import os import argparse from sentence_transformers import SentenceTransformer from qdrant_client import QdrantClient from qdrant_client.http import models from langchain.text_splitter import RecursiveCharacterTextSplitter def load_markdown_files(input_dir): documents = [] for filename in os.listdir(input_dir): if filename.endswith(".md"): path = os.path.join(input_dir, filename) with open(path, "r", encoding="utf-8") as f: content = f.read() lines = content.splitlines() url = None if lines: first_line = lines[0].strip() if first_line.startswith("@@") and first_line.endswith("@@") and len(first_line) > 4: url = first_line[2:-2].strip() content = "\n".join(lines[1:]) # Remove the first line from content documents.append({"id": filename, "text": content, "url": url}) return documents def chunk_text(texts, chunk_size, chunk_overlap): splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len, separators=["\n\n", "\n", " ", ""] ) chunks = [] for doc in texts: doc_chunks = splitter.split_text(doc["text"]) for i, chunk in enumerate(doc_chunks): chunk_id = f"{doc['id']}_chunk{i}" chunk_dict = {"id": chunk_id, "text": chunk} if "url" in doc and doc["url"] is not None: chunk_dict["url"] = doc["url"] chunks.append(chunk_dict) return chunks def embed_and_upload(chunks, embedding_model_name, qdrant_host="localhost", qdrant_port=6333): import hashlib print(f"Инициализация модели {args.embedding_model}") embedder = SentenceTransformer(embedding_model_name) print(f"Подключение к qdrant ({qdrant_host}:{qdrant_port})") client = QdrantClient(host=qdrant_host, port=qdrant_port) collection_name = "rag_collection" if client.collection_exists(collection_name): client.delete_collection(collection_name) client.create_collection( collection_name=collection_name, vectors_config=models.VectorParams(size=embedder.get_sentence_embedding_dimension(), distance=models.Distance.COSINE), ) points = [] total_chunks = len(chunks) for idx, chunk in enumerate(chunks, start=1): # Qdrant point IDs must be positive integers id_hash = int(hashlib.sha256(chunk["id"].encode("utf-8")).hexdigest(), 16) % (10**16) vector = embedder.encode(chunk["text"]).tolist() points.append(models.PointStruct( id=id_hash, vector=vector, payload={ "text": chunk["text"], "filename": chunk["id"].rsplit(".md_chunk", 1)[0], "url": chunk.get("url", None) } )) print(f"[{idx}/{total_chunks}] Подготовлен чанк: {chunk['id']} -> ID: {id_hash}") batch_size = 100 for i in range(0, total_chunks, batch_size): batch = points[i : i + batch_size] client.upsert(collection_name=collection_name, points=batch) print(f"Записан батч {(i // batch_size) + 1}, содержащий {len(batch)} точек, всего записано: {min(i + batch_size, total_chunks)}/{total_chunks}") print(f"Завершена запись всех {total_chunks} чанков в коллекцию '{collection_name}'.") if __name__ == "__main__": print(f"Инициализация...") parser = argparse.ArgumentParser(description="Скрипт векторизаци данных для Qdrant") parser.add_argument("--input_dir", type=str, default="input_md", help="Директория с Markdown-файлами для чтения") parser.add_argument("--chunk_size", type=int, default=500, help="Размер чанка") parser.add_argument("--chunk_overlap", type=int, default=100, help="Размер перекрытия") parser.add_argument("--embedding_model", type=str, default="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", help="Модель эмбеддинга") parser.add_argument("--qdrant_host", type=str, default="localhost", help="Адрес хоста Qdrant") parser.add_argument("--qdrant_port", type=int, default=6333, help="Номер порта Qdrant") args = parser.parse_args() documents = load_markdown_files(args.input_dir) print(f"Найдено документов: {len(documents)}") print(f"Подготовка чанков...") chunks = chunk_text(documents, args.chunk_size, args.chunk_overlap) print(f"Создано чанков: {len(chunks)} ({args.chunk_size}/{args.chunk_overlap})") embed_and_upload(chunks, args.embedding_model, args.qdrant_host, args.qdrant_port)