->curlen == 0 && inlen >= block_size) { if (sha256_compress(md, (unsigned char *) in) < 0) return -1; md->length += block_size * 8; in += block_size; inlen -= block_size; } else { n = MIN(inlen, (block_size - md->curlen)); _rtw_memcpy(md->buf + md->curlen, in, n); md->curlen += n; in += n; inlen -= n; if (md->curlen == block_size) { if (sha256_compress(md, md->buf) < 0) return -1; md->length += 8 * block_size; md->curlen = 0; } } } return 0; } /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (32 bytes) @return CRYPT_OK if successful */ static int sha256_done(struct sha256_state *md, unsigned char *out) { int i; if (md->curlen >= sizeof(md->buf)) return -1; /* increase the length of the message */ md->length += md->curlen * 8; /* append the '1' bit */ md->buf[md->curlen++] = (unsigned char) 0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->curlen > 56) { while (md->curlen < 64) { md->buf[md->curlen++] = (unsigned char) 0; } sha256_compress(md, md->buf); md->curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->curlen < 56) { md->buf[md->curlen++] = (unsigned char) 0; } /* store length */ WPA_PUT_BE64(md->buf + 56, md->length); sha256_compress(md, md->buf); /* copy output */ for (i = 0; i < 8; i++) WPA_PUT_BE32(out + (4 * i), md->state[i]); return 0; } /** * sha256_vector - SHA256 hash for data vector * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash * Returns: 0 on success, -1 of failure */ static int sha256_vector(size_t num_elem, u8 *addr[], size_t *len, u8 *mac) { struct sha256_state ctx; size_t i; sha256_init(&ctx); for (i = 0; i < num_elem; i++) if (sha256_process(&ctx, addr[i], len[i])) return -1; if (sha256_done(&ctx, mac)) return -1; return 0; } static u8 os_strlen(const char *s) { const char *p = s; while (*p) p++; return p - s; } static int os_memcmp(void *s1, void *s2, u8 n) { unsigned char *p1 = s1, *p2 = s2; if (n == 0) return 0; while (*p1 == *p2) { p1++; p2++; n--; if (n == 0) return 0; } return *p1 - *p2; } /** * hmac_sha256_vector - HMAC-SHA256 over data vector (RFC 2104) * @key: Key for HMAC operations * @key_len: Length of the key in bytes * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for the hash (32 bytes) */ static void hmac_sha256_vector(u8 *key, size_t key_len, size_t num_elem, u8 *addr[], size_t *len, u8 *mac) { unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */ unsigned char tk[32]; u8 *_addr[6]; size_t _len[6], i; if (num_elem > 5) { /* * Fixed limit on the number of fragments to avoid having to * allocate memory (which could fail). */ return; } /* if key is longer than 64 bytes reset it to key = SHA256(key) */ if (key_len > 64) { sha256_vector(1, &key, &key_len, tk); key = tk; key_len = 32; } /* the HMAC_SHA256 transform looks like: * * SHA256(K XOR opad, SHA256(K XOR ipad, text)) * * where K is an n byte key * ipad is the byte 0x36 repeated 64 times * opad is the byte 0x5c repeated 64 times * and text is the data being protected */ /* start out by storing key in ipad */ _rtw_memset(k_pad, 0, sizeof(k_pad)); _rtw_memcpy(k_pad, key, key_len); /* XOR key with ipad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x36; /* perform inner SHA256 */ _addr[0] = k_pad; _len[0] = 64; for (i = 0; i < num_elem; i++) { _addr[i + 1] = addr[i]; _len[i + 1] = len[i]; } sha256_vector(1 + num_elem, _addr, _len, mac); _rtw_memset(k_pad, 0, sizeof(k_pad)); _rtw_memcpy(k_pad, key, key_len); /* XOR key with opad values */ for (i = 0; i < 64; i++) k_pad[i] ^= 0x5c; /* perform outer SHA256 */ _addr[0] = k_pad; _len[0] = 64; _addr[1] = mac; _len[1] = 32; sha256_vector(2, _addr, _len, mac); } #endif //PLATFORM_FREEBSD /** * sha256_prf - SHA256-based Pseudo-Random Function (IEEE 802.11r, 8.5.1.5.2) * @key: Key for PRF * @key_len: Length of the key in bytes * @label: A unique label for each purpose of the PRF * @data: Extra data to bind into the key * @data_len: Length of the data * @buf: Buffer for the generated pseudo-random key * @buf_len: Number of bytes of key to generate * * This function is used to derive new, cryptographically separate keys from a * given key. */ #ifndef PLATFORM_FREEBSD //Baron static void sha256_prf(u8 *key, size_t key_len, char *label, u8 *data, size_t data_len, u8 *buf, size_t buf_len) { u16 counter = 1; size_t pos, plen; u8 hash[SHA256_MAC_LEN]; u8 *addr[4]; size_t len[4]; u8 counter_le[2], length_le[2]; addr[0] = counter_le; len[0] = 2; addr[1] = (u8 *) label; len[1] = os_strlen(label); addr[2] = data; len[2] = data_len; addr[3] = length_le; len[3] = sizeof(length_le); WPA_PUT_LE16(length_le, buf_len * 8); pos = 0; while (pos < buf_len) { plen = buf_len - pos; WPA_PUT_LE16(counter_le, counter); if (plen >= SHA256_MAC_LEN) { hmac_sha256_vector(key, key_len, 4, addr, len, &buf[pos]); pos += SHA256_MAC_LEN; } else { hmac_sha256_vector(key, key_len, 4, addr, len, hash); _rtw_memcpy(&buf[pos], hash, plen); break; } counter++; } } #endif //PLATFORM_FREEBSD Baron /* AES tables*/ const u32 Te0[256] = { 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU, 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U, 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU, 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU, 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U, 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU, 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU, 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU, 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU, 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU, 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U, 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU, 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU, 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U, 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU, 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU, 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU, 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU, 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU, 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U, 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU, 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU, 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU, 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU, 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U, 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U, 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U, 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U, 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU, 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U, 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U, 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU, 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU, 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U, 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U, 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U, 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU, 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U, 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU, 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U, 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU, 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U, 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U, 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU, 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U, 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U, 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U, 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U, 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U, 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U, 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U, 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U, 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU, 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U, 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U, 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U, 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U, 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U, 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U, 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU, 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U, 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U, 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U, 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU, }; const u32 Td0[256] = { 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U, 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U, 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U, 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU, 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U, 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U, 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU, 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U, 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU, 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U, 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U, 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U, 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U, 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU, 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U, 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU, 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U, 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU, 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U, 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U, 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U, 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU, 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U, 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU, 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U, 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU, 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U, 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU, 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU, 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U, 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU, 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U, 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU, 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U, 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U, 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U, 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU, 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U, 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U, 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU, 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U, 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U, 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U, 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U, 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U, 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU, 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U, 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U, 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U, 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U, 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U, 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU, 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU, 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU, 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU, 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U, 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U, 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU, 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU, 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U, 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU, 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U, 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U, 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U, }; const u8 Td4s[256] = { 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U, 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU, 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U, 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU, 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU, 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU, 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U, 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U, 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U, 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U, 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU, 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U, 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU, 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U, 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U, 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU, 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU, 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U, 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U, 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU, 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U, 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU, 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U, 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U, 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U, 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU, 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU, 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU, 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U, 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U, 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U, 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU, }; const u8 rcons[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; /** * Expand the cipher key into the encryption key schedule. * * @return the number of rounds for the given cipher key size. */ #ifndef PLATFORM_FREEBSD //Baron static void rijndaelKeySetupEnc(u32 rk[/*44*/], const u8 cipherKey[]) { int i; u32 temp; rk[0] = GETU32(cipherKey ); rk[1] = GETU32(cipherKey + 4); rk[2] = GETU32(cipherKey + 8); rk[3] = GETU32(cipherKey + 12); for (i = 0; i < 10; i++) { temp = rk[3]; rk[4] = rk[0] ^ TE421(temp) ^ TE432(temp) ^ TE443(temp) ^ TE414(temp) ^ RCON(i); rk[5] = rk[1] ^ rk[4]; rk[6] = rk[2] ^ rk[5]; rk[7] = rk[3] ^ rk[6]; rk += 4; } } static void rijndaelEncrypt(u32 rk[/*44*/], u8 pt[16], u8 ct[16]) { u32 s0, s1, s2, s3, t0, t1, t2, t3; int Nr = 10; #ifndef FULL_UNROLL int r; #endif /* ?FULL_UNROLL */ /* * map byte array block to cipher state * and add initial round key: */ s0 = GETU32(pt ) ^ rk[0]; s1 = GETU32(pt + 4) ^ rk[1]; s2 = GETU32(pt + 8) ^ rk[2]; s3 = GETU32(pt + 12) ^ rk[3]; #define ROUND(i,d,s) \ d##0 = TE0(s##0) ^ TE1(s##1) ^ TE2(s##2) ^ TE3(s##3) ^ rk[4 * i]; \ d##1 = TE0(s##1) ^ TE1(s##2) ^ TE2(s##3) ^ TE3(s##0) ^ rk[4 * i + 1]; \ d##2 = TE0(s##2) ^ TE1(s##3) ^ TE2(s##0) ^ TE3(s##1) ^ rk[4 * i + 2]; \ d##3 = TE0(s##3) ^ TE1(s##0) ^ TE2(s##1) ^ TE3(s##2) ^ rk[4 * i + 3] #ifdef FULL_UNROLL ROUND(1,t,s); ROUND(2,s,t); ROUND(3,t,s); ROUND(4,s,t); ROUND(5,t,s); ROUND(6,s,t); ROUND(7,t,s); ROUND(8,s,t); ROUND(9,t,s); rk += Nr << 2; #else /* !FULL_UNROLL */ /* Nr - 1 full rounds: */ r = Nr >> 1; for (;;) { ROUND(1,t,s); rk += 8; if (--r == 0) break; ROUND(0,s,t); } #endif /* ?FULL_UNROLL */ #undef ROUND /* * apply last round and * map cipher state to byte array block: */ s0 = TE41(t0) ^ TE42(t1) ^ TE43(t2) ^ TE44(t3) ^ rk[0]; PUTU32(ct , s0); s1 = TE41(t1) ^ TE42(t2) ^ TE43(t3) ^ TE44(t0) ^ rk[1]; PUTU32(ct + 4, s1); s2 = TE41(t2) ^ TE42(t3) ^ TE43(t0) ^ TE44(t1) ^ rk[2]; PUTU32(ct + 8, s2); s3 = TE41(t3) ^ TE42(t0) ^ TE43(t1) ^ TE44(t2) ^ rk[3]; PUTU32(ct + 12, s3); } static void * aes_encrypt_init(u8 *key, size_t len) { u32 *rk; if (len != 16) return NULL; rk = (u32*)rtw_malloc(AES_PRIV_SIZE); if (rk == NULL) return NULL; rijndaelKeySetupEnc(rk, key); return rk; } static void aes_128_encrypt(void *ctx, u8 *plain, u8 *crypt) { rijndaelEncrypt(ctx, plain, crypt); } static void gf_mulx(u8 *pad) { int i, carry; carry = pad[0] & 0x80; for (i = 0; i < AES_BLOCK_SIZE - 1; i++) pad[i] = (pad[i] << 1) | (pad[i + 1] >> 7); pad[AES_BLOCK_SIZE - 1] <<= 1; if (carry) pad[AES_BLOCK_SIZE - 1] ^= 0x87; } static void aes_encrypt_deinit(void *ctx) { _rtw_memset(ctx, 0, AES_PRIV_SIZE); rtw_mfree(ctx, AES_PRIV_SIZE); } /** * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128 * @key: 128-bit key for the hash operation * @num_elem: Number of elements in the data vector * @addr: Pointers to the data areas * @len: Lengths of the data blocks * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure * * This is a mode for using block cipher (AES in this case) for authentication. * OMAC1 was standardized with the name CMAC by NIST in a Special Publication * (SP) 800-38B. */ static int omac1_aes_128_vector(u8 *key, size_t num_elem, u8 *addr[], size_t *len, u8 *mac) { void *ctx; u8 cbc[AES_BLOCK_SIZE], pad[AES_BLOCK_SIZE]; u8 *pos, *end; size_t i, e, left, total_len; ctx = aes_encrypt_init(key, 16); if (ctx == NULL) return -1; _rtw_memset(cbc, 0, AES_BLOCK_SIZE); total_len = 0; for (e = 0; e < num_elem; e++) total_len += len[e]; left = total_len; e = 0; pos = addr[0]; end = pos + len[0]; while (left >= AES_BLOCK_SIZE) { for (i = 0; i < AES_BLOCK_SIZE; i++) { cbc[i] ^= *pos++; if (pos >= end) { e++; pos = addr[e]; end = pos + len[e]; } } if (left > AES_BLOCK_SIZE) aes_128_encrypt(ctx, cbc, cbc); left -= AES_BLOCK_SIZE; } _rtw_memset(pad, 0, AES_BLOCK_SIZE); aes_128_encrypt(ctx, pad, pad); gf_mulx(pad); if (left || total_len == 0) { for (i = 0; i < left; i++) { cbc[i] ^= *pos++; if (pos >= end) { e++; pos = addr[e]; end = pos + len[e]; } } cbc[left] ^= 0x80; gf_mulx(pad); } for (i = 0; i < AES_BLOCK_SIZE; i++) pad[i] ^= cbc[i]; aes_128_encrypt(ctx, pad, mac); aes_encrypt_deinit(ctx); return 0; } /** * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC) * @key: 128-bit key for the hash operation * @data: Data buffer for which a MAC is determined * @data_len: Length of data buffer in bytes * @mac: Buffer for MAC (128 bits, i.e., 16 bytes) * Returns: 0 on success, -1 on failure * * This is a mode for using block cipher (AES in this case) for authentication. * OMAC1 was standardized with the name CMAC by NIST in a Special Publication * (SP) 800-38B. */ static int omac1_aes_128(u8 *key, u8 *data, size_t data_len, u8 *mac) { return omac1_aes_128_vector(key, 1, &data, &data_len, mac); } #endif //PLATFORM_FREEBSD Baron #ifdef CONFIG_TDLS void wpa_tdls_generate_tpk(_adapter *padapter, struct sta_info *psta) { struct mlme_priv *pmlmepriv = &padapter->mlmepriv; u8 *SNonce = psta->SNonce; u8 *ANonce = psta->ANonce; u8 key_input[SHA256_MAC_LEN]; u8 *nonce[2]; size_t len[2]; u8 data[3 * ETH_ALEN]; /* IEEE Std 802.11z-2010 8.5.9.1: * TPK-Key-Input = SHA-256(min(SNonce, ANonce) || max(SNonce, ANonce)) */ len[0] = 32; len[1] = 32; if (os_memcmp(SNonce, ANonce, 32) < 0) { nonce[0] = SNonce; nonce[1] = ANonce; } else { nonce[0] = ANonce; nonce[1] = SNonce; } sha256_vector(2, nonce, len, key_input); /* * TPK-Key-Data = KDF-N_KEY(TPK-Key-Input, "TDLS PMK", * min(MAC_I, MAC_R) || max(MAC_I, MAC_R) || BSSID || N_KEY) * TODO: is N_KEY really included in KDF Context and if so, in which * presentation format (little endian 16-bit?) is it used? It gets * added by the KDF anyway.. */ if (os_memcmp(myid(&(padapter->eeprompriv)), psta->hwaddr, ETH_ALEN) < 0) { _rtw_memcpy(data, myid(&(padapter->eeprompriv)), ETH_ALEN); _rtw_memcpy(data + ETH_ALEN, psta->hwaddr, ETH_ALEN); } else { _rtw_memcpy(data, psta->hwaddr, ETH_ALEN); _rtw_memcpy(data + ETH_ALEN, myid(&(padapter->eeprompriv)), ETH_ALEN); } _rtw_memcpy(data + 2 * ETH_ALEN, get_bssid(pmlmepriv), ETH_ALEN); sha256_prf(key_input, SHA256_MAC_LEN, "TDLS PMK", data, sizeof(data), (u8 *) &psta->tpk, sizeof(psta->tpk)); } /** * wpa_tdls_ftie_mic - Calculate TDLS FTIE MIC * @kck: TPK-KCK * @lnkid: Pointer to the beginning of Link Identifier IE * @rsnie: Pointer to the beginning of RSN IE used for handshake * @timeoutie: Pointer to the beginning of Timeout IE used for handshake * @ftie: Pointer to the beginning of FT IE * @mic: Pointer for writing MIC * * Calculate MIC for TDLS frame. */ int wpa_tdls_ftie_mic(u8 *kck, u8 trans_seq, u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie, u8 *mic) { u8 *buf, *pos; struct wpa_tdls_ftie *_ftie; struct wpa_tdls_lnkid *_lnkid; int ret; int len = 2 * ETH_ALEN + 1 + 2 + lnkid[1] + 2 + rsnie[1] + 2 + timeoutie[1] + 2 + ftie[1]; buf = rtw_zmalloc(len); if (!buf) { DBG_871X("TDLS: No memory for MIC calculation\n"); return -1; } pos = buf; _lnkid = (struct wpa_tdls_lnkid *) lnkid; /* 1) TDLS initiator STA MAC address */ _rtw_memcpy(pos, _lnkid->init_sta, ETH_ALEN); pos += ETH_ALEN; /* 2) TDLS responder STA MAC address */ _rtw_memcpy(pos, _lnkid->resp_sta, ETH_ALEN); pos += ETH_ALEN; /* 3) Transaction Sequence number */ *pos++ = trans_seq; /* 4) Link Identifier IE */ _rtw_memcpy(pos, lnkid, 2 + lnkid[1]); pos += 2 + lnkid[1]; /* 5) RSN IE */ _rtw_memcpy(pos, rsnie, 2 + rsnie[1]); pos += 2 + rsnie[1]; /* 6) Timeout Interval IE */ _rtw_memcpy(pos, timeoutie, 2 + timeoutie[1]); pos += 2 + timeoutie[1]; /* 7) FTIE, with the MIC field of the FTIE set to 0 */ _rtw_memcpy(pos, ftie, 2 + ftie[1]); _ftie = (struct wpa_tdls_ftie *) pos; _rtw_memset(_ftie->mic, 0, TDLS_MIC_LEN); pos += 2 + ftie[1]; ret = omac1_aes_128(kck, buf, pos - buf, mic); rtw_mfree(buf, len); return ret; } int tdls_verify_mic(u8 *kck, u8 trans_seq, u8 *lnkid, u8 *rsnie, u8 *timeoutie, u8 *ftie) { u8 *buf, *pos; int len; u8 mic[16]; int ret; u8 *rx_ftie, *tmp_ftie; if (lnkid == NULL || rsnie == NULL || timeoutie == NULL || ftie == NULL){ return 0; } len = 2 * ETH_ALEN + 1 + 2 + 18 + 2 + *(rsnie+1) + 2 + *(timeoutie+1) + 2 + *(ftie+1); buf = rtw_zmalloc(len); if (buf == NULL) return 0; pos = buf; /* 1) TDLS initiator STA MAC address */ _rtw_memcpy(pos, lnkid + ETH_ALEN + 2, ETH_ALEN); pos += ETH_ALEN; /* 2) TDLS responder STA MAC address */ _rtw_memcpy(pos, lnkid + 2 * ETH_ALEN + 2, ETH_ALEN); pos += ETH_ALEN; /* 3) Transaction Sequence number */ *pos++ = trans_seq; /* 4) Link Identifier IE */ _rtw_memcpy(pos, lnkid, 2 + 18); pos += 2 + 18; /* 5) RSN IE */ _rtw_memcpy(pos, rsnie, 2 + *(rsnie+1)); pos += 2 + *(rsnie+1); /* 6) Timeout Interval IE */ _rtw_memcpy(pos, timeoutie, 2 + *(timeoutie+1)); pos += 2 + *(timeoutie+1); /* 7) FTIE, with the MIC field of the FTIE set to 0 */ _rtw_memcpy(pos, ftie, 2 + *(ftie+1)); pos += 2; tmp_ftie = (u8 *) (pos+2); _rtw_memset(tmp_ftie, 0, 16); pos += *(ftie+1); ret = omac1_aes_128(kck, buf, pos - buf, mic); rtw_mfree(buf, len); if (ret) return 0; rx_ftie = ftie+4; if (os_memcmp(mic, rx_ftie, 16) == 0) { //Valid MIC return 1; } //Invalid MIC DBG_871X( "[%s] Invalid MIC\n", __FUNCTION__); return 0; } #endif //CONFIG_TDLS void rtw_use_tkipkey_handler(RTW_TIMER_HDL_ARGS) { _adapter *padapter = (_adapter *)FunctionContext; _func_enter_; RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("^^^rtw_use_tkipkey_handler ^^^\n")); /* if(padapter->bDriverStopped ||padapter->bSurpriseRemoved){ RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("^^^rtw_use_tkipkey_handler (padapter->bDriverStopped %d)(padapter->bSurpriseRemoved %d)^^^\n",padapter->bDriverStopped,padapter->bSurpriseRemoved)); return; } */ padapter->securitypriv.busetkipkey=_TRUE; RT_TRACE(_module_rtl871x_security_c_,_drv_err_,("^^^rtw_use_tkipkey_handler padapter->securitypriv.busetkipkey=%d^^^\n",padapter->securitypriv.busetkipkey)); _func_exit_; }